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ABSTRACT 

In this paper, we are interested in cohort search, 

representation, and prediction. Information retrieval and text 

mining technique were proposed based on Term Frequency 

Inverse Document Frequency (TF.IDF) to extract important 

terms. Also, a formal and algorithmic model was formulated 

to compute: readable, concise cohorts of patients and find 

similarities between patient trajectories. 

Finally, Patient health trajectories were analyzed using a Deep 

Learning architecture from intensive experimental processes 

based on two parallel Minimal Gated Recurrent Unit 

networks, working in a bi-directional manner. The obtained 

result shows an improvement in the performance of computer-

aided medicine and serves as a guide in designing artificial 

neural networks used in prediction tasks. 

General Terms 

Data Mining, Health Informatics, Artificial Intelligence, 

Machine Learning. 

Keywords 

TF-IDF, EMR, Cohort, Neural Networks, Deep Learning, 

Patient Trajectory 

1. INTRODUCTION 

1.1 Motivation 
Electronic Medical Records (EMR) is the Electronic format of 

traditional paper-based medical records that stores patient 

health information in a digital format. Integrating or sharing 

EMR helps to facilitate the collaboration between healthcare 

entities and also enhance the efficiency and quality of care 

through enhanced information-sharing capabilities. The 

primary advantage of using EMR is “more and better access 

to patient information” in compare to Paper-based Patient 

Record [1]. The EMR will strengthen the position of the 

patient because he can have more and easier control over his 

health information and can follow the progress of his own 

illness [2]. Electronic Medical Record systems (EMRS) aim 

to provide an environment for safely sharing and exchanging 

patients’ records. 

Hospitals have a Health Information System (HIS) centered 

on each patient. Several hospitals are using the same set of 

tools. To facilitate health management and treatment, those 

tools must be enriched with patient similarity. All hospital 

admissions, doctor visits, administrative data, traceability 

records, and events are recorded in these tools. On the other 

hand, due to the increase in health-care data in various 

medications such as hospital admissions, doctor visits, 

administrative data, etc. medical experts require an effective 

system to assist them to better understand and analyze the 

evolution of their patients’ health. They also need to know 

how important a term is in a cohort of patients, similarities 

between sets of patients with respect to time and finally what 

will happen next to a patient in a cohort-based on their past. A 

cohort analysis system helps to augment treatment 

effectiveness, patient satisfaction, and health-care revenue [3]. 

A medical cohort system assist the expert in answering two 

frequently asked questions: “what is happening?” and “what 

happens next? [4]. The first question is about patient illness 

diagnosis whereas the second is about predicting future 

medical risk. 

1.2 Problem Statement 
Despite the benefits of the techniques mention above,  they 

were unable to compute similarities between patients. Such 

similarities would enable the retrieval of patients with 

common demographics such as age and geographic location 

but also patients with similar medical histories, e.g. those who 

underwent comparable treatments. This research work was 

aimed at assisting medical experts to identify the most 

frequent terms present in patient files, extract main terms from 

a list of patient’s documents in a search query using a word 

cloud to visualize them. It also assists in building a common 

story for list of patients with respect to their medical actions 

and occurred time. And finally using a Neural network (deep 

learning) approach to predict future outcomes of patients' 

disease progression and future risks from their historical 

admissions and present health states. 

The main contribution of this work are listed below: 

a) Classifying or grouping terms in patients' data (cohort), 

extracting meaningful/important terms and improving 

patient information retrieval. 

b) Building common stories for different patient groups 

(patient cohorts) from their trajectories. 

c) By learning from an individual patient’s medical history 

and present status, we applied the Deep Learning method 

to build a medical prognosis method using recurrent 

artificial neural networks. 

The outline of this paper is divided into sections as Section II 

describes the data model, which formally defines the problem 

of cohort search, representation, and prediction. The 

experiment was carried out in Section III. A set of extensive 

experimental results is analyzed in Section IV. Discussion of 

results in Section V. And conclusion in Section VI. 

