
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

1

Cohort Search, Representation and Prediction:

Application to Medical Data

Adebayo Salaudeen
Grenoble Institute of Technology

Ahmad Abubakar
Gipsa Lab

University Grenoble, Alpes

Ganiyu Saheed
University Grenoble, Alpes

ABSTRACT

In this paper, we are interested in cohort search,

representation, and prediction. Information retrieval and text

mining technique were proposed based on Term Frequency

Inverse Document Frequency (TF.IDF) to extract important

terms. Also, a formal and algorithmic model was formulated

to compute: readable, concise cohorts of patients and find

similarities between patient trajectories.

Finally, Patient health trajectories were analyzed using a Deep

Learning architecture from intensive experimental processes

based on two parallel Minimal Gated Recurrent Unit

networks, working in a bi-directional manner. The obtained

result shows an improvement in the performance of computer-

aided medicine and serves as a guide in designing artificial

neural networks used in prediction tasks.

General Terms

Data Mining, Health Informatics, Artificial Intelligence,

Machine Learning.

Keywords

TF-IDF, EMR, Cohort, Neural Networks, Deep Learning,

Patient Trajectory

1. INTRODUCTION

1.1 Motivation
Electronic Medical Records (EMR) is the Electronic format of

traditional paper-based medical records that stores patient

health information in a digital format. Integrating or sharing

EMR helps to facilitate the collaboration between healthcare

entities and also enhance the efficiency and quality of care

through enhanced information-sharing capabilities. The

primary advantage of using EMR is “more and better access

to patient information” in compare to Paper-based Patient

Record [1]. The EMR will strengthen the position of the

patient because he can have more and easier control over his

health information and can follow the progress of his own

illness [2]. Electronic Medical Record systems (EMRS) aim

to provide an environment for safely sharing and exchanging

patients’ records.

Hospitals have a Health Information System (HIS) centered

on each patient. Several hospitals are using the same set of

tools. To facilitate health management and treatment, those

tools must be enriched with patient similarity. All hospital

admissions, doctor visits, administrative data, traceability

records, and events are recorded in these tools. On the other

hand, due to the increase in health-care data in various

medications such as hospital admissions, doctor visits,

administrative data, etc. medical experts require an effective

system to assist them to better understand and analyze the

evolution of their patients’ health. They also need to know

how important a term is in a cohort of patients, similarities

between sets of patients with respect to time and finally what

will happen next to a patient in a cohort-based on their past. A

cohort analysis system helps to augment treatment

effectiveness, patient satisfaction, and health-care revenue [3].

A medical cohort system assist the expert in answering two

frequently asked questions: “what is happening?” and “what

happens next? [4]. The first question is about patient illness

diagnosis whereas the second is about predicting future

medical risk.

1.2 Problem Statement
Despite the benefits of the techniques mention above, they

were unable to compute similarities between patients. Such

similarities would enable the retrieval of patients with

common demographics such as age and geographic location

but also patients with similar medical histories, e.g. those who

underwent comparable treatments. This research work was

aimed at assisting medical experts to identify the most

frequent terms present in patient files, extract main terms from

a list of patient’s documents in a search query using a word

cloud to visualize them. It also assists in building a common

story for list of patients with respect to their medical actions

and occurred time. And finally using a Neural network (deep

learning) approach to predict future outcomes of patients'

disease progression and future risks from their historical

admissions and present health states.

The main contribution of this work are listed below:

a) Classifying or grouping terms in patients' data (cohort),

extracting meaningful/important terms and improving

patient information retrieval.

b) Building common stories for different patient groups

(patient cohorts) from their trajectories.

c) By learning from an individual patient’s medical history

and present status, we applied the Deep Learning method

to build a medical prognosis method using recurrent

artificial neural networks.

The outline of this paper is divided into sections as Section II

describes the data model, which formally defines the problem

of cohort search, representation, and prediction. The

experiment was carried out in Section III. A set of extensive

experimental results is analyzed in Section IV. Discussion of

results in Section V. And conclusion in Section VI.

