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ABSTRACT 

People with articulation and phonological disorders need 

exercise to execute sounds of speech. Essentially, exercise 

starts with production of non-articulatory sounds in clinics or 

homes where a huge variety of the environment sounds exist; 

i.e., in noisy locations. Speech recognition systems considers 

environment sounds as background noises, which can lead to 

unsatisfactory speech recognition. This study aims to assess a 

system that supports aggregation of visual features to audio 

features during recognition of non-articulatory sounds in 

noisy environments. Thehe methods Mel-Frequency Cepstrum 

Coefficients and Laplace transform were used to extract audio 

features, Convolutional Neural Network to extract video 

features, and Support Vector Machine to recognize audio and 

Long Short-Term Memory networks for video recognition. 

Report experimental results regarding the accuracy, recall and 

precision of the system on a set of 585 sounds was achieved. 

Overall, the results indicate that video information can 

complement audio recognition and assist non-articulatory 

sound recognition.   

General Terms 

Speech Recognition, down syndrome. 

Keywords 

Assistive technology; health information; speech recognition; 

machine learning; down syndrome. 

1. INTRODUCTION 
Human communication is mostly supported by speech, which 

is the expression of or the ability to express thoughts and 

feelings by articulate sounds. Speech Recognition (SR) is the 

process of automatically recognizing sounds emitted by a 

person or to determine a specific speaker on the basis of 

information about speech signal [1].  

Speech impairments refers to a speaker's inability to produce 

speech sounds correctly. Disorders may be due to multiple 

reasons such as neurological, myofunctional, and/or 

congenital linguistic alterations and may have different levels 

of severity. Individuals with speech disorder face social 

difficulties and have problems integrating with the society. 

For example, children with speech disorders are at particularly 

higher risk of being bullied by peers [2]. Assistive 

technologies can help to overcome speech impairments, 

thereby avoiding bullying and social isolation. Actually, these 

technologies can be incorporated in the treatment of 

individuals with speech disorder. 

Treatment of speech disorders requires speech therapy and 

substantial effort. People with such disorders need rigorous 

training to plan and to execute motor acts of speech. Speech 

training starts with facial motor praxia activities and oral 

myofunctional exercises that involve production of non-

articulatory sounds, such as production of blow, tongue snap, 

and kisses (lip protrusion), which can be considered 

precursors in the production of phonemes and words 

(articulatory sounds). Essentially, a Speech Therapist 

supervises therapy exercises performed in therapeutic clinics. 

Depending on patient's condition, the use of multimedia 

devices and mobile technology can make it easier for 

individuals to achieve their goals through speech training 

exercises that they can carry out in a clinic or at home.  

For several years, great effort in the field of multimedia 

processing has been devoted to addressing recognition of 

different types of sounds (speech and others) and to filtering 

noises [3-5]. In SR systems, therapy exercises for speech 

disorders start with non-articulatory sounds, which can be 

misclassified as noise. Besides this recognition issue, speech 

exercises conducted in noisy locations (clinics or homes) are 

recorded together with various environment sounds like 

music, bird song, rain noise, street traffic noise, TV sounds as 

well as in the presence of people speaking, baby cries, dog 

barking, etc. SR systems consider environment sounds as 

background noises, which can lead to false recognition or low 

performance. Some methods have been proposed to filter 

noises [6,7]. 

In this paper is presented an Audio-VIdeo Speech (AVIS) 

recognition system that supports aggregation of visual 

features to audio features during sound recognition tasks when 

the audio features are not sufficient to promote effective 

recognition1 e created the AVIS system to analyze the 

hypothesis that video information can complement audio 

recognition and assist non-articulatory sound recognition in a 

real home environment. The proposed system employs a very 

popular method called Mel-Frequency Cepstrum Coefficients 

(MFCC), a Laplace Transform for audio recognition and a 

Viola-Jones method and facial landmarks for visual 

recognition. The use of well-known techniques aids 

                                                           
1 This proposal is part of a large project, called SofiaFala, in 

development at USP. SofiaFala (Sistema Inteligente de Apoio 

a Fala - Intelligent Speech Training Software). SofiaFala has 

funding from CNPq - Assistive Technology. 
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verification of the hypothesis. Overall, the contributions of the 

present work include: (i) an audio-video recognition system 

for non-articulatory sounds; (ii) an analysis of 

complementarity in an audio-video recognition system; and 

(iii) an experiment to demonstrate that video features 

effectively aid recognition of non-articulatory sounds. 