2. DATA MODEL 

2.1 Data Issues 
Admissions and diagnoses were explored to predict the 

trajectories. A patient’s admission refers to a set of diagnostic 

codes that describe what happened during a hospital stay. The 

real Health dataset used has some challenges due to its 

cardinality and it uses ICD-10 encoding which is highly 

granular.  
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These challenges were tackled using the idea in the research 

work of [5] as illustrated below: 

a. Cardinality: The total number of admissions in the 

dataset is 58,976. However, the distribution of patients 

considering the number of admissions is skewed, see 

Figure 1 – 38,983 patients have one single admission. 

This fact severely reduces the dataset as only data of 

patients with at least two admissions is useful for 

trajectory prediction. Besides that, a few admissions do 

not have any related ICD-10 codes, and others are not 

meaningful (negative time duration). With these 

restrictions, the number of admissions falls to 19,911; the 

number of patients falls from 46,520 to 7,483. 

Fig 1: Distribution of the number of patients with respect 

to the number of admissions in the real Health dataset 

b. ICD-10 encoding: Concerning the encoding of diagnoses 

codes, the drawback comes from the high cardinality of 

the ICD-10 standard, whose number of diagnosis codes 

sums up to 68,000. This cardinality refers to the 

granularity of details, which describes a disease along 

with its possible clinical manifestations. In the real 

Health dataset, a total of 8,114 codes appear in the 

database instance – Figure 7 presents the distribution of 

the number of codes with respect to the number of 

admissions 

 
Fig 3: Distribution of the number of admissions with 

respect to the number of medical codes in the real Health 

dataset 

c. Alternative ICD-10 encoding: The high granularity of the 

ICD-10 standard is a problem not restricted to this work; 

rather, ICD-9 is a recurring problem in several research 

activities. The Healthcare Cost and Utilization Project 

(HCUP), a North-American association dedicated to 

healthcare research has tackled the problem by issuing 

the Clinical Classifications Software (CCS) encoding [6]. 

Their classification scheme (not a software) defines a 

specialist-established tabular mapping from ICD-9 to a 

less granular descriptive standard, the CCS. The goal is 

to ease statistical analysis and reporting. This 

classification scheme has not been extended to ICD-10, 

therefore CCS could not be used on the ICD-10 codes. 

ICD-10 code first three characters categorize the generic 

name (CCS) of injury while the fourth to sixth gives 

details about the injury for example, instead of using 

code I44.2 for Atrioventricular block, complete, we used 

only I44, which stands for Atrioventricular and left the 

bundle-branch block. 

Thus, only the CCS was returned and neglect the remaining 

details in this research. Table 1 illustrates the mapping of the 

complications of bariatric procedures from ICD-10 to CCS 

ICD-10   – in this example, 24 ICD-10 codes become 1 CCS 

ICD-10 code. 

Table 1. Example of ICD-10 to its CCS Mapping 

ICD-10 

code 

ICD-10 description CCS Generic 

Description 

 K94.00 Colostomy 

complications 

K94 Digestive 

system 

 K94.01 Colostomy 

hemorrhage 

K94 Digestive 

system 

-- -- --- -- 

K94.32  Esophagostomy 

infection 

K94 Digestive 

system 

K94.33 Esophagostomy 

malfunction 

K94 Digestive 

system 

 

Before preprocessing, only the diagnosis code of the real 

Health dataset was used for the prediction phase, which 

contains 8,897 admissions regarding a sample of 8,209 

complete de-identified patients; the data is related to 3,047 

diagnoses encoded in the ICD-10 standard. After filtering out 

inconsistencies and patients with one single admission, we 

ended up with only 1,457 admissions related to 669 patients; 
encoding in the real Health dataset uses 3,047 diagnosis codes 

with their respective textual descriptions based on the ICD-10 

standard. The granularity was reduced at the cost of losing 

details but gained in prediction performance by reducing the 

size of the problem in Table 1. Consequently, this decision 

reduced the number of codes in the real Health dataset to 559. 

