International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

Distributed AdaBoost Extensions for Cost-sensitive
Classification Problems

Ankit Desai
School of Engineering and Applied Science

Ahmedabad University
Ahmedabad, India

ABSTRACT

In data mining, classification of data has always been an area of in-
terest and this is especially true after the rapid increase in availabil-
ity of data being collected. Cost-sensitive classification is a subset
of the broader classification problem where the focus is on solving
the class imbalance problem. This paper addresses the class imbal-
ance problem using Cost-sensitive Distributed Boosting (CsDb).
CsDb is a meta-classifier designed to solve the class imbalance
problem for big data, is based on the concept of MapReduce. The
focus of this work is to solve the class imbalance problem for the
size of data which is beyond the capacity of standalone commod-
ity hardware to handle. CsDb solves the classification problems
by learning models in a distributed environment. Empirical eval-
uation of CsDb carried over datasets from different application do-
mains shows average reduction of misclassification cost and num-
ber of high cost errors by 21.06% and 30.15% respectively with re-
spect to its predecessors of type error based classifier. It preserves
the cost-sensitivity of cost based predecessor. While it preserves
the accuracy and F1-score, the model building time is reduced by
90.14% as compared to a non-distributed cost-sensitive classifier.

General Terms

Cost-sensitive classification, distributed machine learning

Keywords

Class imbalance problem, distributed boosting, distributed classifi-
cation

1. INTRODUCTION

Classification is a data mining technique used to predict group
membership for data instances. Several classification models have
been proposed over the years. For example, neural networks, statis-
tical models like linear/quadratic discriminates, nearest neighbours,
bayesian methods, decision trees and meta learners. In a nutshell,
the classification process involves two steps. The first step is model
construction. Each sample/tuple/instance is assumed to belong to
a predefined class as determined by the class label attribute. The
set of samples used for model construction is called a training set.
The algorithm takes the training set as input and generates the out-
put as a classifier model. The model is represented as classification
rules or mathematical formulae. The second step is model use. The

Sanjay Chaudhary
School of Engineering and Applied Science
Ahmedabad University
Ahmedabad, India

model produced in step one is used for classifying future or un-
known samples.

Boosting, Bagging and Stacking are ensemble methods of classi-
fication. They are meta classifiers which are built on top of base
learner (weak learner). Weak learner can be any classifier which
performs only slightly correlated with true classification. Here, the
weak learner can be decision tree, k-nearest neighbour (k-nn), or
Naive Bayes etc. Classification accuracy of weak learners can be
improved naturally by using an ensemble of classifiers [2]. The
availability of bagging and boosting algorithms further embellishes
this method. Learning ensemble model from data, however, is more
complex especially using boosting. AdaBoost is a boosting algo-
rithm developed by Freund and Schapire [2]. Most of the boosting
methods are based on their algorithm.

In practice, several authors have recognized (for example, Ting [5];
Elkan [1]) that there are costs involved in classification. For exam-
ple, it costs time and money for medical tests to be carried out.
In addition, they may incur varying costs of misclassification de-
pending on whether they are false positives (classifying a negative
sample as positive: Type I error) or false negatives (classifying a
positive samples negative: Type II error). Thus, many algorithms
that aim to induce cost-sensitive classifiers have come up.

Some past comparisons have evaluated algorithms which have in-
corporated this cost into the model building phase using boosting
techniques [17]. Experiments carried out over a range of cost ma-
trices showed that using costs in the model building was a better
method than incorporating the cost in pre or post processing stage
of the algorithm. Factors which contribute to the variation in per-
formances are number of classes, numbers of attributes, numbers
of attribute values and class distribution. Accuracy is sacrificed due
to the trade-off with high misclassification cost. The nature of the
dataset (for example, noisy dataset) may also account for some of
the discrepancies. These factors influence the algorithm to classify
the samples.

In recent years due to the rapid increase in the amount of data there
exist data mining problems which never exist before e.g. handling
big data. Big data is the term referred to datasets that are beyond
the capacity of commodity hardware to handle. Therefore classical
data mining algorithms fail to process such data. On the other hand,
there have been many advancements in distributed data mining. The
algorithms work by leveraging distributed computing (e.g. Hadoop
MapReduce). Apache Mahout and Spark contain many such algo-
rithms which can operate in a distributed system.

Cost-sensitive variants of AdaBoost use costs within the learning

Approach for handling Imbalanced
Datasets

Resampling

Techniques

l ! l

Ensemble
Techniques
Puesie

| [i 1 !

MSMOTE Cluster-Based [Hybrid AdaBoost [D“'S“’"T’“J { XGBoost J
Boosting

SMOTE Oversampling [Undersampling

[['orR]

Cost Function-
based
Approaches

Fig. 1: Approaches for handling skewed distribution of the class

process. This has introduced many interesting problems involving
the trade-off required between accuracy and costs. It is clear that,
there are existing cost-sensitive AdaBoost algorithms which can
solve two-class balanced problems well while other types of prob-
lems cause difficulties. Moreover, existing algorithms do not scale
for big datasets. In particular, several authors have recognized that
there can be a reduction in performance [5] or a trade-off between
accuracy and minimizing cost [4]. Along with cost-sensitive learn-
ing MapReduce can be used to achieve parallelism so that multiple
commodity hardware can be used to process big datasets. In boost-
ing based cost-sensitive learning the goal is to reduce costs. There-
fore, methods such as voting with minimum expected cost criteria
from the ensemble of classifiers and incorporating misclassifica-
tion cost in the model building phase using weight update rule of
all models of the ensemble of classifiers can be used to reduce the
cost.

Hence, this research aims to use MapReduce as a basis for devel-
oping a cost-sensitive boosting algorithm and aims to address the
trade-off between cost and accuracy, that has been observed in pre-
vious studies.

The following section presents the background on handling skewed
distribution of classes and cost-sensitive boosting. Existing re-
search gaps are discussed in section[3]along with the contribution of
this research. Distributed Decision Tree (DDT) and DDTv2 are ex-
plained in section . 1| and 2] respectively. Then, working of CsDb
algorithm is explained in section [5followed by its empirical evalu-
ation (section[5.1)). Results and discussion follows in in section[5.2]
Finally, section [6]summarizes the this paper and presents future di-
rections.