The remainder sections are organized as follows: Section 2 

depicts the background. Section 3 details the automated 

approach. Section 4 reports the experimental study conducted 

herein. Section 5 presents the results and discusses the 

benefits and relevance of the proposal. Section 6 shows 

related work to the present study. Finally, section 7 shows 

final remarks and future works. 

2. BACKGROUND 
Audio Visual speech recognition techniques have been widely 

investigated over the past years. Most studies have 

concentrated on articulatory speech sounds (words and 

phonemes). Some techniques like MFCCs, Laplace transform 

and Support Vector Machine (SVM) have been used to 

recognize these types of sounds. 

2.1 Audio Visual Speech Recognition 
Speech is an audiovisual signal consisting of audio 

vocalization and the corresponding mouth configuration. 

Although audio signal carries most information, visual signal 

also carries complementary and redundant information. 

Acoustic noise does not affect visual information, which can 

significantly improve speech recognition performance in 

noisy environments [8]. This improvement occurs because 

visual speech provides cues to both timing of the incoming 

acoustic signal (the amplitude envelope, which influences 

attention and perceptual sensitivity) and its content (place and 

manner of articulation, which constrains lexical selection) [9]. 

In this sense, a computer-aided Audio-Visual Speech 

Recognition (AVSR) system is a promising technique for 

reliable speech recognition, especially when noise corrupts 

audio [10]. AVSR uses visual information from the speakers' 

lip motion to complement corrupted audio speech input. 

Several studies have proven that visual information plays a 

key role in automatic speech recognition when background 

noise corrupts audio, for example, or even when the audio is 

inaccessible [11,12]. In the research context, this area is now 

known by different names including lip reading, speech 

reading and visual speech recognition [13]. 

Traditionally, visual speech recognition systems consist of 

two stages: feature extraction from the mouth region of 

interest (ROI) and classification. The feature extraction step is 

the process through which useful information is derived from 

an original signal; this information is relevant for the task and 

has a more compact representation, which is suitable for use 

in a classifier. This step simply involves selection, during 

which elements of the original data vector are kept, or a 

transform, which projects original data in a different, lower-

dimensional space. 

Image processing to extract visual information from the lips 

typically comprises three stages: face detection, ROI location, 

and lip segmentation [12]. Lip segmentation poses challenges 

to image processing. The first inherent challenge of lip 

segmentation is variability in the speaker's profile including 

skin color, lip color, lip shape, facial hair, and makeup. 

Second, the ROI contents are not static, and visibility of the 

teeth, tongue, and oral cavity changes as the lips move to form 

facial expressions and speech sounds. Finally, non-ideal 

environmental conditions such as lighting, speaker 

orientation, and background create a third layer of complexity. 

For the classification step, audio and video information can be 

integrated by feature fusion or by decision fusion [14]. The 

feature fusion technique combines information at feature level 

and submits a single combined feature vector to a single 

classifier. This is generally simple to implement and allows 

correlation between audio and video to be modeled. The 

simplest feature fusion method corresponds to concatenation 

of the audio and video feature vectors. Unfortunately, this 

technique cannot explicitly model the relative reliability of 

each feature stream. Feature stream may vary significantly 

even within the duration of an utterance due to constant or 

instantaneous background noise or channel degradations. 

In contrast, decision fusion systems assume independence 

between the two streams and combine the results of separate 

classifiers for audio and video, offering a mechanism that can 

model the reliabilities of each feature stream. These systems 

usually combine parallel classifier architecture. Capturing the 

reliabilities of the audio and video feature streams is possible 

through application of weights during the fusion process. 

Weights may be globally set to fixed values calculated by 

testing the system to find which weights produce optimal 

speech recognition [15, 16]. 

Because the system aims to present video information as 

complement to audio recognition, was proposed a decision 

fusion system to assist non-articulatory sound recognition in a 

real home environment. 