2. DATA MODEL

2.1 Data Issues
Admissions and diagnoses were explored to predict the

trajectories. A patient’s admission refers to a set of diagnostic

codes that describe what happened during a hospital stay. The

real Health dataset used has some challenges due to its

cardinality and it uses ICD-10 encoding which is highly

granular.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

2

These challenges were tackled using the idea in the research

work of [5] as illustrated below:

a. Cardinality: The total number of admissions in the

dataset is 58,976. However, the distribution of patients

considering the number of admissions is skewed, see

Figure 1 – 38,983 patients have one single admission.

This fact severely reduces the dataset as only data of

patients with at least two admissions is useful for

trajectory prediction. Besides that, a few admissions do

not have any related ICD-10 codes, and others are not

meaningful (negative time duration). With these

restrictions, the number of admissions falls to 19,911; the

number of patients falls from 46,520 to 7,483.

Fig 1: Distribution of the number of patients with respect

to the number of admissions in the real Health dataset

b. ICD-10 encoding: Concerning the encoding of diagnoses

codes, the drawback comes from the high cardinality of

the ICD-10 standard, whose number of diagnosis codes

sums up to 68,000. This cardinality refers to the

granularity of details, which describes a disease along

with its possible clinical manifestations. In the real

Health dataset, a total of 8,114 codes appear in the

database instance – Figure 7 presents the distribution of

the number of codes with respect to the number of

admissions

Fig 3: Distribution of the number of admissions with

respect to the number of medical codes in the real Health

dataset

c. Alternative ICD-10 encoding: The high granularity of the

ICD-10 standard is a problem not restricted to this work;

rather, ICD-9 is a recurring problem in several research

activities. The Healthcare Cost and Utilization Project

(HCUP), a North-American association dedicated to

healthcare research has tackled the problem by issuing

the Clinical Classifications Software (CCS) encoding [6].

Their classification scheme (not a software) defines a

specialist-established tabular mapping from ICD-9 to a

less granular descriptive standard, the CCS. The goal is

to ease statistical analysis and reporting. This

classification scheme has not been extended to ICD-10,

therefore CCS could not be used on the ICD-10 codes.

ICD-10 code first three characters categorize the generic

name (CCS) of injury while the fourth to sixth gives

details about the injury for example, instead of using

code I44.2 for Atrioventricular block, complete, we used

only I44, which stands for Atrioventricular and left the

bundle-branch block.

Thus, only the CCS was returned and neglect the remaining

details in this research. Table 1 illustrates the mapping of the

complications of bariatric procedures from ICD-10 to CCS

ICD-10 – in this example, 24 ICD-10 codes become 1 CCS

ICD-10 code.

Table 1. Example of ICD-10 to its CCS Mapping

ICD-10

code

ICD-10 description CCS Generic

Description

 K94.00 Colostomy

complications

K94 Digestive

system

 K94.01 Colostomy

hemorrhage

K94 Digestive

system

-- -- --- --

K94.32 Esophagostomy

infection

K94 Digestive

system

K94.33 Esophagostomy

malfunction

K94 Digestive

system

Before preprocessing, only the diagnosis code of the real

Health dataset was used for the prediction phase, which

contains 8,897 admissions regarding a sample of 8,209

complete de-identified patients; the data is related to 3,047

diagnoses encoded in the ICD-10 standard. After filtering out

inconsistencies and patients with one single admission, we

ended up with only 1,457 admissions related to 669 patients;
encoding in the real Health dataset uses 3,047 diagnosis codes

with their respective textual descriptions based on the ICD-10

standard. The granularity was reduced at the cost of losing

details but gained in prediction performance by reducing the

size of the problem in Table 1. Consequently, this decision

reduced the number of codes in the real Health dataset to 559.

2.2 Problem Modeling
The first problem in this research is defined as a cohort of

patients’ extract the important terms from the

patient documents. A cohort has a tuple
that contains a set of patients’. The outcome is the outcome of

 while include one or several conditions to be met

by members and each condition is a tuple
where is an attribute and is its value. with
 are patient documents in and with
 are terms in the patient documents. Therefore, the

function .

Remarks: TF-IDF is used to extract the important terms from

the cohort. The closer the value of is to 1 the better.