2.2 Problem Modeling 
The first problem in this research is defined as a cohort   of 

patients’          extract the important terms from the 

patient documents. A cohort   has a tuple                
that contains a set of patients’. The outcome is the outcome of 

     while       include one or several conditions to be met 

by members and each condition is a tuple             
where   is an attribute and   is its value.        with   
     are patient documents in      and        with   
     are terms in the patient documents. Therefore, the 

function                 .  

Remarks: TF-IDF is used to extract the important terms from 

the cohort. The closer the value of   is to 1 the better.  

The second research problem is a cohort   and a confidence 

threshold  , return a readable and succinct representation of 

events for     members   
 , where for each confidence      

 . A trajectory matching   between two events            
and            is used to compute the similarity score 

between       and       i.e.                       
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For    the intuitive representation of time, mean was 

introduced to achieve this  

                                                  (1)  

          
                                        

   

      

                       

               (2) 

and the value was assigned to   so that the more frequent 

matches get a higher value using equation (2). In other to 

achieve readable and succinct representations of events for     
members   

 , a confidence threshold   is used where a higher 

  increases succinctness.  

The final research problem is stated as: given a patient’s 

sequence of admissions from an EMR, predict the most 

probable diagnoses that will appear in the next admission of 

this patient at a given time    . A patient’s admission refers 

to a pair           , in which   is the temporal order of the 

admission,    is the timestamp stating when the admission 

occurred, and                           is an unordered set 

of     diagnoses codes, so that        , in which   is a 

standard set of codes such as ICD-10 

3. EXPERIMENTS 

3.1 Keyword Extraction 
As explained in section 1.3, keyword extraction helps medical 

experts identify the most important terms present in patient 

files or extract main terms from the list of patient’s documents 

in a search query using the tag cloud to visualize them. 

3.1.1 IR Method used to show the Importance of 

Terms in Documents 
One of the best ways of weighting or scoring terms in a 

corpus in information retrieval and text mining is using TF-

IDF. TF-IDF is a state of the art algorithm that assigns a 

weight to how important a word or term is to a document in a 

collection or corpus [6]. The importance increases 

proportionally to the number of times a word appears in the 

document but is offset by the frequency of the word in the 

corpus Variations of its weighting scheme are often used by 

search engines as a central tool in scoring and ranking a 

document's relevance given a user query.  

Taking a peek at the dataset, the result below shows a one per 

line JSON string from all patientDoc         read into 

Pandas Dataframe and some random samples were printed. 

The dataset consists of patient “personal details”, “health 

history”, “prescription” etc. 

 

3.1.2 Data Cleaning  
After reading the dataset in a structured format, the next step 

is to perform some data cleaning which includes removing 

tags, removing special characters and digits, converting to 

lowercase and stemming. Other cleanings were performed by 

parsing the dataset through a special function written mainly 

for this process (data cleaning) before the actual computation 

is done on them. 

 

3.1.3 Parsing Stop-Words, Creating Vocabulary 

and Word Counts for IDF 
A custom stop word list was generated and parsed to remove 

unnecessary words from the dataset.                , from 

Sci-kit-learn a python library was used to create a vocabulary 

from all the text in the dataset, then counting of words in the 

vocabulary which are returned in the form of term-document 

matrix e.g.in this searched query result, we have 77,743 

documents (the rows) and the vocabulary size is 98,526. A 

few of the vocabularies are shown below. 

 

3.1.4 Compute Inverse Document Frequency 

(IDF) 
Computing the     values was done by 

invoking                         to the sparse matrix 

from                 above and returns the     values. 

