
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 10, October 2019

17

An Algorithm for String Searching

Rawan Ali Abdeen
Department of Computer Information Systems

Al-Balqa Applied University
Al-Salt, Jordan

ABSTRACT

Many problems encountered require string searching to solve

them. Thus, string searching algorithms are important. They

play the vital role in various fields and applications, including

text editing, finding part of DNA in bio informatics

engineering, text searching, computer security, linguistics,

artificial intelligence and web search engines. In this paper, a

string searching algorithm is proposed. The proposed

algorithm aims to improve the brute-force searching

algorithm. It finds all the occurrences of a pattern within a

given text. The pattern and the text are to be preprocessed

before the actual searching starts.

General Terms
String searching, string matching, pattern matching,

algorithm.

Keywords

Searching, text, pattern, segment, string matching, string

searching, pattern matching.

1. INTRODUCTION

Everyday people read, write and deal with character strings.

They often need to find substrings (patterns or words) that

match parts of the original text to solve many problems. To

achieve this, string searching algorithms are required. String

searching sometimes called string matching is the act of

checking the existence of a substring (called the pattern) of

length m in a sequence of characters (called the text) of length

n (where n ≥ m) [1-4] and finding its location in that

sequence or text.

A lot of algorithms were created and still is being created to

improve and perform string searching. Each algorithm utilizes

the pattern and text in the process of searching in different

ways. Some of these algorithms require to preprocess the

pattern [5-7], others need to preprocess the text; also there are

algorithms that require both the pattern and the text to be

preprocessed before searching [8]. However, there are

algorithms that do not perform preprocessing neither for the

text nor for the pattern. The Brute-force algorithm is one of

the simplest string searching algorithms that were proposed.

The problem is that it has the worst performance among the

current existing algorithms. Therefore, various string

searching algorithms were created to improve it. From those

well-known algorithms: the Knuth-Morris-Pratt (KMP),

Boyer-Moore (BM) and Karp and Rabin algorithms. Still to

determine which of the algorithms is the best to use depends

on the domain of the problem to be solved or the application

were the algorithm is to be applied.

2. BRUTE-FORCE ALGORITHM
The Brute-force algorithm also called the “naïve” [1, 9, 10,

11] is the simplest algorithm that can be used in pattern

searching. No preprocessing phase is required for the pattern

or the text. It searches all the positions in the text between 0

and n-m. In this algorithm, the searching is done character by

character between the pattern and a segment taken from the

text. It starts with matching the first character of the pattern

with the corresponding character of the segment taken. If the

character of the pattern is equal to the corresponding character

of the segment of the text then the next character in the pattern

will be compared with the next character in the segment taken

from the text (shifting one character forward at a time for the

pattern as well as the text). If a mismatch occurs, then the

algorithm will return to the first character of the pattern while

taking the next segment of the text to be compared with the

pattern. In other words, in the case of a mismatch, we shift

forward ahead by one character of text and start matching it

with the first character of the pattern. The process continues

until the end of the text is reached.

The running time (time complexity) of the brute force

algorithm is: O((n-m+1)m) which is O(nm) [9]. In the worst

case, when n and m are equal, this algorithm has a quadratic

running time [1]. The brute-force algorithm can be used when

the problem to be solved is simple or when the speed of

solving the problem is not as important as the simplicity of

solving it. Moreover, for smaller text and pattern size, brute-

force algorithm outperforms other algorithms [12].

3. RELATED WORK
The following sub-sections include descriptions of some of

the algorithms that have improved the Brute-force algorithm.

3.1 Knuth-Morris-Pratt (KMP) Algorithm

The Knuth-Morris-Pratt (KMP) Algorithm uses information

about the characters of the pattern to determine how much to

move along the text after a mismatch occurs [10, 11] [13-16].

It exploits the fact that every time a match or a mismatch

occurs, the pattern contains enough information to decide

where the new examination should begin from. It achieves a

running time of O(n+m).

3.2 Rabin–Karp Algorithm
The Rabin–Karp algorithm computes a hash function from the

pattern to seek for it within a given text [11]. The hashing

method used in this algorithm helped to avoid the quadric

number of character comparisons in most practical situations.