The second research problem is a cohort and a confidence

threshold , return a readable and succinct representation of

events for members
 , where for each confidence

 . A trajectory matching between two events
and is used to compute the similarity score

between and i.e.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

3

For the intuitive representation of time, mean was

introduced to achieve this

 (1)

 (2)

and the value was assigned to so that the more frequent

matches get a higher value using equation (2). In other to

achieve readable and succinct representations of events for
members

 , a confidence threshold is used where a higher

 increases succinctness.

The final research problem is stated as: given a patient’s

sequence of admissions from an EMR, predict the most

probable diagnoses that will appear in the next admission of

this patient at a given time . A patient’s admission refers

to a pair , in which is the temporal order of the

admission, is the timestamp stating when the admission

occurred, and is an unordered set

of diagnoses codes, so that , in which is a

standard set of codes such as ICD-10

3. EXPERIMENTS

3.1 Keyword Extraction
As explained in section 1.3, keyword extraction helps medical

experts identify the most important terms present in patient

files or extract main terms from the list of patient’s documents

in a search query using the tag cloud to visualize them.

3.1.1 IR Method used to show the Importance of

Terms in Documents
One of the best ways of weighting or scoring terms in a

corpus in information retrieval and text mining is using TF-

IDF. TF-IDF is a state of the art algorithm that assigns a

weight to how important a word or term is to a document in a

collection or corpus [6]. The importance increases

proportionally to the number of times a word appears in the

document but is offset by the frequency of the word in the

corpus Variations of its weighting scheme are often used by

search engines as a central tool in scoring and ranking a

document's relevance given a user query.

Taking a peek at the dataset, the result below shows a one per

line JSON string from all patientDoc read into

Pandas Dataframe and some random samples were printed.

The dataset consists of patient “personal details”, “health

history”, “prescription” etc.

3.1.2 Data Cleaning
After reading the dataset in a structured format, the next step

is to perform some data cleaning which includes removing

tags, removing special characters and digits, converting to

lowercase and stemming. Other cleanings were performed by

parsing the dataset through a special function written mainly

for this process (data cleaning) before the actual computation

is done on them.

3.1.3 Parsing Stop-Words, Creating Vocabulary

and Word Counts for IDF
A custom stop word list was generated and parsed to remove

unnecessary words from the dataset. , from

Sci-kit-learn a python library was used to create a vocabulary

from all the text in the dataset, then counting of words in the

vocabulary which are returned in the form of term-document

matrix e.g.in this searched query result, we have 77,743

documents (the rows) and the vocabulary size is 98,526. A

few of the vocabularies are shown below.

3.1.4 Compute Inverse Document Frequency

(IDF)
Computing the values was done by

invoking to the sparse matrix

from above and returns the values.

3.1.5 Computing TF-IDF and Extracting

Important Terms
Once the IDF computed, computing the TF-IDF and

extracting top keywords from the TF-IDF vectors. The TF-

IDF value for all the terms in the query result from the dataset

is computed by invoking

which return the weight/value of each term of the document.

3.1.6 Filtering with Medical Dictionaries
Hospitals have various departments with their respective

dictionaries and medical experts prefer to see how important a

term is with respect to the different departments. Six medical

dictionaries were available and all the terms in them were

used to compare terms in the dataset in order to avoid the

problem in [7], i.e. to show relevant words or capture minor

lexical variations, human error or absence of an accent were

likely cases that can hinder the extraction of important words.

To overcome this, a sequence similarity metrics known as

Levenshtein distance is used, which measures the difference

between two strings of characters and calculates the minimum

number of characters that must be deleted, inserted or

replaced to move from one channel to another [8]. For

instance, if a two-word sequence differs by only a single

word, then their Levenshtein distance is one i.e. only one

substitution is needed. This was used to calculate the distance

between a term in the dataset and terms in the medical

dictionaries, which is better than using the comparative

equation which does not consider the position of each letter in

a term. A threshold of was used to get a better result, the

lower the distance the better the similarities i.e. (0 means no

changes and 1 means just a string changed). All length of

terms less than 2 were neglected before using the Levenshtein

distance to prevent more noise in the tag cloud. The algorithm

below iterates through all the terms in the real Health dataset

compared it with the terms in the medical dictionaries and

increase the scores within the threshold while other scores

remain the same, resulting in a new TF-IDF which is saved in

 . The complexity of the algorithm is

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

4

Algorithm 1: Levenshtein distance
Input: Cohort c, a threshold

Output: //a list of terms and their scores

R: []