 

3.1.5 Computing TF-IDF and Extracting 

Important Terms 
Once the IDF computed, computing the TF-IDF and 

extracting top keywords from the TF-IDF vectors.  The TF-

IDF value for all the terms in the query result from the dataset 

is computed by invoking                              

which return the weight/value of each term of the document. 

 

3.1.6 Filtering with Medical Dictionaries 
Hospitals have various departments with their respective 

dictionaries and medical experts prefer to see how important a 

term is with respect to the different departments. Six medical 

dictionaries were available and all the terms in them were 

used to compare terms in the dataset in order to avoid the 

problem in [7], i.e. to show relevant words or capture minor 

lexical variations, human error or absence of an accent were 

likely cases that can hinder the extraction of important words. 

To overcome this, a sequence similarity metrics known as 

Levenshtein distance is used, which measures the difference 

between two strings of characters and calculates the minimum 

number of characters that must be deleted, inserted or 

replaced to move from one channel to another [8]. For 

instance, if a two-word sequence differs by only a single 

word, then their Levenshtein distance is one i.e. only one 

substitution is needed. This was used to calculate the distance 

between a term in the dataset and terms in the medical 

dictionaries, which is better than using the comparative 

equation which does not consider the position of each letter in 

a term. A threshold of    was used to get a better result, the 

lower the distance the better the similarities i.e. (0 means no 

changes and 1 means just a string changed). All length of 

terms less than 2 were neglected before using the Levenshtein 

distance to prevent more noise in the tag cloud. The algorithm 

below iterates through all the terms in the real Health dataset 

compared it with the terms in the medical dictionaries and 

increase the scores within the threshold while other scores 

remain the same, resulting in a new TF-IDF which is saved in 

 . The complexity of the algorithm is       
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Algorithm 1: Levenshtein distance 
Input: Cohort c, a threshold  

Output: //a list of terms and their scores 

R: [] 

patientDoc <- c.getAllDocument 

for each term in patientDoc: 

for a word in MedDict: 

cmpFile=jellyfish.levenshtein_distance (terms, 

word) 

if (cmpFile <= min_dissim): 

min_dissim = cmpFile 

if min_dissim == 0: 

break 

new_tf_idf=tf_idf + ((threshold - min_dissim) / 

threshold) 

R.append((terms, new_tf_idf))  

 

return R 

3.1.7 Generating Tag Cloud for Visualization 
Finally, a visual representation (tag cloud) of text data was 

used to show important keywords from patient documents. 

Using the scores of each term in the dataset, the tag cloud 

increases the font size or color of terms with higher scores and 

thus seen as the most important terms in the cohort (fig.3). 

  

Fig 3: Tag Cloud to Visualize Important Terms from a 

Cohort 

All processes involved in this phase is summarized in fig. 4 

 

Fig 4: Flow chart of Keyword Extraction 

  

Fig 5: Trajectories of the Cohort’s Members 
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3.2 Building Common Stories between 

Patients over Time 
The second phase of this research is to build a common story 

from sets of patient stories in a cohort. The main challenge is 

that the cohort mostly consists of many patients with various 

types of events. 

We applied the algorithm 2 of Cohort Representation used in 

[3] to the dataset to get the collective behaviors of patients 

over time. We defined five key steps in effecting this 

algorithm on our dataset which is explained below; 

i. Get each patient trajectory from the dataset with respect 

to their actions and timestamps; some conditions were given 

to the query to generate data for the cohort. The cohort 

consists of   patient trajectories (is a list of temporary sorted 

events i.e.                             ). A flat 

representative of the trajectories of all   patients was shown 

using a Gantt chart in figure 5, which shows that the number 

of patients can be large and flattening which is a bad idea. An 

ideal cohort representation should describe a single end-to-

end storyline for the cohort, be limited to events which matter 

the most to the cohort (i.e., succinct), and align those events in 

such a way that it is readable [3]. 