2. BACKGROUND

2.1 Approaches for handling skewed distribution of
the class

Class imbalance problem is also known as the skewed distribution
of classes problem. This happens, typically, when the number of
instances of one class (For example, positive) is far less than the
number of instances of another class (For example, negative). This
problem is extremely common in practice and can be observed in
various disciplines including fraud detection, anomaly detection,
medical diagnosis, facial recognition, clickstream analytics, etc.

Due to the prevalence of this problem, there are many approaches to
deal with it. In general, these approaches can be classified into two
major categories - 1) Data level approach - resampling techniques,
and 2) Algorithmic ensemble techniques as shown in Figure[T] Re-
sampling techniques can be broken into three major categories: a)

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

Oversampling, b) Undersampling, and c) Synthetic Minority Over-
sampling Technique (SMOT). The algorithmic techniques can be
divided into two major categories: a) Bagging, and b) Boosting.

2.2 Cost-sensitive Boosting

Data mining classification algorithms can be classified into two cat-
egories, namely, error based model (EBM) and cost based model
(CBM). EBM does not incorporate the cost of misclassification in
the model building phase while CBM does. EBM treats all errors
as equally likely but this is not the case with all real world applica-
tions - credit card fraud detection systems, loan approval systems,
medical diagnosis, etc., are some examples where the cost of mis-
classifying one class is usually much higher than the cost of mis-
classifying the other class.

Boosting and bagging approaches reduce variance and provide
higher stability to a model. Boosting, however, tries to reduce bias
(overcomes under fitting) whereas bagging tries to solve the high
variance (over fitting) problem. Datasets with skewed class distri-
butions are prone to high bias. Therefore, it is natural to choose
boosting over bagging to solve the class imbalance problem [4].
The intuition behind cost (function) based approaches is that, in the
case of a false negative being costlier than a false positive, one false
negative is over counted as, say, n false negatives, where n > 1. For
example, if a false negative is costlier than a false positive, the ma-
chine learning algorithm tries to make fewer false negatives com-
pared to false positives (since it is cheaper). Penalized classification
imposes an additional cost on the model for making classification
mistakes on the negative class during training. These penalties can
bias the model to pay more attention to the negative class.
Boosting involves creating a number of hypotheses h; and com-
bining them to form a more accurate, composite hypothesis of the
form

F@) =" onh() 6

where o, indicates the extent of the weight that should be given
to hy(z). In AdaBoost for instance, initial weights are % for each
sample. It is important to note that these weights are increased us-
ing a weight update equation if a sample is misclassified. Weights
are decreased if a sample is classified correctly. At the end, hypoth-
esis h; is available which can be combined to perform classifica-
tion. In summary, AdaBoost can be considered to be a three-step
process, that is, initialization, weight update equations, and a final
weighted combination of the hypotheses. All Cost-sensitive (CS)
Boosters (Figure[2)) are adaptations of the three step process of Ad-
aBoost to design cost-sensitive algorithms.

3. EXISTING RESEARCH GAPS

There are attributes that define big data. These are called the four
V’s: volume, variety, velocity, and veracity. Research on distributed
data mining (DDM) has been motivated primarily by the desire to
mine data beyond gigabytes. This is aimed at the first V of big
data - volume. Using stand alone commodity hardware having lim-
ited gigabytes of primary memory and only tens of cores, mining
gigabytes of data is not possible using machine learning and statis-
tics since it can take hours, even days, to generate a model using
classical data mining algorithms (explained later in this section).
This implies a need for a scalable data mining algorithm. More-
over, mining a sample of the data as opposed to mining datasets of

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

&
&V
N)
G‘;\\,\\% %\&ﬂ @O
Q’oo %Go vo\b
& ¥ & 2 hiod >
5 D“v %@&‘ ~ & <
¥ &V & AR N
& ¢ " & F & & 2
IS & oy F £ 8
&) ? \/%@ b‘& %C’ Pl C’% o Q,)\
QQ’O chb/ &oo% &?’ ,\/Y’b Q‘éb/ \)oeo« ,(\)z;bv Cb
(Pr}’ %‘b\" '@(\O & N Q’G"Q) 5‘1’0 N & z@'\ @Q’ éb@ ’
& TS o > & o >
d & LS & LC o 3
F F & T P SN F & ¥ o4
— o0 ¢ 6 0 0 0 | — o & | o 0 6 ¢
2000 2005 2010 2015

Fig. 2: Timeline of CS Boosters

gigabytes or beyond fuels an interesting debate - to which DDM re-
searchers should pay attention. Nevertheless, faster data mining is
necessary. Easy decomposability of data mining algorithms makes
them ideal candidates for parallel processing. This can be achieved
using a distributed data mining system.

Class imbalance problem can be handled by approaches discussed
in section 2.1} The algorithmic ensemble techniques are suitable
candidates for scaling to datasets of volumes beyond gigabytes.
Some real world problems, however, come with data sizes in gi-
gabytes or terabytes for training with biased class distribution. For
example, click stream data [20]. Therefore, there is a need to de-
sign an algorithm of machine learning which can learn from these
datasets. In this case, DDM can provide an effective solution. In
earlier work [[17, (18] cost-based approach was used to address the
class imbalance problem, using data mining as explained in the
next paragraph. Most of the solutions as discussed in Section 2.1]
for solving the class imbalance problem do not scale to the vol-
ume of data beyond the capacity of commodity hardware to han-
dle. Therefore, there exists a need to modify CSE1-5 [17] so that
it can address the said challenge. Moreover, it is important to pre-
serve accuracy, precision, recall, F-measure, number of high-cost
errors, and misclassification cost of a DDM based implementation
of an algorithm with respect to its stand alone implementation. For
fast iterations of data mining modelling, the model building time
should be reduced. The choice of these performance measures is
explained in section[5.1]

In a distributed system, many commodity machines are connected
together to do a single task in an efficient way. In distributed data
mining processes, many commodity hardware work together to ex-
tract the knowledge from the data stored across all the nodes. The
data analytics approaches can be divided into three categories de-
pending upon the volume of the data they consider. The first ap-
proach is based on machine learning and statistics. Here, if data
can be read from a disk into the main memory, the algorithm runs
and reads the data available in the main memory. This leads to a sit-
uation where repetitive disk access is needed. Such an architecture
is a single node architecture. The second approach is as follows. If
data does not fit into the main memory a classical data miningElthe
algorithm looks into the disk in addition to looking into the mem-
ory. This is called data mining (6, [7]. Only a portion of the data is
brought into memory at a time. The algorithm processes the data

Ut is the computational process of discovering patterns in large data sets involving
methods at the intersection of artificial intelligence, machine learning, and statistics.

in parts and writes back partial results to the disk. Sometimes even
this is not sufficient as in the case of Google crawling web pages.
This requires the third approach, that is, distributed environment
[9L (14} 12} 13110k 11 151 [16].