2.2 Mel-Frequency Cepstrum Coefficients 
Sound waves are mechanical waves that propagate through 

continuous media, including air and water. Sound waves can 

interact with thin surfaces and membranes, such as 

membranes in general purpose microphones, to produce local 

oscillations in a material. Oscillation amplitudes along time 

are converted to numbers, whereas the time-ordered sequence 

these amplitudes form generates the audio signal $\psi(t)$. For 

human speech, the corresponding audio signal may lack 

uniform or simple oscillatory patterns, which demands 

additional audio analysis techniques. Speech recognition 

shares deep ties with spectral analysis of sound waves in that 

sound waves are decomposed into several simpler waves with 

characteristic lengths and oscillation frequency. The most 

common way to decompose a given audio signal ψ(t) is to 

employ Fourier transform [17]: 

       
 

   
                 

where   (ν) are complex valued coefficients that correspond 

to monochromatic planar waves with frequency ν. The Fourier 

transform is an invertible linear transform, which means that 

the original signal can be transformed and recovered. The 

audio signal spectrogram P(ν) complements the Fourier 

decomposition by informing each frequency contribution to 

the signal. For the Discrete Fourier Transform, 

     
        

          
  

which plays the role of a likelihood estimator for the 

frequency ν. For real valued signals, contributions from 

positive and negative frequencies mirror each other, so 

negative frequencies are usually discarded. Figure 1 

exemplifies two spectrograms: one derived from harmonic 

(1) 

(2) 
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signal and another derived from one non-articulatory sound 

(kiss). For simpler signals, the spectrogram provides enough 

information. As sound complexity increases, as in the case of 

sounds produced by human speech, the number of modes 

available in a given signal also increases. Class intervals, or 

bins, circumvent this issue by breaking the spectrogram down 

into fewer frequency groups. The selection of class intervals 

depends on which frequency domain region or behavior one 

intends to highlight. The human auditory system perceives 

relative changes better than absolute changes, which suggests 

a logarithmic scale transformation for frequencies. The Mel 

scale satisfies this requirement νm = 2595 log10(1 +ν/700). 

Accordingly, uniform Mel-frequency domain division 

provides the desired class intervals. Finally, the Mel-

frequency Cepstrum (MFC) summarizes P(νm) within a given 

class interval, and its numerical value follows from centroid 

or another average evaluation.  

The MFC coefficients (MFCC) are the main features for 

speech recognition and classification [18]. They are evaluated 

by taking the log of MFCs, followed by the Cosine-DFT. 

Figure 1. Signals and Spectrograms. (a) The signal ψ(t) = 

sin(2πt) + cos(40πt), which emerges from the combination 

of two frequencies ν = 1 and 20 Hz, respectively, and (b) 

the corresponding spectrogram (frequency centered). (c) 

A non-articulatory sound (kiss) audio signal and (d) the 

corresponding spectrogram. 

2.3 Mel-Frequency Cepstrum Coefficients 
For speech recognition, two techniques have been widely 

discussed in the literature: (i) Support Vector Machine and (ii) 

Neural Networks. Support Vector Machines (SVMs) represent 

a group of theoretically superior machine learning algorithms 

[19]. SVMs have proven to be much more effective than other 

conventional nonparametric classifiers (e.g., RBF neural 

networks, nearest neighbor (NN), nearest center (NC), and the 

NN classifier) in terms of classification accuracy, 

computational time, and stability to parameter settings [20]. 

Other works have shown that SVMs also are more effective 

than the traditional pattern recognition approaches based on 

the combination of a feature selection procedure with a 

conventional classifier.  

A Neural Network (NN) is an information processing 

paradigm that is inspired by the way biological nervous 

systems, such as a brain and its information processing. The 

novelty of this paradigm is the structure of the information 

processing system, that is composed of a large number of 

highly interconnected processing elements (neurons) working 

in unison to solve specific problems. A NN is configured for a 

particular application, like pattern recognition or data 

classification, through a learning process. The following NN 

can be assigned these type of applications: (i) Convolutional 

Neural Network; and (ii) Recurrent Neural Network. This 

proposed work exploited these both types of NN. 

In NN, Convolutional Neural Networks (CNNs) is one of the 

main categories to do images recognition and images 

classifications. Technically, deep learning CNN models are 

used to train and to test a series of convolving kernels filters 

each input image. CNNs utilize layers with convolving filters 

that are applied to local features [21]. In addition to 

classification and patterns recognition, a CNN can be used as 

a features extractor, since it is a particular skill in this kind of 

NN. A Recurrent Neural Networks (RNNs) is a NN model 

that involves directed cycles in memory for modeling time 

series such as speech, text, financial data, audio, video, etc. 

RNNs maps temporal dynamics through mapping input 

vectors to hidden states and hidden states to outputs that allow 

connections between hidden units associated with a time 

delay. This mechanism enables RNNs that can retain 

information of the past time, making it discover temporal 

correlations in events that are far away from each other in the 

data [22]. 