patientDoc <- c.getAllDocument

for each term in patientDoc:

for a word in MedDict:

cmpFile=jellyfish.levenshtein_distance (terms,

word)

if (cmpFile <= min_dissim):

min_dissim = cmpFile

if min_dissim == 0:

break

new_tf_idf=tf_idf + ((threshold - min_dissim) /

threshold)

R.append((terms, new_tf_idf))

return R

3.1.7 Generating Tag Cloud for Visualization
Finally, a visual representation (tag cloud) of text data was

used to show important keywords from patient documents.

Using the scores of each term in the dataset, the tag cloud

increases the font size or color of terms with higher scores and

thus seen as the most important terms in the cohort (fig.3).

Fig 3: Tag Cloud to Visualize Important Terms from a

Cohort

All processes involved in this phase is summarized in fig. 4

Fig 4: Flow chart of Keyword Extraction

Fig 5: Trajectories of the Cohort’s Members

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

5

3.2 Building Common Stories between

Patients over Time
The second phase of this research is to build a common story

from sets of patient stories in a cohort. The main challenge is

that the cohort mostly consists of many patients with various

types of events.

We applied the algorithm 2 of Cohort Representation used in

[3] to the dataset to get the collective behaviors of patients

over time. We defined five key steps in effecting this

algorithm on our dataset which is explained below;

i. Get each patient trajectory from the dataset with respect

to their actions and timestamps; some conditions were given

to the query to generate data for the cohort. The cohort

consists of patient trajectories (is a list of temporary sorted

events i.e.). A flat

representative of the trajectories of all patients was shown

using a Gantt chart in figure 5, which shows that the number

of patients can be large and flattening which is a bad idea. An

ideal cohort representation should describe a single end-to-

end storyline for the cohort, be limited to events which matter

the most to the cohort (i.e., succinct), and align those events in

such a way that it is readable [3].

ii. Using time zero technique in statistical analysis [9] to

align all patient trajectories on their first action in the dataset

to time zero in figure 5-right. i.e. the exact sequence and

distance between events of every single trajectory are

preserved and matching can be performed. We also used a

monthly time bins for the time granularity due to the real

Health dataset structure i.e. any event that occurs within a

month, e.g. 2nd and 25th is mapped to time bin of the first

month and we calculated the length of a patient trajectory by

calculating the difference between the first month and the last

month of events in the hospital i.e.

iii. Check for common matches between patient

trajectories; due to the manner of a patient timestamp in figure

5-left. There is variation in the patient events and no order of

transition between them, it was difficult to match using the

idea of [10] but [11] idea was extended in order to find global

matching between patient trajectories which considers

relations before and after successive events.

iv. Equation (1) was used to get the intuitive representation

of matching time and equation (2) assigns higher matching

value to more frequent matches, all match events between

different patient’s trajectories pairs with respect to time were

recorded in a matching table which consists of the match

events, their mean-time and matching values are shown in

figure 6b.

v. A representation matrix whose rows are events and

columns are times was plotted in figure 6a; a threshold is

given by the expert to prevent noisy events and get a single-

line story cohort. A running example from a real health

dataset consisting of 141 patients is shown below; a full

confidence value is assigned to matches at time 0 because it

occurs at the same time in the trajectories while the

confidence for other events is lower, as their corresponding

matches are not frequent among all trajectory pairs.