As discussed in this section there is a need for a fast, distributed,
scalable, and cost-sensitive data mining algorithm.

4. DISTRIBUTED DECISION TREE

4.1 Distributed Decision Tree (DDT) and Spark Tree
(ST)

Using standalone commodity hardware with limited gigabytes of
primary memory and only tens of cores, mining gigabytes of data
is not possible using machine learning and statistics whereas it can
take hours or days to generate a model using classical data min-
ing algorithms (section [3). Therefore, as described in section [3]the
third approach is used in the implementation of DDT and Spark
Trees (ST). DDT or ST could be used when a dataset is not accom-
modatable in memory or processing would take hours or days on
a single machine. The task is to build decision tree from dataset
of size gigabytes and beyond with hundreds of attributes. The goal
is to have a tree which can fit in memory. MapReduce is used to
achieve the same. DDT and ST are suited to offline batch-based
processing of datasets of size beyond the capacity of commodity
hardware to handle it. The algorithm works on an idea of the divide
(data) and conquer over multiple processing machines.

The approach of DDT and ST is as follows. As defined in Figure[3]
before the MapReduce phase, the dataset is divided into a number
of splits defined by the user. In the next step, that is, Map, it creates
decision trees using chunks of data available on each data node.
In the reduce step, it collects all the models created in the map
tasks. Basically, in the case when decision tree is considered as a
base classifier, an ensemble of trees is generated. In general, in the
case of non-aggregatable classifiers (for example, decision tree),
the final model produced from the reducer is a voted ensemble of
the models learned by the mappers [[19].

In a nutshell, they rely on the fundamental architecture of Hadoop
and Spark, that is MapReduce. The dataset is divided into equal
sized partitions (with replacement policy) and process each in par-
allel. At the end, trees generated out of each partition are collected
and will contribute to the final classification. The final result is an
aggregation of votes from all the trees. In case of regression, an
average output is considered.

Map Phase

. Reduce Phase
Data Split 1 [—® BuildaDT1

A ¢
Data Split2 —® Builda DT 2 sgrogate

/

Data Splitn [—® BuildaDTn

Fig. 3: MapReduce of DDT

This whole mechanism leads to the following problems. First, the
Model Experience Problem. If the user supplies hundred partitions
as an input, there will be an ensemble of hundred trees after train-
ing. In this case, the amount of time required to generate a model
will be low but the accuracy will also be low. This case is analogous
to consulting a hundred doctors with bachelor of medicine degrees
and taking their opinions for a probable diagnosis and concluding
that the diagnosis is the one with the maximum votes. Second, the
Trade-off Problem. The trade-off is between the size of each parti-
tion and accuracy. Consider a case where the size of each partition
is considerably small. Either because the dataset is small or the
number of partitions are large or both. In such cases, trees gener-
ated out of each partition would have learnt from a small number of
samples. Therefore, its predictive accuracy will be low. If the con-
verse is considered, that is, if the size of each partition is very large
(either because of a large dataset or a small number of partitions or
both) the partitions will not fit into the primary memory (or the pri-
mary memory needs to be increased). Of course, if the dataset can
fit into the memory and if training is possible, the accuracy of pre-
diction will be high, as the learning would take place from a large
number of samples.

4.2 Distributed Decision Tree v.2.0

The way DDTv2 and DDT work are similar except in dataset split
step, that is, hold the model approach is considered in DDTV2. In
“Hold the model” approach the model prepared by split 1 of the
dataset is held aside until it is also trained from split 2 (Figure [).
Therefore, the number of decision trees generated out of DDTV2 is
equal to half of the number of splits.

number of models = |n /2], where, n is number of partitions (2)

This strategy of hold the model work to solve two major problems
associated with DDT. First, the number of trees will not be equal
to the number of partitions. It is possible to apply the “hold the
model” strategy up to the last partition but in that case, parallelism
will not be achieved everything will be run by single core and ulti-
mately learning process will be slow and sequential. By making the
number of models equals the number of partitions divided by two
parallelisms is not lost and at the same time, each decision tree will
be trained on the double number of samples (note: each partition
is of equal size). This is analogous to consulting 50 more experi-
enced bachelor of medicine doctors in place of 100 and final dis-
ease is concluded as a maximum of 50 votes. Second, the trade-off
between the size of partition and accuracy. DDTv2 will accommo-

models
To form the Results
final tree

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

Partitions

Map Phase

Data Split 1 \
Build a DT 1

Data Split 2

Reduce Phase

e

Build a DT 2 Aggregate

— models

Results
final tree

To form the

Data Splitn [—® BuildaDTn

Fig. 4: MapReduce of DDTv2

Table 1. : % Reduction of sot and nol in DDT, ST and DDTVv2 with respect to BT and DT

DDT ST DDTv2
BT DT BT DT BT DT
sot | 82% | T1% | 67% | 48% | 64% | 44%
nol | 81% | 70% | 65% | 45% | 61% | 38%

date as large datasets as DDT in memory due to an equal number of
partition but will improve on accuracy because each tree will now
learn from two partitions in oppose to one in DDT. So consider
the case, size of the partition to be smaller (hundreds of samples
or in kilobytes) then also it is guaranteed to learn from double the
samples. On the other end, if the reverse case is considered, i.e.
number of partition is too many (more than 10x for megabytes of
data) then there will be a chance to double the number of partitions
such that it can accommodate each partition in memory without
worrying about generating many trees and compromise in accuracy
by avoiding many small partitions.