ii. Using time zero technique in statistical analysis [9] to 

align all patient trajectories on their first action in the dataset 

to time zero in figure 5-right. i.e. the exact sequence and 

distance between events of every single trajectory are 

preserved and matching can be performed. We also used a 

monthly time bins for the time granularity due to the real 

Health dataset structure i.e. any event that occurs within a 

month, e.g. 2nd and 25th is mapped to time bin of the first 

month and we calculated the length of a patient trajectory by 

calculating the difference between the first month and the last 

month of events in the hospital i.e. 
                                      

iii.  Check for common matches between patient 

trajectories; due to the manner of a patient timestamp in figure 

5-left. There is variation in the patient events and no order of 

transition between them, it was difficult to match using the 

idea of [10] but [11] idea was extended in order to find global 

matching between patient trajectories which considers 

relations before and after successive events. 

iv. Equation (1) was used to get the intuitive representation 

of matching time and equation (2) assigns higher matching 

value to more frequent matches, all match events between 

different patient’s trajectories pairs with respect to time were 

recorded in a matching table which consists of the match 

events, their mean-time and matching values are shown in 

figure 6b. 

v. A representation matrix whose rows are events and 

columns are times was plotted in figure 6a; a threshold is 

given by the expert to prevent noisy events and get a single-

line story cohort. A running example from a real health 

dataset consisting of 141 patients is shown below; a full 

confidence value is assigned to matches at time 0 because it 

occurs at the same time in the trajectories while the 

confidence for other events is lower, as their corresponding 

matches are not frequent among all trajectory pairs. 

 

 

 

 

Visualization before threshold         Visualization after threshold 

 

 

Fig 6a-b: Running Example of Cohort Representation 

3.3 Prediction from Patient Trajectory  
After extensive testing, low cardinality of the datasets poses a 

great challenge for diagnosis prediction. As a consequence, 

we had to test a broad set of artificial neuron cells aiming to 

achieve high predictive performance. We focused on recurrent 

neural networks, which are recognized for their ability to deal 

with sequences in time. This makes our settings susceptible to 

a number of parameters; every time a significant number of 

parameters (layers of neuron nodes) are added, the recall 

would pointedly fall. We hypothesize that the small number of 

instances of the dataset made it difficult to have the network 

learn the underlying patterns, therefore reducing the recall for 

both training and testing. To cope with that, we tested many 

techniques.  

Among the recurrent networks found in the most-accepted 

literature, the one with the smallest number of weights is 

Jordan’s network; the one with the biggest number of weights 

is Google’s LSTM. The GRU network demonstrated higher 

performance than Jordan’s by using more weights, but with 

less performance than Google’s LSTM. The Minimal GRU 

(MGRU) network, introduced by Zhou et al. in 2016, uses 

even fewer weights than the classical GRU and, just as 

demonstrated by its authors, it did not lose performance 

despite using fewer gates – its performance was slightly 

superior to Google’s LSTM and classical GRU, but 

demanding less processing time. Hence, MGRU was chosen 

to be the core of our architecture; its equations are: 

                                    (3a) 

                                           (3b) 

                                        (3c) 
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where    
  

      
 is the sigmoid activation function;      

      

        
 is the hyperbolic activation function; the      and 

     are the weights to be optimized, together with the biases 

indicated with    . We initialize the squared matrices     
using identity, and the other matrices     using Xavier 

initialization [12], that is, using a Gaussian distribution with 

          and          =  
 

                    
. 

Despite the intuition that more layers should lead to better 

performance, our experiments demonstrated, for every tested 

technique, that the higher the number of hidden layers the 

worst the performance. We observed lower performance in 

both training and testing, so it was not a matter of overfitting, 

but of capacity to learn the underlying function. This result 

was intriguing, especially because many authors advocate 

their technique to be immune to the vanishing/exploding 

gradient problem or to support deeper networks satisfactorily. 