This algorithm calculates a numerical or hash value for the

pattern and for each m-character of the segment or substring

of the given text (where m is equal to the number of

characters of the pattern). The calculated numerical values are

then used to perform the comparison instead of using the

actual symbols. When a match is found, the algorithm

compares the pattern with the substring character by character

using the brute-force approach. Its time complexity is O(nm)

and its expected running time in average would be O(n+m).

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 10, October 2019

18

3.3 Boyer-Moore Algorithm
The Boyer-Moore algorithm preprocesses the pattern and then

uses the information gathered during the preprocess step to

avoid sections of the text. It works by searching the pattern

from right to left, while moving it left to right along the text

[10][14 -17]. Its time complexity is O(nm).

3.4 Occurrences Algorithm
Occurrences algorithm [18] finds all the occurrences of the

pattern in the text. It performs preprocessing for the pattern

and the text before searching. The searching process depends

on the character that is repeated the most in the pattern. In this

algorithm, after the preprocessing processes have been done,

an array is created. This array will be used to determine which

segments of the text will be compared with the pattern. Its

time complexity is O(eleNum*m) where eleNum is the

number of segments to be considered in the comparison.

3.5 Start-to-End Algorithm
The Start-to-End algorithm [19] does not preprocess neither

the pattern nor the text to perform searching. It begins the

search process by comparing the first character of the pattern

with the first character of the segment taken from the text, if

they match, then it compares the last character of the pattern

with the last character of the segment, if a match occurs, then

it will allow to perform character by character matching

between the segment taken from the text and the pattern for

the rest of the characters. Its time complexity is O(nm) in the

worst case.

If the first character of the pattern does not match with any of

the characters of the segment taken from the text then its time

complexity would be O(n-m+1). However, if the first

character of the pattern matches the first character of the

segment of the text while the last character does not match

then its time complexity would be O((n-m+1) *2).

4. THE PROPOSED ALGORITHM
In this paper, the proposed algorithm preprocesses the pattern

and the text before the searching process is performed. It

depends on the results of the preprocessing to find all the

occurrences of the pattern in the text.

4.1 Preprocessing the Pattern
The algorithm of preprocessing the pattern finds the character

that is of the highest occurrence in the pattern. Figure 1

shows the flowchart of this process. Note that, if two or more

characters have the same repetition within the pattern, then the

algorithm chooses the character that occurs before the other in

the pattern.

4.2 Preprocessing the Text
The text is divided into segments in which the first segment

begins from the first character of the text, the second segment

begins at the second character of the text and so on. That is

each segment to be taken is shifted one character than the

previous one. Note that, the number of characters in each

segment is equal to the number of characters of the pattern.

The algorithm takes each segment and checks if the character

of the highest occurrence in the pattern exists in the segment

or not. If it exists, then it calculates the number of occurrences

of that character in that segment. If the number calculated is

equivalent to the number of occurrences of that character in

the pattern, then segment's index is stored in an array. At the

end of the preprocessing of the text, the array will contain the

indexes of the segments that will be considered in the

comparison process. Figure 2 shows the steps through which

this process is performed.

Figure 1: A general flowchart for preprocessing the

pattern.

4.3 The Searching Process
After preprocessing the pattern and the text, the comparison

will be done. This comparison will be between the pattern and

the segments that their indexes are stored in the array.

For each segment taken from the created array, the first

character in the pattern is compared with the first character in

the segment, if they match, then the algorithm continues by

comparing the last character in the pattern with the last

character in the segment taken from the array. If the

corresponding last characters match then the algorithm allows

to perform character by character matching between the

pattern and the segment taken from the text. In the case of a

mismatch in any step, the algorithm will directly take the next

segment in the array, else it will continue comparing.

If all the characters of the pattern match the corresponding

characters of the segment taken from the created array then a

message will be shown that informs that the pattern was found

and at which location in the text it was found. After that, the

algorithm checks if there are other segments in the array that

have not been compared with the pattern. If so, then it takes

the next segment and compares it with the pattern in the same

manner as described above to find other occurrences of the

pattern in the text.

If all of the segments determined by the array have been

compared with the pattern without matching the pattern, then

a not found message is shown. Figure 3 illustrates the

algorithm in a flowchart to show how to find the first

occurrence of the pattern within the text.

Start

Input the pattern

The character of the highest occurrence is found

End

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 10, October 2019

19

Check if there are still

segments in the text

Check if the number of

occurrences of that character in the

segment is equal to the number of

occurrences of that character in the

pattern.