The DDT, ST and DDTv2 were empirically evaluated over ten
selected datasets from UCI machine learning repository and one
click-stream dataset from Yahoo! (further details about the dataset
is mentioned in section [5.I). The decision tree, ensemble of trees
using boosting (BT), DDT, ST, and DDTv2 are compared over
three parameters namely, accuracy, size of tree (sot) and number of
leaves (nol) of tree(s). Average accuracy of DT, BT, DDT, ST and
DDTv2 over all ten selected datasets are 92.79, 99.70, 83.76, 8§6.93,
97.16, respectively. Even with large dataset DDTv2 is proved to
produce accurate results with an acceptable learning time. Dis-
tributed implementations of decision tree (DDT, ST and DDTv2)
outperformed DT and BT in terms of size of tree and number of
leaves with acceptable accuracy of classification. Table [I] shows
percentage reduction obtained in size of tree and number of leaves
in DDT, ST and DDTVv2 with respect to BT and DT.

5. COST-SENSITIVE DISTRIBUTED BOOSTING

The distributed nature of DDTv2 [20]] and cost sensitivity of CSE1-
5 [L7] are derived into CsDb. CsDb is designed as a meta classifier
so that, it can use a weak learner (for decision tree, ibk, etc) as a
base classifier. A generalized wrapper which works in replacement
for CSExtensions is depicted in algorithm|[T]

CsDb first divides the training set S into P partitions and initializes
T with half the number of partitions. Each partition ¢t follows the
same process as defined in algorithm[T]steps 6-11. It is important to
note that the inner loop runs asynchronously. It means all iterations
of the outer loops are independent. Therefore, each of them spawns
a mapper. Moreover, each mapper runs U times as defined by the

Algorithm 1 CsDb

1: Given: S = {(z1,y1), (2,Y2) - . (T, Ym)}; i € Z, y; €
{~1,+1}, Pe N+

2: Initialize: T = | £ |

3: Initialize: W7 (i)

4: fortdo=1to T

5: forudo=1to U

6: s = USETRAININGSETS(S;, S1_¢)

7: w = USEWEIGHTS(W;, Wr_})

8: tr, = BUILDDECISIONTREE(S, w)

9: h; = COMPUTEWEAKHYPOTHESIS(t7,,)
10: Compute r; and o

11: Wr_441(%) = UPDATEWEIGHTS (W11 (7))
12: end for
13: end for

14: collect vote from T models:

H*(z) = argmax Z aihi(x;)

Table 2. : Characteristics of selected datasets

data-set #c #i #n #no group skewness
echo 2 132 11 2 31.82
sonar 2 208 60 1 3.37
bupa 2 345 6 1 7.97
hv-84 2 435 12 5 group-1 11.38
crx 2 690 6 10 5.51
bew 2 699 6 1 15.52
pima 2 768 8 1 15.10
hypo 2 3163 7 19 45.23
krkp 2 3196 33 4 group-2 222
Yahoo! 2 M 9 1 46.83
IQM 2 IB 7 6 group-3 45 0n

Note: #c = number of Classes, #i = number of Instances, #n = number
of Numeric attributes and #no = number of NOminal attributes

user. During the map phase, it trains a weak learner (decision tree
is used as a weak learner) using distribution W; and Wr_; and
training set Sy and St _;. Next, it computes weak hypothesis h; :
Z — R. Thereafter, by computing r, and o it also updates weights
Wi11(3) to Wr_y11(4) as per rules defined in CSEx. Finally, in the
reducer, it collects the vote from T models using

H*(r) = argmax Z ashy(x;)

5.1 Experimental setups

Weka is a collection of open source machine learning algorithms.
DDTv2 was implemented as an extension of Weka. The CsDb is
implemented as an extension of DDTv2 [20] and CSE1-5 [17].
To test the performance of CsDb, nine datasets, namely, breast
cancer Wisconsin (bcw), liver disorder (bupa), credit screening
(crx), echocardiogram (echo), house-voting 84 (hv-84), hypothy-
roid (hypo), king-rook versus king-pawn (krkp), pima indian dia-
betes (pima), and sonar (sonar) from UCI machine learning repos-
itory were selected. These datasets belong to various domains. In
addition, an algorithm is evaluated using Yahoo! webscope dataset
[21] and IQM bid log dataset. Here, IQM bid log dataset is the pro-
prietary dataset of IQM Co. It is not available in the public domain.
The skewness of the data which is explained in the next paragraph
is the reason for selecting these datasets. The datasets are prepro-

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

cessed to meet the need for classification. For example, the class la-
bels were 1 and 0 in the original dataset. They were replaced by ‘y’
and ‘n’ respectively. In Yahoo! webscope dataset attributes other
than class label are numeric values of user and article characteris-
tics. The sample records with class labels are as under.

UF2, UF3, UF4, UFS5, UF6, AF2, AF3, AF4, AF5, AF6, class

0.013, 0.01, 0.04, 0.023, 0.97, 0.21, 0.067, 0.045, 0.23, 0.456, y

0.096, 0.0032, 0.481, 0.112, 0.004, 0.127, 0.0002, 0.0325, 0.123, 0.234, n
In the case of the IQM dataset the fields of interest are encoded for
the purpose of privacy. Its sample records are as under. Here, for a
given bid request, whether the user clicks on advertise (creative) or
not is considered a classification problem.

attribl, attrb2, attrib3, attrib4, attrib5, attrib6, attrib7, attrib8, attrib9, at-
trib10, class, attrib12, attribl3

12, type3, man2, db3, ba, 2.3, 2.5, 430, 120, type3, n, 0, 54321

31, type2, manl, db4, dc, 0.7, 0.4, 620, 120, typel, y, 1, 98765

According to the number of instances (#i) as listed in table[2] the
datasets are grouped into three categories for the purpose of re-
sult analysis. The first group contains echo, sonar, bupa, hv-84,
crx, bcw, and pima datasets. They have a few hundred instances
(#i € [100,999]). The second group contains hypo and krkp. The
second group can contain datasets with the number of instances
[1000, 99999]. The last group contains Yahoo! and IQM datasets
with a million and a billion instances respectively. The third group
can contain datasets with more than 99,999 instances. An instance
in any group can have a size of [1, 10] kilobytes. The skewness in
table[2]represents the distribution of the number of instances of mi-
nority class over majority class. Here, the skewness index can take
any value between 0 and 50 where 0 means no skewness and 50
means the highest possible skewness. Average skewness of datasets
in group-1, 2 and 3 is 12.95%, 23.72%, and 46.02% respectively.
The important characteristics of datasets are summarized in table
1]