Visualization before threshold Visualization after threshold

Fig 6a-b: Running Example of Cohort Representation

3.3 Prediction from Patient Trajectory
After extensive testing, low cardinality of the datasets poses a

great challenge for diagnosis prediction. As a consequence,

we had to test a broad set of artificial neuron cells aiming to

achieve high predictive performance. We focused on recurrent

neural networks, which are recognized for their ability to deal

with sequences in time. This makes our settings susceptible to

a number of parameters; every time a significant number of

parameters (layers of neuron nodes) are added, the recall

would pointedly fall. We hypothesize that the small number of

instances of the dataset made it difficult to have the network

learn the underlying patterns, therefore reducing the recall for

both training and testing. To cope with that, we tested many

techniques.

Among the recurrent networks found in the most-accepted

literature, the one with the smallest number of weights is

Jordan’s network; the one with the biggest number of weights

is Google’s LSTM. The GRU network demonstrated higher

performance than Jordan’s by using more weights, but with

less performance than Google’s LSTM. The Minimal GRU

(MGRU) network, introduced by Zhou et al. in 2016, uses

even fewer weights than the classical GRU and, just as

demonstrated by its authors, it did not lose performance

despite using fewer gates – its performance was slightly

superior to Google’s LSTM and classical GRU, but

demanding less processing time. Hence, MGRU was chosen

to be the core of our architecture; its equations are:

 (3a)

 (3b)

 (3c)

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

6

where

 is the sigmoid activation function;

 is the hyperbolic activation function; the and

 are the weights to be optimized, together with the biases

indicated with . We initialize the squared matrices
using identity, and the other matrices using Xavier

initialization [12], that is, using a Gaussian distribution with

 and =

.

Despite the intuition that more layers should lead to better

performance, our experiments demonstrated, for every tested

technique, that the higher the number of hidden layers the

worst the performance. We observed lower performance in

both training and testing, so it was not a matter of overfitting,

but of capacity to learn the underlying function. This result

was intriguing, especially because many authors advocate

their technique to be immune to the vanishing/exploding

gradient problem or to support deeper networks satisfactorily.

We did not further investigate the underlying reasons, but just

verified that these claims were not valid for our problem

setting – notwithstanding, this problem has been a topic of

active research [13]. our results are in sync with a recently

awarded work, by Frankle and Carbin [14], who state that

neural networks can be as much as 90% smaller without

losing performance. In our tests, hence, we designed

architecture with one input layer, one MGRU hidden layer,

and one standard output layer before the softmax probability

distribution. Despite the satisfactory results, we hypothesized

that more weight could help because they can detect more

about the underlying patterns. However, since stacking more

layers did not help, we explored using the principle of

bidirectional recurrent neural networks [15].

Bi-directional recurrent neural networks connect two

processing flows computed in opposite directions in relation to

the temporal dimension of the temporal data. As a result, the

output layer gets information regarding past and future states

simultaneously. For our problem setting, this architecture

represented significant performance gains. We used the

parameterized Rectified Linear Unit (LReLU) at the feed-

forward stage of the network which demonstrated superior

results with respect to recall and speed of convergence as

compared to functions sigmoid, hyperbolic tangent, and

classical Rectified Linear Unit (ReLU).

4. EXPERIMENTAL PERFORMANCE

EVALUATION

4.1 System Settings for keyword extraction

(Search) and Representation
Due to the unavailability of medical experts, we were only

able to provide one set of experiments i.e. the performance

aspects of our algorithms. All experiments in this phase were

carried out using python3.6 and are conducted on a 3.30GHz

Intel Core i5 with 16GB of memory on the Windows10

Enterprise operating system.

A real health-care dataset with 802,206 events for 275,307

patients with a focus on diagnosis problems was used for this

research. Some of the patient's actions are treatment,

compliance, etiology, fatigue marker, BMI marker, and

hospitalization. In the dataset, an average trajectory has a

length of 41 months and contains 11.12 events.

4.1.1 Performance Study with respect to Search

and Representation
The algorithm was used on three different cohorts from the

real Health dataset. The smallest cohort has 29 old female

patients that live in Aoste, France with 240 events; the

Medium cohort has 50 patients living in Aoste, France with

724 events while the last and biggest cohort has 203 young

patients that live in Genay with 1638 events. We compared

the execution time in relevance to the number of patients in

the cohort and secondly, we checked the relevance of the

important words displayed by the tag cloud.