We did not further investigate the underlying reasons, but just 

verified that these claims were not valid for our problem 

setting – notwithstanding, this problem has been a topic of 

active research [13]. our results are in sync with a recently 

awarded work, by Frankle and Carbin [14], who state that 

neural networks can be as much as 90% smaller without 

losing performance. In our tests, hence, we designed 

architecture with one input layer, one MGRU hidden layer, 

and one standard output layer before the softmax probability 

distribution. Despite the satisfactory results, we hypothesized 

that more weight could help because they can detect more 

about the underlying patterns. However, since stacking more 

layers did not help, we explored using the principle of 

bidirectional recurrent neural networks [15]. 

Bi-directional recurrent neural networks connect two 

processing flows computed in opposite directions in relation to 

the temporal dimension of the temporal data. As a result, the 

output layer gets information regarding past and future states 

simultaneously. For our problem setting, this architecture 

represented significant performance gains. We used the 

parameterized Rectified Linear Unit (LReLU) at the feed-

forward stage of the network which demonstrated superior 

results with respect to recall and speed of convergence as 

compared to functions sigmoid, hyperbolic tangent, and 

classical Rectified Linear Unit (ReLU). 

4. EXPERIMENTAL PERFORMANCE 

EVALUATION  

4.1 System Settings for keyword extraction 

(Search) and Representation 
Due to the unavailability of medical experts, we were only 

able to provide one set of experiments i.e. the performance 

aspects of our algorithms. All experiments in this phase were 

carried out using python3.6 and are conducted on a 3.30GHz 

Intel Core i5 with 16GB of memory on the Windows10 

Enterprise operating system.   

A real health-care dataset with 802,206 events for 275,307 

patients with a focus on diagnosis problems was used for this 

research. Some of the patient's actions are treatment, 

compliance, etiology, fatigue marker, BMI marker, and 

hospitalization. In the dataset, an average trajectory has a 

length of 41 months and contains 11.12 events. 

 

 

4.1.1 Performance Study with respect to Search 

and Representation 
The algorithm was used on three different cohorts from the 

real Health dataset. The smallest cohort has 29 old female 

patients that live in Aoste, France with 240 events; the 

Medium cohort has 50 patients living in Aoste, France with 

724 events while the last and biggest cohort has 203 young 

patients that live in Genay with 1638 events.  We compared 

the execution time in relevance to the number of patients in 

the cohort and secondly, we checked the relevance of the 

important words displayed by the tag cloud.  

Our experiment shows that cohort with the lowest patients 

executed faster than those with a higher number of patients 

because it has fewer terms in it, so it was able to run faster 

than others with more terms. Also, the medical dictionary has 

a lot of terms which makes our algorithm runs a bit slower. 

Our result also shows that cohort with the small patient has 

some noise in it because its documents are very small, some 

unimportant words surface while those with higher patient 

shows better results. Generally, our algorithm works better for 

the cohort with many documents.  

For Cohort representation, we consider threshold σ=0.03 in 

order to obtain at most 10 events in our final representations 

(based on maximal human perception capacity explained in 

[16]).  

Table 2. Successive Execution Time with respect to Cohort 

size and its Standard Deviation 

Cohor

t Size 

Thre

shold 1st 2nd 3rd 

Mean 

Time 

Standar

d 

Deviati

on  

Small 0.03 

0.56

2 

0.54

6 

0.54

7 

0.551666

67 0.009 

small 0.3 

0.54

7 

0.56

2 

0.56

3 

0.557333

33 0.009 

small 0.8 

0.54

7 

0.54

7 

0.54

7 0.547 0 

mediu

m 0.03 

1.26

6 

1.29

7 

1.29

7 

1.286666

67 0.0179 

mediu

m 0.3 

1.31

3 

1.31

2 

1.26

6 1.297 0.0269 

mediu

m 0.8 

1.28

1 

1.31

3 

1.29

7 1.297 0.016 

large 0.03 3 

3.03

1 3 

3.010333

33 0.0179 

large 0.3 3 

2.96

9 

2.98

4 

2.984333

33 0.0155 

large 0.8 

2.98

4 3 

2.98

4 

2.989333

33 0.0092 

 