The key measure to evaluate the performance of the algorithms
for cost-sensitive classification is the total cost of misclassification
made by a classifier (That is, Zm = cost(actual(m), predicted(m)))
[L8]. In addition, the number of high cost errors is also used. It is the
number of misclassifications associated with max(false-positive,
false-negative) in cost matrix to that of in confusion matrix. The
model building time is the amount of time taken to build a model.
Other than these, accuracy, precision, recall, and F-measure, are
used to evaluate the performance of the algorithm. To define these
measures TP (true positive), TN (true negative), FP (false positive)
and FN (false negative) terms are used. These terms are derived
from the confusion matrix. The structure of confusion matrix for
binary class problem is shown in Table [3] In Table [3] C1 and C2

are defined as class-1 and class-2 respectively. Now, the accuracy
(TP4+TN)
(TP+TN+FP+FN)’
racy defines how well a binary classification test correctly identifies
a condition. Precision is defined as precision = %. Preci-
sion can be interpreted as a ratio of all events the classifier predicted
correctly to all the events the classifier predicted, correctly or incor-
rectly. Recall is defined as recall = ﬁ. Therefore, recall is
the ratio of the number of events a classifier can correctly recall to
the number of all correct events. F-measure, which is also known as
F1-score, is the harmonic mean of precision and recall. Therefore,

— = _precisionsrecall
F measure = 2 x precision+recall *

The CsDb algorithm was tested on the selected eleven datasets. For
each dataset, six variations (i.e. [0 1;2 0], [02; 1 0], [0 1;50], [0
5;10],[010; 1 0], and [0 1; 10 O]) of cost matrix (hyperparameter)
were used. An average result over all six cost matrices is reported.
There are eleven algorithms in comparison. Thus, in total 726 (11

is defined as accuracy = and hence the accu-

Table 3. : A confusion matrix structure for a binary classifier

‘ Actual Class ‘

|

| | |c|c2|
‘ Predicted Class ‘ m
\ | C2 | FN | TN |

group wise average mc for csex, csdbx and ddtv2
B csex W csdbx ddtv2

80.00

71.83

60.00 62.34/61.45
54.45

40.00 143.64142.97,

20.00 22.36/23.33
0.00

group-1 group-2 group-3

3225

misclassification cost

dataset groups

Fig. 5: Group wise average mc for csex, csdbx and ddtv2

11 % 6) runs were performed.

The CsDb is a meta-classifier and for this experimental setup,
Weka’s implementation of decision tree with default parameter set-
tings is used as a weak learner.

The experiments of the CsDb and DDTv2 were performed using
Elastic MapReduce (EMR) cluster of Amazon. The EMR for these
experiments was configured with one master (c4.4xlarge) and three
slaves (c4.4xlarge) nodes. A single instance of c4.4xlarge comes
with 16 vCPUs and 30 GiB of memory. To run CSE an r4.8xlarge
instance of Amazon Elastic Compute Cloud (Amazon EC2) was
used. An r4 series instance r4.8xlarge features 32 vCPUs, 244 GiB
of memory.

5.2 Results and Discussion

The algorithm is analysed empirically in this section. Parameter
wise, the comparison is broken down into sub-sections. As the mis-
classification cost and the number of high cost errors are cost-based
parameters they are discussed together in section [5.2.7] Secondly,
the accuracy, precision, recall, and F-measure are discussed to-
gether as they are similar in nature (section[>.2.2)). Lastly, in section
[B:233] the algorithms are compared for the time they take to build
the model. For each parameter, the dataset group wise analysis was
performed. The dataset groups are defined in table 2]and discussed
in section[5.1}

5.2.1 Misclassification cost and number of high-cost errors.
CsDb when compared with CSE over group 1, 2, and 3 datasets the
misclassification cost varies, on an average, by 2.44% (for group-
1, 2 and 3 it is 1.54%, -4.35% and 1.43% respectively) and the
number of high cost errors by 14.30% (for group-1, 2 and 3 it is
5.52%, -31.59% and -5.79% respectively). CsDb produces 21.06%
(for group-1, 2 and 3 it is 21.08%, 27.65% and 14.45% respec-
tively) fewer misclassification errors and 30.15% (for group-1, 2
and 3 it is 31.39%, 27.11% and 31.94% respectively) less number
of high cost errors when compared with DDTv2.

These results indicate CsDb can preserve cost sensitivity of CSE.
DDTv2 produces an average number of high cost errors of 5.64 and
average misclassification cost of 54.45 over all the dataset groups.
This is natural because DDTV2 is a classifier of EBM category. It is

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

group wise average # hce for csex, csdbx and ddtv2

W csex W csdbx ddtv2

6.00
5.64

4.00
3.75 3.86

#HCE

0.00

group-1 group-2 group-3
dataset groups

Fig. 6: Group wise average number of hce for csex, csdbx and ddtv2

important to note here that pima dataset in group-1 produces 35%
more misclassification cost and the number of high cost errors with
respect to its group-1 average. This is due to the numerical ranges
of numerical features in the dataset. After feature scaling (feature
normalization) it was observed that this error was reduced to 20%.
Figure[3]and [6] show group wise average misclassification cost and
number of high cost errors respectively. Table[]shows average mis-
classification cost (mc) and number of high cost error (#hce) over
the selected cost matrix for CSE1-5, CsDb1-5 and DDTV2.

5.2.2 Accuracy, precision, recall, and F-measure. Analysing
CsDb when compared with CSE over group 1, 2, and 3 datasets the
average accuracy variation is 1% (for group-1, 2 and 3 it is 0.01%, -
0.02% and 1.26%, respectively) whereas comparing it with DDTv2
average improvement of 2.15% (for group-1, 2 and 3 it is 2.21%,
0.05% and 4.20%, respectively) is observed.