Our experiment shows that cohort with the lowest patients

executed faster than those with a higher number of patients

because it has fewer terms in it, so it was able to run faster

than others with more terms. Also, the medical dictionary has

a lot of terms which makes our algorithm runs a bit slower.

Our result also shows that cohort with the small patient has

some noise in it because its documents are very small, some

unimportant words surface while those with higher patient

shows better results. Generally, our algorithm works better for

the cohort with many documents.

For Cohort representation, we consider threshold σ=0.03 in

order to obtain at most 10 events in our final representations

(based on maximal human perception capacity explained in

[16]).

Table 2. Successive Execution Time with respect to Cohort

size and its Standard Deviation

Cohor

t Size

Thre

shold 1st 2nd 3rd

Mean

Time

Standar

d

Deviati

on

Small 0.03

0.56

2

0.54

6

0.54

7

0.551666

67 0.009

small 0.3

0.54

7

0.56

2

0.56

3

0.557333

33 0.009

small 0.8

0.54

7

0.54

7

0.54

7 0.547 0

mediu

m 0.03

1.26

6

1.29

7

1.29

7

1.286666

67 0.0179

mediu

m 0.3

1.31

3

1.31

2

1.26

6 1.297 0.0269

mediu

m 0.8

1.28

1

1.31

3

1.29

7 1.297 0.016

large 0.03 3

3.03

1 3

3.010333

33 0.0179

large 0.3 3

2.96

9

2.98

4

2.984333

33 0.0155

large 0.8

2.98

4 3

2.98

4

2.989333

33 0.0092

For the performance study, we measure the efficiency of our

algorithm and verify the influence of input parameters on

execution time. We experimented with our algorithm on the

three cohorts (small, medium and large), ran the algorithm

three times to get a mean execution time and the standard

deviation (Table 2) using different thresholds as presented in

figure 7. From the left chart of figure 7, it was observed that

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

7

the execution time was not affected by the varying threshold.

This is true because the threshold is post-processed. However,

the cohort size and number of events in each cohort have a

strong influence on the execution time. The right chart of

figure 7 shows that execution time grows bigger as the cohort

increases from small, medium and large i.e. as the number of

events increases. This is realistic because the matching

algorithm has to compare all trajectory pairs where the

number of pairs grows to the size of the cohort is quadratic.

Fig 7: Impact of Threshold and Size of the Cohort on

Execution Time

4.2 System Settings for Prediction
For training and testing, 90% and 10% of the patients were

used respectively. The training occurred until the model

recorded 10 consecutive epochs without improvement as

measured by reductions in the cross-entropy loss.

4.2.1 Comparison to Related Works
We reproduce the results in related works to prediction, this is

because none of them is completely reproducible due to code

or data access – in every case, and we considered the best-

reported results. We compare other works to our results, the

comparison is meant for a perspective of our work with

respect to others; however, it must be carefully interpreted –

all the former works use private non-accessible datasets on

specific diseases. The ideal comparison should be over the

same dataset and in similar conditions, which is not possible.

In Table 3, we see that the best results of [17]. are worse than

what we obtained for the real Health dataset. Also in the real

Health dataset ICD-10 encoding obtained F1-Score 0.413

against 0.4 of [17]; considering AUC-ROC, their best result

using their private data was 0.9, which is a bit better than what

we got in our settings. Again, this is not absolutely conclusive

because of adverse experimental conditions. The work of [4]

recommended both the use of an embedding layer and of cell

LSTM; but, our result demonstrated that this is not the case

for our low-cardinality settings – embedding, in particular,

was a very bad design choice. Furthermore, [4] report on their

DeepCare system and on a Markov-based methodology using

metric Precision @ (1, 2, 3). As shown in Table 3, their best

results over their private datasets are better than what we got.

DeepCare and the Markov based method, shows at first

glance, that our result was not comparatively so good.

