
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 11, October 2019

4

Design and Implementation of 8 point FFT using Verilog

HDL

Sonali Kangralkar
Student

VLSI Design & Embedded System
KLE Dr.M.S.Sheshgiri College of Engineering &

Technology

Rajashri Khanai, PhD
Professor

Department of Electronics and Communication
KLE Dr.M.S.Sheshgiri College of Engineering &

Technology

ABSTRACT

The importance of Digital Signal Processing (DSP)

algorithms have increased drastically in recent times, the two

important techniques of DSP are the Discrete Fourier

Transform(DFT) and the Fast Fourier Transform(FFT). DFT

is broadly used in the applications such as convolution, linear

filtering etc. Another algorithm to compute DFT efficiently is

the Fast Fourier Transform (FFT). Fast Fourier Transform

processor has an important role in the field of communication

system such as audio broadcasting and digital video etc. This

paper deals with the designing of an 8 point FFT using radix-2

DIT FFT algorithm. This 8 point FFT design is implemented

using Verilog HDL in Xilinx ISE Software.

General Terms

Discrete Fourier Transform, Fast Fourier Transform,

Decimation in Time, Decimation in Frequency, algorithm

Keywords

Digital Signal Processing (DSP), Discrete Fourier Transform

(DFT), Fast Fourier Transform (FFT), Split-Radix FFT

(SRFFT), Decimation in Time FFT(DIT-FFT), Decimation in

Frequency(DIF-FFT)

1. INTRODUCTION
Digital signal processing is one of the frequently used

techniques for video and audio applications. Many techniques

are available in the DSP domain to analyze the video or audio

signals. Discrete Fourier Transform (DFT) is widely used

algorithm in digital signal processing applications such as

linear filtering, convolution, spectrum analysis and

correlation. DFT is said to be a frequency domain

representation of original Sequence.

X (k) =
 , k = 0,1,…N-1

The equation shown above can be written as

X (k) =

 ,k = 0,1,….N-1

The relationship between a time-domain signal and its

frequency-domain representation is specified using DFT. The

twiddle factor properties i.e. periodicity and symmetry are not

exploited by DFT hence direct computation of this algorithm

is inefficient.

Cooley-Tukey proposed a new algorithm called Fast Fourier

Transform (FFT), which is faster than DFT. If the samples in

the signal is a power of two, the FFT algorithm can be

adopted. The computation of FFT takes (N/2) × log2 N

multiplications and N × log2 N additions. When comparing

DFT, FFT takes fewer numbers of computations.

Two different forms are available in FFT. They are,

Decimation in Time (DIT) and Decimation in Frequency

(DIF). Both DIT and DIF use the butterfly structure to

compute FFT.

2. LITERATURE SURVEY

2.1 Designing Pipelined Structure from

Radix-2:

The efficient adder compressors using the DIT-FFT

algorithm. The different structures which are also dedicated

for the 16 bit-width radix-2 pipelined DIT butter-fly are

implemented, running at 100Mhz. Reducing the real

multipliers is the main aim of this paper. This is achieved by

modifying the complex multiplier structures & incorporating

them into the butterfly structure. The low power and fast

multiplier architectures consists of the adder compressors

structures. The disadvantages of Parallel FFT processor is the

speed of processing & hardware utilization [2].

2.2 Split Radix FFT Algorithm
Split-Radix FFT (SRFFT) algorithm is a modification of the

Cooley-Tukey algorithm which makes use of both Radix-4 &

Radix-2 decomposition in the same algorithm. In Radix-2

algorithm, the odd points and the even numbered points of the

DFT can be calculated separately. Thus, there is likeliness of

adopting various methods for individual parts of the

algorithm, to reduce the total number of arithmetic operations

involved. This idea is exploited by Split Radix FFT by

making use of both decompositions in the same algorithm i.e.

Radix-4 and Radix-2 decompositions. It represents an N point

DFT in terms of one N/2-point DFT and two N/4 point DFTs.

This algorithm combines the lesser complexity of

computation associated with Radix 4 and the ease of Radix 2

algorithm so as to achieve the lowest number of arithmetic

operations. Thus, the even numbered samples of the N-point

DFT are computed using Radix-2 algorithm [1].

2.3 Radix 4 Pipelined FFT

X(4k) =

 0

N W
kn

N/4

X(4k+1) =

 n

N Wkn
N/4

X(4k+2) =

 2n

N W
kn

N/4

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 11, October 2019

5

X(4k+3) =

 3n

N Wkn
N/4

For the 16-point FFT,16 equations are obtained K= 0, …, 3 &

for 64-point FFT, K = 0,1, 2…,15 [7].