Although NN has been applied in different contexts 

successfully, it is not very efficient in problems with temporal 

information such as speech recognition and video 

classification. This is because traditional neural networks have 

a one-way flow of information and cannot store long-term 

information. Unlike traditional NNs, RNNs have cycles 

between their units. In other words, units can have 

connections to units of previous layers or from the same layer. 

This allows it to demonstrate temporal dynamic behavior for a 

time sequence.  

It's important to highlight a type of RNN called Long Short-

Term Memory networks (LSTM). LSTM was proposed by 

Hochreiter and Schmidhuber (1997) and they are able of 

learning long-term events. In general, RNNs have a structure 

in form of a chain of repeating modules of a neural network. 

The hidden state of LSTM units works with nonlinear 

mechanisms enabling the state to propagate without any 

modification, be updated, or be reset, using simple learned 

gating functions [23].  LSTMs have recently been 

demonstrated to be capable of large-scale learning of speech 

recognition [24] and language translation models [25, 26]. 

The proposed approach also used LSTM. 

3. AUDIO VIDEO SPEECH RECOGNI-

TION SYSTEM 
This paper presents an Audio-VIdeo Speech recognition 

system (AVIS) based on machine learning and neural 

networks for non-articulatory sound recognition. AVIS will be 

part of a mobile application that intends to assist children with 

Down Syndrome during their training for the production of 

speech. In the SR area, recognizing speech distorted by noises 

or unwanted sounds coming from (i) the environment, (ii) a 

speaker with speech disturbance such as articulation 

problems, or (iii) non-articulatory sounds recognized as noises 

are admittedly difficult. The visual features can provide 

information that can be aggregated to corrupted or distorted 

speech.  

The most common approaches to audio-visual recognition 

comprise a single system that performs audio and video 

processing simultaneously. Here, the AVIS system was 

poposed, which separates processing into an audio module 

and a visual module. The idea is to make speech recognition 
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more effective for noisy environments and even more feasible 

for low-performance hardware (such as mobile devices, 

Arduino, Raspberry, etc.) when just the audio module can be 

activated.  

AVIS consists of three steps: (i) Signal Separation; (ii) 

Feature Extraction; and (iii) Speech Recognition. Figure 2 

provides an overview of this system. The first step, “Signal 

Separation”, separates audio and video signals from video 

files. Features are individually extracted for each type of 

signal (see “Audio Signal” and “Visual Signal” in Figure 2).  

 

Figure 2. Audio and VIdeo recognition System (AVIS) for 

Recognition of nonarticulatory Sounds 

The first step, “Signal Separation", separates audio and video 

signals from video files. Features are individually extracted 

for each type of signal (see “Audio Signal" and “Visual 

Signal" in Figure 2). For “Audio Feature Extraction”, AVIS 

applies the methods MFCC and Laplace Transform. The 

“Visual Feature Extraction” is recognized by using CNN and 

the features sequence is sent to a separate LSTM.  

In the third step, “Audio Speech Recognition” and “Visual 

Speech Recognition” verify whether SVM and LSTM from a 

previously trained audio and video datasets can correctly 

recognized a non-articulatory sound (e.g kiss, blowing, etc).  

Finally, the recognition rate of a sound is obtained for each 

module (audio and visual). The “Audio Feature Extraction” 

and the “Visual Feature Extraction” steps are detailed in the 

following sections. 

3.1 Audio Feature Extraction 
The audio signal extracted from the video file is the input data 

for the feature extraction process. For this process, the 

methods MFCC and Laplace transform were applied. The 

method MFCCs exhibits high degree of linear separability for 

non-articulatory sounds. This observation adds up to well-

known evidence suggesting that MFCCs is a viable method to 

feature audio signals. Therefore, for a given audio signal ψ(t), 

the proposed approach extracts MFCCs corresponding to n = 

13 in the Mel-frequency spectra, processes it, and assigns it to 

a feature factor with N = 14 entries. The last entry of the 

feature vector is set by Laplace transform of the signal and 

includes a feature that improves the separation of non-

articulatory sounds.  