However, after preprocessing, their mental health dataset had

52,049 admissions and 247 diagnosis codes, and their diabetes

dataset had 53,208 admissions and 243 codes – a problem

much easier than ours, which is less specific, more granular,

and with lower cardinality. Actually, their dataset’s

characteristics are comparable only to Mimic-III; moreover,

the real Health dataset has generated from outpatient (non-

specialist) admissions, Mimic-III from critical care

admissions, and DeepCare for mental health and diabetes. The

patient trajectory prediction depends on the context of

healthcare, being more challenging when it is not specific. In

Table 3, we also report the best results of Doctor AI over their

private dataset; their results in this configuration are not that

better than ours, but better for Recall@30. This performance

is explained by the characteristics of their dataset, with over

14 million admissions and 1,183 codes, which provides strong

training support for neural networks. [18]. also mention

Mimic-III using ICD-9, which achieved a ratio of 0.55 for

Recall@30, and 0.64 for Recall@30 after transferring the

learning of their private dataset training. Our best result for

the real Health dataset using ICD-10 was 0.766 for

Recall@30 – also presented in Table 3.

Table 3. Metric Comparison to Related Works.

 Rajkumar et al.

Mimic-III ICD

Real-Health

Dataset

F1-Score

at discharge

0.4 0.413

 Rajkomar et al.

(private dataset)

Real-Health

Dataset

Frequency

weighted

AUROC

0.9 0.882

 Pham et al. (4)

DeepCare / Markov

(best results - all

datasets)

Real-Health

Dataset

Precision@1 0.662 / 0.551 0.603

Precision@2 0.596 / 0.341 0.513

Precision@3 0.537 / 0.243 0.402

 Choi et al. DoctorAI

(private dataset)

Real-Health

Dataset

Recall@10 0.643 0.688

Recall@20 0.743 0.751

Recall@30 0.795 0.766

 Choi et al. - DoctorAI

Mimic-III

Real-Health

Dataset

Recall@30 0.64 0.766

5. DISCUSSION OF RESULTS
As earlier explained, our model was successfully ran on three

different cohorts with different sets of documents. One of the

limitations of TF-IDF was its inability to identify slight

changes in its tense, this was overcome in our research by

stemming all terms to its root words. Another limitation in

earlier research was that TF-IDF could not check the

semantics of text in documents, we used Levenshtein distance

to get important terms in the real Health dataset that are the

same or slightly different from terms in our medical

dictionaries. This prevents unexpected results and improves

the result of our experiment. Though, there is still more to be

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 13, October 2019

8

done especially in the aspect of Levenshtein distance which

mostly considers the deletion, insertion or modification of

strings in words but does not consider the semantic meaning

of the words.

In addition, adding as much as possible words to the stop

words document will filter and remove more unwanted words

in the dataset before data processing [6]. Regarding keyword

extraction, knowing the domain of treatment for a set of the

patient cohort will go a long way in showing only important

documents related to that domain and the algorithm will

process faster.

During the prediction phase, our first finding was that the

recurrent network techniques do not accomplish many of the

claims that abound in the respective literature. Specifically,

we verified that they do not support the stacking of layers –

the more layers, the worse the performance; effectively, our

design ended up with one single layer. We also noticed that

the networks whose cells used more gates, like LSTM and

GRU, had the same performance as of the network based on

the much simpler Minimal GRU cells, which we ended up

choosing for our design. When one considers the theoretical

claims on why each gate is part of a given network, the facts

do not support the theoretical premises – for our specific

settings, the fewer gates, and the better. Complexity seemed

no to be the path to follow. These two findings were not

exhaustively investigated, notwithstanding, our results alert

that some assumptions taken for granted must be revisited.

6. CONCLUSIONS
The goal of this research internship is to build a system that

will enable medical experts to easily search for important

terms from a cohort and view a common story between a set

of patient actions in the cohort. We used an information

retrieval and text mining technique called TF.IDF to assign

weight or values with respect to how important each term is in

a set of documents and we used the approach of [3] to get

common stories between patients in the same cohort. We also

conducted broad experimentation over a real health dataset

using the approach of [5]. During this phase, we considered

only the DIAG (diagnoses) codes because it's coherent and it

also enables easy comparison with other current research

results due to its popularity in this field of research. This work

was based on predicting the possible next action of a single

patient, we plan to extend it to predicting the next possible

action in a set of a patient (cohort) in future research work and

also extending it to other medical codes.