For the performance study, we measure the efficiency of our 

algorithm and verify the influence of input parameters on 

execution time. We experimented with our algorithm on the 

three cohorts (small, medium and large), ran the algorithm 

three times to get a mean execution time and the standard 

deviation (Table 2) using different thresholds as presented in 

figure 7. From the left chart of figure 7, it was observed that 
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the execution time was not affected by the varying threshold. 

This is true because the threshold is post-processed. However, 

the cohort size and number of events in each cohort have a 

strong influence on the execution time. The right chart of 

figure 7 shows that execution time grows bigger as the cohort 

increases from small, medium and large i.e. as the number of 

events increases. This is realistic because the matching 

algorithm has to compare all trajectory pairs where the 

number of pairs grows to the size of the cohort is quadratic. 

 

Fig 7: Impact of Threshold and Size of the Cohort on 

Execution Time 

4.2 System Settings for Prediction 
For training and testing, 90% and 10% of the patients were 

used respectively. The training occurred until the model 

recorded 10 consecutive epochs without improvement as 

measured by reductions in the cross-entropy loss. 

4.2.1 Comparison to Related Works 
We reproduce the results in related works to prediction, this is 

because none of them is completely reproducible due to code 

or data access – in every case, and we considered the best-

reported results. We compare other works to our results, the 

comparison is meant for a perspective of our work with 

respect to others; however, it must be carefully interpreted – 

all the former works use private non-accessible datasets on 

specific diseases. The ideal comparison should be over the 

same dataset and in similar conditions, which is not possible.  

In Table 3, we see that the best results of [17]. are worse than 

what we obtained for the real Health dataset. Also in the real 

Health dataset ICD-10 encoding obtained F1-Score 0.413 

against 0.4 of [17]; considering AUC-ROC, their best result 

using their private data was 0.9, which is a bit better than what 

we got in our settings. Again, this is not absolutely conclusive 

because of adverse experimental conditions. The work of [4] 

recommended both the use of an embedding layer and of cell 

LSTM; but, our result demonstrated that this is not the case 

for our low-cardinality settings – embedding, in particular, 

was a very bad design choice. Furthermore, [4] report on their 

DeepCare system and on a Markov-based methodology using 

metric Precision @ (1, 2, 3). As shown in Table 3, their best 

results over their private datasets are better than what we got. 

DeepCare and the Markov based method, shows at first 

glance, that our result was not comparatively so good. 

However, after preprocessing, their mental health dataset had 

52,049 admissions and 247 diagnosis codes, and their diabetes 

dataset had 53,208 admissions and 243 codes – a problem 

much easier than ours, which is less specific, more granular, 

and with lower cardinality. Actually, their dataset’s 

characteristics are comparable only to Mimic-III; moreover, 

the real Health dataset has generated from outpatient (non-

specialist) admissions, Mimic-III from critical care 

admissions, and DeepCare for mental health and diabetes. The 

patient trajectory prediction depends on the context of 

healthcare, being more challenging when it is not specific. In 

Table 3, we also report the best results of Doctor AI over their 

private dataset; their results in this configuration are not that 

better than ours, but better for Recall@30. This performance 

is explained by the characteristics of their dataset, with over 

14 million admissions and 1,183 codes, which provides strong 

training support for neural networks. [18]. also mention 

Mimic-III using ICD-9, which achieved a ratio of 0.55 for 

Recall@30, and 0.64 for Recall@30 after transferring the 

learning of their private dataset training. Our best result for 

the real Health dataset using ICD-10 was 0.766 for 

Recall@30 – also presented in Table 3. 

Table 3. Metric Comparison to Related Works. 

 Rajkumar et al.  