In group 3 data, average accuracy is 5% less than the mean accuracy
across all datasets. It is possible because skew factor in group 3
datasets is 45 (table|2|) that is, 90% of its maximum possible value.
It is important to note that group 1 dataset echo shows accuracy
below 80% . This is mainly because it has just 132 instances and
its numerical features are not normalized. After normalization, an
accuracy improvement of 2.76% was observed in echo.

Table [5| shows average accuracy over the selected cost matrix for
CSEl1-5, CsDbl-5 and DDTv2.

Precision, recall, and F-measure for CsDb with respect to CSE over
the datasets of group 1, 2 and 3 varies on average by 1% (for group-
1,2 and 3 it is 0.62%, 0.47% and 0.47%, respectively), 1.44% (for
group-1, 2 and 3 it is 0.39%, 0.50% and 3.44%, respectively), and
0.97% (for group-1, 2 and 3 it is 0.16%, 0.04%, and 2.71%, re-
spectively). When compared to DDTv2 precision and recall varies
on an average by 1.71% (for group-1, 2, and 3 it is 2.43%, 0.74%
and 1.97%, respectively), 1.89% (for group-1, 2 and 3 it is 1.53%,
1.14% and 3.01%, respectively), and 2.77% (for group 1, 2 and 3 it
5 2.19%, 0.21% and 5.92%, respectively).

This is because CsDb is CBM and boosting technique and hence it
can maintain bias variance trade-off and hence able to balance pre-
cision and recall. Hence, F-measure is also balanced within 1.5%.
Moreover, DDTv2 is EBM based and hence fails to balance be-
tween precision and recall. Hence, F-measure is also increased by
8.73%.

Table shows average precision, recall and F-measure over the se-
lected cost matrix for CSE1-5, CsDb1-5 and DDTv2.

5.2.3 Model building time. Model building time over group 3
datasets for CSE takes 13.75 hours, on average, and it is reduced to
1.3 hours for CsDb. This reduction of 90.14% is especially useful
because, as noted in section [5.2.]] and 5.2.2] CsDb preserves cost

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

Table 4. : Misclassification cost and Number of High cost errors of CSE1-5, CsDb1-5, DDTv2 (mc / #hce)

CSEL CSE2 CSE3 CSE4 CSE5 CsDbl CsDb2 CsDb3 CsDb4 CsDbS DDTv2
bew 14.69 / 1.00 15.82/1.00 14.57/1.00 15.67/1.50 12.67/1.33 14.67/1.67 19.33/2.50 15.17/1.50 14.00/1.50 13.67/2.17 33.00/4.33
bupa 59.71/574 6032/547 58.79/5.61 57.33/4.17 59.67/6.00 58.83/4.17 59.83/450 61.33/3.67 58.50/350 61.00/333 68.67/4.50
crx 59.55/7.04 60.83/531 5933/530 56.83/550 59.50/550 6033/550 58.67/433 5583/583 57.17/583 59.00/500 68.50/7.00
echo 22.63/231 24.52/2.51 2427/213 2633/350 29.00/3.17 20.83/233 17.00/233 21.83/1.67 2683/267 2550/2.17 34.67/3.83
h-d 36.65/420 3474/306 35.46/3.61 3783/5.17 37.50/3.67 32.83/3.33 3833/3.83 3550/5.83 38.67/4.17 37.00/467 50.00/6.17
hv-84 11.43/0.95 10.61/0.69 12.45/0.81 12.00/1.33 10.83/1.17 10.17/0.83 11.83/0.83 11.83/1.33 12.50/1.33 11.83/150 25.17/3.33
hypo ~ 2524/250 24.58/252 2659/257 24.17/267 2517/1.67 28.33/4.17 29.33/2.83 2633/333 24.67/267 2667/450 35.00/4.50
krkp 1920/1.55 21.42/127 19.41/1.36 18.83/2.17 19.00/2.50 17.67/150 21.67/250 20.00/2.33 17.17/150 21.50/2.00 29.50/3.00
pima 111.69/1039 113.16/10.81 110.79/10.38 112.17/12.50 113.83/11.50 11233/12.33 113.33/11.83 111.67/10.67 111.00/11.67 113.83/10.33 121.83/12.83
sonar 23.18/193 2325/1.10 2346/1.60 2333/1.83 2333/133 19.67/1.00 2200/1.00 21.17/0.83 21.83/1.83 19.67/2.00 29.33/3.67
Yahoo! 76.03/276 80.15/1.63 75.48/1.61 7000/3.17 7600/2.17 7433/250 77.00/250 7500/2.83 74.00/150 74.83/333 85.00/5.67
IQM 47.68/528 5023/552 4934/497 5033/633 48.17/5.17 49.67/600 48.17/533 4483/500 47.83/533 4883/650 58.67/633
Table 5. : Accuracy of CSE1-5, CsDbl1-5, DDTv2
CSEl CSE2 CSE3 CSE4 CSES CsDbl CsDb2 CsDb3 CsDb4 CsDb5 DDTv2
bew 0.9855 09840 09862 09857 0.9921 0.9862 09886 0.9845 0.9866 0.9907 0.9826
bupa 0.8891 0.9068 0.9005 0.8908 0.9029 0.8860 0.8754 0.8817 0.8875 0.8720 0.8556
crx 0.9552 09454 09471 09454 09517 09474 09415 0.9536 0.9384 0.9451 0.9440
echo 0.7950 0.7928 0.8018 0.7928 0.7635 0.8176 0.8716 0.8379 0.7928 0.7590 0.7095
hv-84 09812 09851 09816 09851 09843 0.9828 09789 0.9843 0.9828 0.9854 0.9724
hypo 0.9952 09954 09953 0.9953 0.9946 0.9953 0.9948 0.9950 0.9952 0.9961 0.9948
krkp 0.9961 0.9948 0.9958 0.9961 0.9966 0.9963 0.9955 0.9965 0.9964 0.9962 0.9957
pima 09171 09191 09128 0.9254 0.9197 0.9087 009128 0.9047 0.9262 0.9043 009141
sonar 0.9303 09103 09207 09343 09199 0.9231 09102 0.9223 0.9327 09351 0.9271
Yahoo! 0.8540 0.8948 0.8321 0.8640 0.9103 0.8543 0.8162 0.8694 0.8541 0.9204 0.8649
IQM 0.8389 0.8697 0.8608 0.9323 0.8748 0.8675 0.8785 0.8409 0.8582 0.8783 0.8610

sensitivity and other efficiency measures. However, over group 1
and group 2 datasets, the difference between model building time
of CSE and CsDb is 2% on average.