Finally, using a parallel architecture demonstrated to be a

promising design decision; even further, this design can be

extrapolated to more than two parallel networks, each one

benefiting from different characteristics of the data. We also

suggest that the whole methodology be experimented over

more specific datasets, as for predicting finer onsets, like heart

failure, or strokes; and also, for predicting when the next onset

might take place, as the data is rich with respect to temporal

information.

7. ACKNOWLEDGMENTS
The authors wish to thank all the respected professors who

helped during the experiment, development and writing phase

of this paper.

8. REFERENCES
[1] E. Balka, “Electronic patient records,” Nurs. Manage.,

vol. 5, no. 4, pp. 39–39, 2016.

[2] J. G. Beun, “Electronic healthcare record; a way to

empower the patient,” Int. J. Med. Inform., vol. 69, no.

2–3, p. 191—196, Mar. 2003.

[3] B. Omidvar-Tehrani, S. Amer-Yahia, and L. V. S.

Lakshmanan, “Cohort representation and exploration,”

Proc. - 2018 IEEE 5th Int. Conf. Data Sci. Adv. Anal.

DSAA 2018, pp. 169–178, 2019.

[4] T. Pham, T. Tran, D. Phung, and S. Venkatesh,

“Predicting healthcare trajectories from medical records:

A deep learning approach,” J. Biomed. Inform., vol. 69,

pp. 218–229, 2017.

[5] S. Rodrigues-Jr, JF; Spadon, G; Machado, BB; Amer-

Yahia, “Patient trajectory prediction in the Mimic-III

dataset challenges and pitfalls,” 35ème Conférence sur la

Gest. Données – Principes, Technol. Appl., 2019.

[6] S. Qaiser and R. Ali, “Text Mining : Use of TF-IDF to

Examine the Relevance of Words to Documents Text

Mining : Use of TF-IDF to Examine the Relevance of

Words to Documents,” no. July 2018.

[7] K. Hans, “Das System Kaliumsulfai-Kaliurnsulfid,”

Zeitschrift für Anorg. und Allg. Chemie, vol. 164, pp.

45–56, 1931.

[8] E. S. Ristad and P. N. Yianilos, “Learning string-edit

distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

20, no. 5, pp. 522–532, 1998.

[9] A. Heuser, M. Huynh, C. Joshua, and J. C. Chang,

“Asymptotic convergence in distribution of the area

bounded by Kaplan-Meier curves using empirical

process modeling,” 2014.

[10] W. David and D. H. Rich, “Book, Software, and Web

Site Reviews,” no. 11, pp. 2219–2221, 2005.

[11] S. B. Needleman and C. D. Wunsch, “A general method

applicable to the search for similarities in the amino acid

sequence of two proteins,” J. Mol. Biol., vol. 48, no. 3,

pp. 443–453, 1970.

[12] X. Glorot and Y. Bengio, “Understanding the difficulty

of training deep feedforward neural networks,” in

Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, 2010, vol. 9, pp.

249–256.

[13] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How

to Construct Deep Recurrent Neural Networks,” pp. 1–

13, 2013.

[14] M. Carbin, “THE LOTTERY TICKET HYPOTHESIS :”

pp. 1–42, 2019.

[15] M. Schuster and K. K. Paliwal, “Bidirectional Recurrent

Neural Networks,” vol. 45, no. 11, pp. 2673–2681, 1997.

[16] G. A. Miller, “Human memory and the storage of

information,” {IRE} Trans. Inf. Theory, vol. 2, no. 3, pp.

129–137, 1956.

[17] A. Rajkomar et al., “Scalable and accurate deep learning

with electronic health records,” npj Digit. Med., vol. 1,

no. 1, p. 18, 2018.

[18] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and

J. Sun, “Doctor AI: Predicting Clinical Events via

Recurrent Neural Networks,” JMLR Workshop Conf.

Proc., vol. 56, pp. 301–318, Aug. 2016.

IJCATM : www.ijcaonline.org