Figure 2: A flowchart for preprocessing the text.

Start

Divide the text into segments.

Take a segment from the text.

Calculate the number of occurrences of that

character in the segment.

Check if the character

of the highest

occurrence in the

pattern exists in the

segment taken.

Store the index of the segment in an array.

End

True

False

False
True

True

False

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 10, October 2019

20

Figure 3: A flowchart for the proposed algorithm to find the first occurrence of the pattern within the text.

Start

Preprocess the pattern

Preprocess the text

Check if the first character

of the pattern matches the

corresponding first

character of the segment

taken

End

True

True

False

Check if the last character

of the pattern matches the

corresponding last

character of the segment

taken

Take a segment from the created array

False

Array

All characters match
No match Check if the other

characters of the pattern

match the rest of the

characters of the segment

taken.

Inform that the pattern was found and at which

location in the text it was found.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 10, October 2019

21

5. RESULTS
The proposed algorithm requires performing preprocessing for

the pattern and for the text. It finds all the occurrences of the

pattern in the text with the time complexity O(eleNum*m) in

the worst case. The proposed algorithm has effectively

reduced the time complexity of the brute-force algorithm.

Table 1 summaries the algorithms that has improved the

brute-force algorithm with their time complexity and whether

they need preprocessing or not. Note that, the length of the

text is denoted as n and the pattern length is denoted as m.

The time complexity for the proposed algorithm can be

detailed as follows:

- If the first character of the pattern does not match

the first character of all the segments in the created

array, then the time complexity would be:

O(eleNum), where eleNum denotes the number of

elements in the created array.

- If the first character of the pattern matches the first

character of all the segments in the created array but

the last character of the pattern does not match the

last character of all the segments in the created

array, then the time complexity would be:

O(eleNum*2).

- If the first character of the pattern matches the first

character of all the segments in the created array

and the last character of the pattern matches the last

character of all the segments in the created array,

then the time complexity would be: O(eleNum*m).

Table 1: The Preprocessing needed and time complexity

for the Brute-force algorithm and the algorithms that

improved it

Algorithm Preprocessing
Time Complexity

in the worst case

Brute-Force

Algorithm
No preprocessing O(nm)

Rabin-Karp

Algorithm

Preprocesses the

pattern
O(nm)

Knuth-Morris-

Pratt Algorithm

Preprocesses the

pattern
O(n+m)

Boyer-Moore

Algorithm

Preprocesses the

pattern
O(nm)

Occurrences

Algorithm

Preprocesses the

pattern and the text
O(eleNum*m)

Start-to-End

Algorithm
No preprocessing O(nm)

Proposed

Algorithm

Preprocesses the

pattern and the text
O(eleNum*m)

Table 2: An Example to compare between the running

time of the Brute-force algorithm and the Proposed

algorithm

Time

Complexity
Algorithm Pattern Text

92
Brute-Force

zoom

zoom

picture of

the cat
5

Proposed

Table 3: An Example to compare between the running

time of the Brute-force algorithm and the Proposed

algorithm

Running time Algorithm Pattern Text

115 Brute-Force
groom

zoom

picture of

the cat 2 Proposed

Table 4: An Example to compare between the running

time of the Brute-force algorithm and the Proposed

algorithm

Running time Algorithm Pattern Text

69 Brute-Force
rat

zoom

picture of

the cat 5 Proposed

Tables 2, 3 and 4 include an example to find a specified

pattern within a specified text and the running time required to

perform the search by the Brute-force and the proposed

algorithm. The observed running time of the proposed

algorithm is much less than the running time of the Brute-

force algorithm.

6. CONCLUSION
In this paper, a string searching algorithm has been proposed

as an improvement for the brute-force algorithm. The

proposed algorithm finds all of the occurrences of a pattern

within a text. The pattern and text are to be preprocessed

before the actual searching starts. The preprocessing processes

aim to create an array that will include the indexes of the

segments of the text that will be compared with the pattern.

Those segments determined by the array are the only

segments of the text that will be taken into consideration in

the searching process without having to traverse all the

segments of the text to find the pattern.

The searching process depends on the created array and also

the matching of the first character of the pattern with the

corresponding first character of the segment. If a match occurs

then the corresponding last characters are to be compared

before the character by character comparison is allowed to be

done. Accordingly, the time required to perform the searching

has been effectively reduced.