Table [7] shows average model building times over the selected cost
matrix for CSE1-5, CsDb1-5 and DDTv2.

6. CONCLUSION

The goal of this research work is to improve CBM for the volume of
data which cannot be handled by standalone commodity hardware.
The work reviewed various alternatives to handling the class im-
balance problem. The results show variation in accuracy, misclas-
sification cost and high cost errors by 1%, 2%, and 7% respectively
when CsDb is compared to CSE. This proves that CsDb is able to
preserve the cost-sensitivity of CSE. Whereas, the cost-sensitivity
is improved drastically when compared with a error based classi-
fier.

As described in section [5] advantages of CSE1-5 and DDTV2 are
combined in CsDb. The CsDb is a fast, distributed, scalable, and
cost-sensitive implementation of type CBM algorithm. It follows
the boosting technique and helps overcome the class imbalance
problem. Section [5.2] shows how the misclassification cost and
the number of high cost errors in CsDb varies by just 2% and
14% respectively when compared to CSE and improves by 21.06%
and 30.15% respectively when compared with DDTv2. Moreover,
model building time is improved by 90%. Finally, the average vari-
ation in F-measure between CSE and CsDb is just 0.97%.
Moreover, the DDTv2 which is a distributed version of the decision
tree implementation and works on the ‘hold the model’ concept
and when compared with BT and DT (section [4.2)), outperforms
them in terms of accuracy, size of tree, and number of leaves. Using
DDTV2, the size of the tree is reduced by 64% and 44% compared

with BT and DT, respectively. Whereas, the number of leaves is
reduced by 61% and 38%, respectively. All this is achieved without
compromising on classification accuracy. Moreover, the DDTv2 is
able to reduce model building time by 15% as it builds the tree
in a distributed way. DDTv2 works to solve two major problems,
namely, model experience and trade-oft between size of partition
and performance associated with DDT.

The three verticals have been identified in which this research can
be extended. First, the performance of CsDb is dependent upon
the choice of weak learner. One can use different weak learners
(For example, Decision Stump) to compare the results with re-
spect to decision tree. Coming up with a strategic way of choos-
ing a weak learner to improve performance of CsDb is an impor-
tant future extension. Second, recently, there has been significant
amount of research work in automated hyperparameters tuning of a
classification algorithm. CsDb has sensitive hyperparameters such
as cost-matrix. Automatic tuning of the hyperparameters of CsDb
using neural networks is an important research extension. Lastly,
as shown in Figure [I| there exist multiple methods for handling
skewed distribution of the class. An empirical comparison between
CsDb and other approaches for handling skewed distribution of
class can provide concrete conclusions on a vertical of scalability
of the methods.

7. REFERENCES

[1] Elkan, C. (2001). The foundations of cost-sensitive learning. In
International joint conference on artificial intelligence Vol. 17,
No. 1, pp. 973-978.

[2] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1), 119-139.

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.12, October 2019

Table 6. : Precision, Recall and F-measure of CSE1-5, CsDb1-5, DDTv2 (precision / recall / f-measure)

CSEl CSE2 CSE3 CSE4 CSES CsDbl CsDb2 CsDb3 CsDb4 CsDb5 DDTv2

bew 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/1.00/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.99/0.99
bupa 0.83/0.86/0.84 0.90/0.90/0.89 0.89/0.89/0.88 0.87/0.89/0.87 0.88/0.90/0.88 0.87/0.88/0.86 0.82/0.90/0.84 0.88/0.87/0.86 0.87/0.89/0.86 0.85/0.87/0.84 0.82/0.86/0.82
crx 0.95/0.95/0.95 0.94/0.94/0.94 0.94/0.95/094 0.94/0.94/094 094/0.96/0.95 0.93/0.95/0.94 0.94/0.93/0.93 0.95/0.95/0.95 0.92/0.95/0.93 0.95/0.94/0.94 0.93/0.94/0.94
echo 0.91/0.83/0.86 0.85/0.87/0.85 0.85/0.88/0.84 0.85/0.87/0.85 0.85/0.83/0.83 0.86/0.88/0.86 0.91/091/091 0.88/0.90/0.88 0.80/0.90/0.83 0.78/0.87/0.80 0.75/0.82/0.76
hv-84 0.98/0.97/0.98 0.98/0.98/0.98 0.98/0.97/0.98 0.98/1.00/0.98 0.98/0.98/0.98 0.98/0.98/0.98 0.98/0.97/0.97 0.98/0.98/0.98 0.97/0.98/0.98 0.98/0.98/0.98 0.96/0.97/0.96
hypo 0.95/0.95/0.95 0.98/0.93/0.95 0.97/0.94/0.95 0.95/0.96/0.95 0.94/0.95/0.94 0.93/0.97/095 094/0.95/0.94 0.93/0.96/0.95 0.98/0.93/0.95 0.95/0.97/0.96 0.96/0.93/0.95
krkp 1.00/1.00/1.00 0.99/1.00/1.00 1.00/1.00/1.00 0.99/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00
pima 0.94/0.94/0.94 0.94/0.94/093 0.94/0.93/093 094/0.95/0.94 0.94/0.94/094 0.93/0.93/093 092/0.94/0.93 0.94/0.92/0.93 0.94/0.95/094 0.93/0.93/0.93 0.93/0.94/0.93
sonar 0.91/0.95/0.92 0.90/0.92/0.90 0.92/0.92/0.92 092/0.94/0.93 0.91/0.93/091 0.92/0.93/0.92 0.88/0.94/0.90 0.92/0.93/0.92 0.90/0.95/0.92 0.95/0.92/093 0.91/0.93/0.92
Yahoo! 0.87/0.80/0.90 0.90/0.87/0.88 0.87/0.89/0.88 0.83/0.90/0.88 0.84/0.83/0.91 0.85/0.88/0.84 0.89/0.89/0.90 0.84/0.89/0.89 0.92/0.86/0.86 0.82/0.84/0.83 0.85/0.90/0.91
QM 0.83/0.84/0.90 0.85/0.88/091 0.88/0.79/091 0.87/0.86/0.88 0.90/0.87/0.87 0.90/0.86/0.85 0.90/0.85/0.82 0.88/0.85/0.86 0.86/0.89/0.84 0.90/0.89/0.92 0.88/0.84/0.85