Mimic-III ICD 

Real-Health 

Dataset 

F1-Score 

at discharge 

0.4  0.413 

 Rajkomar et al. 

(private dataset) 

Real-Health 

Dataset 

Frequency 

weighted 

AUROC 

0.9 0.882 

 

 Pham et al. (4) 

DeepCare / Markov 

(best results - all 

datasets) 

Real-Health 

Dataset 

Precision@1 0.662 / 0.551   0.603 

Precision@2 0.596 / 0.341   0.513 

Precision@3 0.537 / 0.243   0.402 

 Choi et al. DoctorAI 

(private dataset) 

Real-Health 

Dataset 

Recall@10 0.643  0.688 

Recall@20 0.743  0.751 

Recall@30 0.795  0.766 

 Choi et al. - DoctorAI 

Mimic-III 

Real-Health 

Dataset 

Recall@30  0.64  0.766 

 

5. DISCUSSION OF RESULTS 
As earlier explained, our model was successfully ran on three 

different cohorts with different sets of documents. One of the 

limitations of TF-IDF was its inability to identify slight 

changes in its tense, this was overcome in our research by 

stemming all terms to its root words. Another limitation in 

earlier research was that TF-IDF could not check the 

semantics of text in documents, we used Levenshtein distance 

to get important terms in the real Health dataset that are the 

same or slightly different from terms in our medical 

dictionaries. This prevents unexpected results and improves 

the result of our experiment. Though, there is still more to be 
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done especially in the aspect of Levenshtein distance which 

mostly considers the deletion, insertion or modification of 

strings in words but does not consider the semantic meaning 

of the words.  

In addition, adding as much as possible words to the stop 

words document will filter and remove more unwanted words 

in the dataset before data processing [6]. Regarding keyword 

extraction, knowing the domain of treatment for a set of the 

patient cohort will go a long way in showing only important 

documents related to that domain and the algorithm will 

process faster. 

During the prediction phase, our first finding was that the 

recurrent network techniques do not accomplish many of the 

claims that abound in the respective literature. Specifically, 

we verified that they do not support the stacking of layers – 

the more layers, the worse the performance; effectively, our 

design ended up with one single layer. We also noticed that 

the networks whose cells used more gates, like LSTM and 

GRU, had the same performance as of the network based on 

the much simpler Minimal GRU cells, which we ended up 

choosing for our design. When one considers the theoretical 

claims on why each gate is part of a given network, the facts 

do not support the theoretical premises – for our specific 

settings, the fewer gates, and the better. Complexity seemed 

no to be the path to follow. These two findings were not 

exhaustively investigated, notwithstanding, our results alert 

that some assumptions taken for granted must be revisited. 

6. CONCLUSIONS 
The goal of this research internship is to build a system that 

will enable medical experts to easily search for important 

terms from a cohort and view a common story between a set 

of patient actions in the cohort. We used an information 

retrieval and text mining technique called TF.IDF to assign 

weight or values with respect to how important each term is in 

a set of documents and we used the approach of [3] to get 

common stories between patients in the same cohort. We also 

conducted broad experimentation over a real health dataset 

using the approach of [5]. During this phase, we considered 

only the DIAG (diagnoses) codes because it's coherent and it 

also enables easy comparison with other current research 

results due to its popularity in this field of research. This work 

was based on predicting the possible next action of a single 

patient, we plan to extend it to predicting the next possible 

action in a set of a patient (cohort) in future research work and 

also extending it to other medical codes. 

Finally, using a parallel architecture demonstrated to be a 

promising design decision; even further, this design can be 

extrapolated to more than two parallel networks, each one 

benefiting from different characteristics of the data. We also 

suggest that the whole methodology be experimented over 

more specific datasets, as for predicting finer onsets, like heart 

failure, or strokes; and also, for predicting when the next onset 

might take place, as the data is rich with respect to temporal 

information.  
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