The proposed algorithm has reduced the time complexity of

the brute-force algorithm. In the worst case, the time

complexity of the brute-force algorithm is O(nm) while the

time complexity of the proposed algorithm in the worst case is

O(eleNum*m).

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 10, October 2019

22

In a world heaving with a massive amount of data and

applications that require extracting and detecting patterns, it is

always required to create algorithms that can perform in a

faster and more efficient manner than those existing or

improving the already existed ones. For future, the proposed

algorithm can be improved by modifying the way the search

process matches the segments specified by the created array

with the pattern. Furthermore, a study can be done to test the

effectiveness of the proposed algorithm against other existing

algorithms.

7. REFERENCES
[1] Thierry Lecroq, Experimental Results on String

Matching Algorithms, SOFTWARE—PRACTICE AND

EXPERIENCE, Vol. 25(7), pp. 727–765, 1995.

[2] G. Stephen, String Searching Algorithms, World

Scientific, Singapore, 1994.

[3] Apostolico A. and Galil Z., Pattern Matching

Algorithms, Oxford University Press, 1997.

[4] Robert Sedgewick and Kevin Wayne, Algorithms, 4th

edition, ISBN-13: 978-0-321-57351-3, ISBN-10: 0-321-

57351-X, Princeton University, Addison-Wesley, 2011.

[5] Liu Z., Du X. and Ishii N., An improved adaptive string

searching algorithm, Software Practice and Experience,

28(2), pp. 191–198, 1988.

[6] Sunday D., A very fast substring search algorithm,

Communications of the ACM, 33(8), pp. 132–142, 1990.

[7] Bruce W. and Watson E., A Boyer-Moore-style

Algorithm for Regular Expression Pattern Matching,

Science of Computer Programming, Vol. 48, pp. 99-117,

2003.

[8] Fenwick P., Fast string matching for multiple searches,

Software, Practice and Experience, 31(9), pp. 815–833,

2001.

[9] Ohdan Masanori, Takeuchi Ryo and Satou Tadamasa,

An Evaluation of String Search Algorithms at Users

Standing, Proceedings of the 3rd WSES International

Conference on Mathematics and Computers in

Mechanical Engineering (MCME), pp. 4231-4236,

ISBN: 960-8052-35-1, 2001.

[10] Softpanorama, Searching Algorithms, 2001, Available:

http://www.softpanorama.org/Algorithms/searching.shtm

l. [Accessed: 8 July, 2019].

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest and Clifford Stein, Introduction to Algorithms, 3rd

edition, MIT Press, 2009.

[12] G.L. Prajapati, Mohd. Sharique, Piyush Nagani, Adarsh

V., Study of Selected Shifting based String Matching

Algorithms, International Journal of Computer

Applications (0975 – 8887), Volume 140, No. 9, April

2016.

[13] D.E. Knuth, J.H. Morris Jr, and V.R. Pratt, Fast pattern

matching in strings, SIAM journal on computing, Vol. 6,

No. 2, pp. 323-350, June 1977.

[14] Hume and Sunday, Fast String Searching, Software-

Practice and Experience, Vol. 21(11), pp. 1221–1248,

1991.

[15] Michael T. Goodrich and Roberto Tamassia, Algorithm

Design and Applications, John Wiley and Sons, 2015.

[16] M. Crochemore and D. Perrin, 1991, Two Way String

Matching, Journal of the Association for Computing

Machinery, Vol. 38, No. 3, pp.651-675.

[17] Robert S. Boyer and J. Strother Moore, A Fast String

Searching Algorithm, Association for Computing

Machinery, Vol. 20, No. 10, pp. 762-772, Oct. 1977.

[18] Mohammad Ababneh, Saleh Oqeili and Rawan A.

Abdeen, Occurrences Algorithm for String Searching

Based on Brute-force Algorithm, Journal of Computer

Science, ISSN 1549-3636, 2(1), pp. 82-85, 2006.

[19] Rawan A. Abdeen, Start-to-End Algorithm for String

Searching, IJCSNS International Journal of Computer

Science and Network Security, Vol. 11, No. 2, pp. 179-

182, February 2011.

IJCATM : www.ijcaonline.org