3. IMPLEMENTATION
In comparison with the DFT, FFT algorithm initiated a new

trend in DSP by minimizing the order of complexity of DFT

multiplication by a factor of (N log N).

FFT algorithm is divided into two parts i.e. Decimation in

Time (DIT-FFT) & Decimation in Frequency (DIF-FFT). In

this paper decimation in time approach is used to design and

implement 8 point FFT.

DIT approach is one that uses the divide and conquer

approach, this approach breaks an N point transform into two

N/2 point transforms, again breaking down each N/2-point

transform into two N/4 point and this continues until two

point DFT are obtained.

Fig 1, 8 Point DIT-FFT

FFT algorithm involves complex computations, in complex

notation, the frequency domain and the time domain consists

of one signal each which is made up of N complex points.

Every complex point consists of two numbers, i.e. the real

number and the complex number. For instance, if there is a

complex number Z [20], it is a combination of both the real

number ReZ [20] and the imaginary number ImZ [20]. In

short, a complex number consists of two numbers. Suppose if

we multiply two complex numbers, we have four components

which are to be combined so as to finally obtain two

components of the product.

The fig 1.2, illustrates an example of the time domain signal

decomposition, this approach is followed by the FFT

algorithm. As shown in the example, four stages are required

to decompose a 16-point signal. Breaking of a 16-point signal

into two signals, each of 8-point, this takes place in the first

stage. Now each of the 8-point signals are further decomposed

into two signals each of 4-point. Therefore, we obtain 4

signals of 4-point. This consists of the second stage. This

process continues until a single point is obtained as shown in

the figure below. During the decomposition the signal is

separated into its odd and even samples.

Fig 2, FFT Decomposition

The decomposition discussed above is simply, a reordering of

the samples for a particular signal. The rearrangement pattern

required for FFT is as shown in the Fig 1.3, below. On the left

hand side is the number of the original signal with its binary

equivalent, whereas on the right hand side is the bit reversed

pattern of original signal required for FFT algorithm with its

binary equivalent.

Fig 3, Bit Reversal

As shown below, for synthesizing a frequency domain signal

three loops are necessary. The first or the outmost loop

operates over the Log2N stages, whereas the second loop

operates over frequency spectra one by one in this stage.

Finally, the inner loop uses the butter-fly diagram

computation to determine the frequency spectra points. The

blocks shown as overhead in figure 1.4, below determine the

sinusoids required in the butterflies, also it determines the

indexes required for the loop at the beginning and at the end.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 11, October 2019

6

Fig 4, FFT Flow Diagram

The three steps for Flow diagram of FFT is based upon:

1) Decomposing a time domain N point signal one by one into

N signals. 2) Determine spectrum for each N point signal. 3)

Finally Synthesizing the N frequency spectra to form a single

frequency spectrum.

4. EXPERIMENTAL RESULTS
The 8 point FFT designed was simulated using Xilinx ISE

Software with Verilog HDL and the results obtained for the

real inputs i.e. x (n) = {1,1,1,1,1,1,1,1} are as shown below.

5. CONCLUSION
This paper makes use of simple design approach i.e. DIT-FFT

approach which divides an N point transform into N/2

transform until two point DFT are obtained. The designed 8

point FFT block is simulated in Xilinx ISE Software with

Verilog HDL for real inputs. As this FFT block is designed

only for real inputs this can be extended to accept real as well

as imaginary inputs, also it can be designed for higher point

FFT.

6. REFERENCES
[1] Arunkumar P. Chavan, Sowmya Nag K., “VLSI

Implementation of Split-Radix FFT for High Speed

Applications”International Journal of Computer

Applications, January 2017

[2] Muniandi Kannan and Srinivasa Srivatsa,”Hardware

Implementation Low Power High Speed FFT Core” The

International arab journal of Information Technology,

Vol.6,, January 2009

[3] Marimuthu R* and P.S Mallick, “Design of Efficient

Signed Multiplier Using Compressors for FFT

Architecture” Journal of Engineering Science and

Technology Review, May 2017

[4] K.Baboji, Sriadibhatla.Sridevi, “FFT Implementation

Using Floating Point Fused Multiplier with Four Term

Adder” Dept. of Micro and Nano Electronics School of

Electronics Engineering VIT University

[5] Lamessa Dingeta, Gelaye Geresu, “Design of Pipelined

Butterflies from Radix-2 FFT with Decimation in Time

Algorithm using Efficient Adder Compressors”

International Journal of VLSI System Design and

Communiation Systems, December 2016.

IJCATM : www.ijcaonline.org