Table 7. : Model Building Time of CSE1-5, CsDbl1-5, DDTv2

CSEl CSE2 CSE3 CSE4 CSES5 CsDbl CsDb2 CsDb3 CsDb4 CsDb5 DDTv2
bew 31.63 32.83 39.00 31.50 32.00 31.67 22.33 31.67 32.00 35.17 32.50

bupa 9.39 10.00 6.67 8.33 8.50 9.83 8.50 6.67 8.83 9.33 8.67
crx 27.17 25.00 26.50 38.33 29.17 27.00 32.33 28.00 28.67 30.83 26.17
echo 7.70 6.33 6.83 6.33 8.00 7.00 6.67 6.67 8.33 5.83 6.33
h-d 1.98 2.33 1.83 1.67 2.00 1.83 1.33 2.17 1.83 2.17 1.50
hv-84 8.73 6.83 7.50 8.33 8.50 5.50 7.83 7.00 7.00 9.00 7.33

hypo 11874 12467 12567 160.17
krkp 1132 1350 1283 1217 850

pima 5.48 3.50 5.00 3.17 5.17
sonar 4.82 6.50 7.17 6.83 5.33
Yahoo! 5990.01 8342.67 6708.17 7527.00

114.00

7340.67

142.00 153.17 105.17 132.83 14533 122.67
12.00 14.00 14.67 13.17 13.83 12.50
4.33 3.83 5.50 5.00 4.00 5.17
5.83 4.83 6.17 6.67 5.50 7.33
484.83 859.33 62933 62333 665.17 686.17

[3] Ting, K. M., & Zheng, Z. (1998). Boosting cost-sensitive trees.
In International Conference on Discovery Science (pp. 244-
255). Springer, Berlin, Heidelberg.

[4] Susan Lomax and Sunil Vadera. (2013). A survey of cost-
sensitive decision tree induction algorithms. ACM Comput.
Surv. 45, 2, Article 16.

[5] Ting, K. M. (2000). A comparative study of cost-sensitive
boosting algorithms. In Proceedings of the 17th International
Conference on Machine Learning (pp. 983-990)

[6] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts
and techniques. Elsevier.

[7] Witten, 1. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data
Mining: Practical machine learning tools and techniques. Mor-
gan Kaufmann.

[8] Berry, M. J., & Linoff, G. (1997). Data mining techniques: for
marketing, sales, and customer support. John Wiley & Sons,
Inc.

[9] Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining
of massive datasets. Cambridge university press.

[10] Palit, I., & Reddy, C. K. (2012). Scalable and parallel boosting
with mapreduce. IEEE Transactions on Knowledge and Data
Engineering, 24(10), 1904-1916.

[11] Ye, J., Chow, J. H., Chen, J., & Zheng, Z. (2009). Stochas-
tic gradient boosted distributed decision trees. In Proceedings
of the 18th ACM conference on Information and knowledge
management (pp. 2061-2064). ACM.

[12] Lazarevic, A., & Obradovic, Z. (2002). Boosting algorithms
for parallel and distributed learning. Distributed and Parallel
Databases, 11(2), 203-229.

[13] Abualkibash, M., ElSayed, A., & Mahmood, A. (2013).
Highly Scalable, Parallel and Distributed AdaBoost Algorithm

using Light Weight Threads and Web Services on a Network
of Multi-Core Machines. arXiv preprint arXiv:1306.1467.

[14] Cooper,J., & Reyzin, L. (2017). Improved algorithms for dis-
tributed boosting. In Communication, Control, and Computing
(Allerton), 2017 55th Annual Allerton Conference on (pp. 806-
813).

[15] Bowyer, K. W., Hall, L. O., Moore, T., Chawla, N., &
Kegelmeyer, W. P. (2000). A parallel decision tree builder for
mining very large visualization datasets. In Systems, Man, and
Cybernetics, 2000 IEEE International Conference on (Vol. 3,
pp. 1888-1893).

[16] Shafer,J., Agrawal, R., & Mehta, M. (1996). SPRINT: A scal-
able parallel classi er for data mining. In Proc. 1996 Int. Conf.
Very Large Data Bases (pp. 544-555).

[17] Desai, A., & Jadav, P. M. (2012). An empirical evaluation
of ad boost extensions for cost-sensitive classification. Inter-
national Journal of Computer Applications, 44(13), 34-41.

[18] Desai, A., Jadav, K., & Chaudhary, S. (2015). An Empirical
evaluation of CostBoost Extensions for Cost-Sensitive Classi-
fication. In Proceedings of the 8th Annual ACM India Confer-
ence (pp. 73-77). ACM.

[19] Desai, A., & Chaudhary, S. (2016). Distributed Decision Tree.
In Proceedings of the 9th Annual ACM India Conference (pp.
43-50).

[20] Desai, A., & Chaudhary, S. (2017). Distributed decision tree
v. 2.0. In Big Data (Big Data), 2017 IEEE International Con-
ference on (pp. 929-934).

[21] Yahoo! Webscope dataset ydata-frontpage-todaymodule-
clicksv1_0 [http://labs.yahoo.com/Academic_Relations].

	Introduction
	Background
	Approaches for handling skewed distribution of the class
	Cost-sensitive Boosting

	Existing research gaps
	Distributed Decision Tree
	Distributed Decision Tree (DDT) and Spark Tree (ST)
	Distributed Decision Tree v.2.0

	Cost-sensitive Distributed Boosting
	Experimental setups
	Results and Discussion
	Misclassification cost and number of high-cost errors
	Accuracy, precision, recall, and F-measure
	Model building time

	Conclusion
	References

