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ABSTRACT
Nonlinear Conjugate gradient methods (CG) are widely used for
solving unconstrained optimization problems. Their wide applica-
tion in many Fields such as Engineering, Applied Sciences and
Economics is due to their low memory requirements and global
convergence properties. Numerous studies and modifications di-
rected towards improving the efficiency of these methods have been
conducted. In this paper, a new conjugate gradient parameter βk
that possess convergence properties is presented. We also present
preliminary numerical results to show the efficiency of the pro-
posed method.
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1. INTRODUCTION
In this paper, we deal with the conjugate gradient (CG) methods for
the numerical solution of the unconstrained optimization problem

min f(x), x ∈ Rn (1)

where f : Rn → R is assumed to be atleast twice continuously
differentiable function and n is the dimension of x, which is as-
sumed to be large. The iterates of the conjugate gradient methods
are obtained by

xk+1 = xk + αkdk, (2)

where xk is the current iterate point, dk is the search direction and
αk > 0 is the step length. The success of any conjugate gradi-
ent method depends on the effective choices of both the search di-
rection and the step length. Two strategies for calculating the step
length is the exact line search and inexact line search method. The
ideal choice would be the exact line search which is defined by

f(xk + αkdk) = min
α∈R

f(xk + αkdk) (3)

but in general it is computationally expensive to obtain since it
requires too many evaluations of the objective function f and its
gradient g. The other alternative choice is the inexact line search
strategies such as the Armijo line search [7], Wolfe condition []

and Goldstein condition [2]. The conjugate gradient methods also
define the search direction dk by

dk+1 = −gk+1 + βkdk, d0 = −g0 (4)

for k ≥ 1, where the parameter βk ∈ R is a scalar known as
conjugate gradient coefficient.

In the literature, several choices for βk have been proposed
which give rise to distinct conjugate gradient methods. The most
well-known conjugate gradient methods are the Hestenes-Steifel
(HS)[10], Fletcher-Reeves(FR)[11], Polak-Ribeire (PR) [3],
Liu-Storey (LS),[13] Dai-Yuan (DY)[12] and Gilbert-Nocedal
(PR+)[9] in which the update parameter of these methods is
respectively specified as follows:

βHSk =
yT
k
gk+1

yT
k
dk

, βFRk =
gT
k+1

gk+1

gT
k
gk

, βPRk =
yT
k
gk+1

gT
k
gk

,

βLSk =
−yT

k
gk+1

gT
k
dk

, βDYk =
gT
k+1

gk+1

yT
k
dk

, βPR+
k =

max{ y
T
k
gk+1

gT
k
gk

, 0},

where sk = xk+1 − xk and yk = gk+1 − gk. Note that
these formulae for βk are equivalent to each other if the objective
function is a strictly convex quadratic function and αk is chosen
through an exact line search. However, for general non-quadratic
functions or under the inexact line search their behavior is quite
different [6].

The rest of this paper is organized as follows. In the next
section, we simply recall the conjugate gradient direction for
solving unconstrained optimization problem and construct our new
conjugate parameter subsequently. In section 3, we present the
convergence of the proposed algorithm. Then we present some
preliminary results of the new approach on some standard test
problems and finally, we conclude the paper in section 5.

2. THE NEW CG PARAMETER
We proposed our modification based on the search direction from
Ibrahim et.al [5] given as

dk+1 = −B−1k+1gk+1 + λk+1dk, (5)
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where BK+1 is the BFGS updating matrix and λk+1 =
ηgTk+1gk+1/g

T
k+1dk with η ∈ (0.1] is chosen to ensure conjugacy.

from (4) and (5) we have,

−gk+1 + βk+1dk = −B−1k+1gk+1 + λk+1dk, (6)

multiply (6) by sTk+1Bk+1

−sTk+1Bk+1gk+1+βk+1dks
T
k+1Bk+1 = −gTk+1sk+1+λk+1dks

T
k+1Bk+1,

(7)
But, Bk+1sk+1 = yk+1, then,

−gTk+1yk+1 + βk+1d
T
k yk+1 = −gTk+1sk+1 + λk+1d

T
k yk+1 (8)

βk+1d
T
k yk+1 = −gTk+1sk+1 + λk+1d

T
k yk+1 + gTk+1yk+1 (9)

βk+1 =
−gTk+1sk+1 + λk+1d

T
k yk+1 + gTk+1yk+1

dTk yk+1

(10)

Thus,

βk+1 =
(λk+1dk + gk+1)y

T
k+1 − gTk+1sk+1

dTk yk+1

(11)

Similarly, dk = sk

βNEWk+1 =
(λk+1sk + gk+1)y

T
k+1 − gTk+1sk+1

sTk yk+1

. (12)

New Algorithm
We now present the basic steps of the algorithm for solving uncon-
strained optimization problems as;
Step 1 : Given an initial point x0 ∈ Rn, set d0 = −g0 and k = 0
Step 2 : Test a criterion for stopping the iterations. If the test is sat-
isfied, then stop; otherwise continue with step 3
Step 3 : Compute the search direction dk by (4), with βk+1 defined
in (12)
Step 4 : Find an acceptable steplength αk, by using the following
line search procedure. Given the constants η ∈ (0, 1) and τ, τ ′ with
0 < τ < τ ′ < 1

(i) Set α = 1

(ii) Test the relation

f(xk + αdk) ≤ f(xk) + ηαgTk dk, (13)

(iii) If (13) is not satisfied, choose a new α in [τα, τ ′α] and go
to (ii). If (13) is satisfied, set αk = α and xk+1 = xk + αkdk

Step 5 : Set k := k + 1, and go to step 2

3. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we present some numerical results from an imple-
mentation of our new conjugate gradient algorithm for solving un-
constrained optimization problems, we evaluate the performance of
oue new conjugate gradient parameter with that of

(1) Polak-Ribeire (PR)[3] ,
(2) Hestenes-Steifel (HS)[10] HS:

All the experiments are implemented on a PC using MATLAB ver-
sion 7.13.0.564 (R 2011b), with double precision arithmetic. For
each test function, we perform 40 numerical experiments with vari-
able dimensions 50 ≤ n ≤ 1000. As regards the stopping criteria
used in our experiments, in all the algorithms, convergence is as-
sumed if ‖gk‖ ≤ ε where ε = 10−4. We forced the algorithm
to stop whenever the number of iterations exceeds 2000, and the
symbol ”-” is used to represent the failure. Test functions are the
standard unconstrained optimization problems obtained from [1]
as presentesd in the Table below.
Table 1 gives the performance of all the algorithms, where a total
of 20 runs are performed. Based on the results, βNewk solves 100%
of the test problems while PR, HS, can only solve 80% and 90% of
the test problems respectively. The performance of βNewk over PR,
is that New βNewk needs 48% and 78% less in terms of the number
of iterations than PR and HS. Overall, we believe that given the
ratio of iteration counts for all the methods, we can conclude that
our algorithm is promising even when less accurate line search
strategy is employed.

4. CONCLUSION
Numerous studies on CG method have resulted in different conju-
gate gradient parameters. Although, these variety of methods have
been shown to perform much better than the classical methods they
have been reported to be complex and difficult to implement in
practice. Therefore, identifying these shortcomings and rectifying
them as modified methods for efficient performance is worthwhile.
Thus, in this paper we have presented a new conjugate gradient pa-
rameter for solving unconstrained optimization problems. The nu-
merical results for a small dimension of the test problems show that
the new parameter is efficient and robust.
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