Section 2 details the guidelines for the general procedure that 

was used to extract MFCCs. However, during evaluation of 

spectrogram P(ν), was considered the frequency resolution ∆ν 

in accordance to the uncertainty principle ∆t∆ν ∝ (4π) −2. In 

short, the principle asserts that achieving a fixed resolution ∆ν 

for arbitrary signal duration ∆t is impossible. Instead, was 

subdivided the signal ψ(t) into smaller frames with fixed 

duration ∆t (see Figure 3(a)), and to conduct Fourier analysis 

with fixed resolution ∆ν = 1/(44100 × 512) Hz. 

 

Figure 3. Signal division. (a) Frames and (b) Laplace 

transform. 

After signal partitioning into shorter frames, each frame 

produced a sequence of MFCCs. Let   (τ) be the  -th MFC 

coefficient corresponding to the τ-th frame. Because signals 

with different time duration would also produce collections of 

MFCCs with different sizes, they had to be processed further. 

AVIS intends to recognize nonarticulatory sounds, which are 

naturally short-lived, so was considered time-averaged 

MFCCs: 

      
 

 
         

   

   

 

where M > 0 is the total number of frames, and   = 0, 1, . . . , 

n − 1. MFCCs were extracted by using python-speech-

features package with the following default settings: frame 

duration length ∆t = 20ms; time step between two frames = 10 

ms; and 13 MFCCs extraction frames. 

Signal processing employs several linear transformations to 

deal with the various signals. Fourier analysis features among 

the most popular transformation because it is useful during 

oscillating signal analysis. Laplace transform is another 

popular linear transformation that exploits the behavior of 

signal amplitude growth and decay. ANA applies Laplace 

transform to the signal squared amplitudes (always positive). 

                           
 

 

 

to classify signals depending on how they evolve along time. 

We took the logarithm of Laplace transform to produce more 

pronounced signal separation. Figure 3(b) depicts the log of 

Laplace transform for various parameters     for two non-

articulatory sounds, in which the class separation increases for 

increasing   values. To avoid introduction of spurious 

correlations, we included           with parameter      as 

the 14-th entry of the feature vector. 

3.2 Visual Feature Extraction 
The features extraction was performed by CNN and passing 

the features sequence to a separate LSTM.  The goal of this 

stage is to extract features from image, for this, is necessary to 

perform a three step process: (i) conversion of videos into 

image; (ii) execution of images in a CNN; (iii) creation of a 

feature vectors.  

In the first and second steps, every video was be subsampled 

down to 30 frames and, we run each frame from every video 

through Inception2, saving the output in the final pool layer of 

the CNN.  

In the last step, we created feature vectors. The sampled thirty 

                                                           
2
 https://tfhub.dev/google/imagenet/inceptionv3/ 

(3) 

(4) 
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frames of each video in a single 2,048-d vector was defined, 

and saved it to disk. Next, the vector was ready to train 

different RNN models without needing to pass images 

through the CNN every time continuously. Therefore, we read 

the same sample or train a new network architecture. 

3.3 Audio-Visual Speech Recognition 
In the audio module, we performed the automatic speech 

recognition using SVM. This module comprises the training 

and prediction phases. In both phases, AVIS uses the well-

documented python package scikit-learn [27]. 

In the training phase, SVM fit with linear kernel uses datasets 

consisting of feature vectors from segmented audio and video 

signals recorded by speech for participants and control 

patternf. Linear kernels appropriateness depends mostly on 

the feature linear separability. After the fit, the dataset is 

partitioned into distinct classes.   

During the prediction phase, the SVM predicts the classes of 

feature vectors derived from target audio and video signals. 

The correct classification of each target audio and video 

signal are known a priori, which allows the evaluation of the 

accuracy corresponding to the SVM predictions.  

For the visual speech recognition, the LSTMs to train and 

classify the samples was applied. Furthermore, for the second 

and third steps (video feature extraction and visual speech 

recognition) the tensorflow library3 was used. In this step, a 

single, 4096-wide LSTM layer was used, followed by a 1024 

dense layer, with some dropout in between. Dropout is a 

method for addressing over-fitting problems. The idea is to 

randomly drop units together with their connections from the 

neural network during training. This can avoid units from co-

adapting too much. 

 In the training phase, LSTM create the model into three 

distinct classes (blow, tongue popping and kiss) and the 

output of prediction is a probability of a new sample belong to 

a specific class. 

4. EXPERIMENTAL STUDY 
The experiments intended to verify whether video can 

effectively be used as complementary information (signal or 

feature) to audio signals to recognize non-articulatory sounds. 

The methodology used to conduct this experiment is based on 

Wohlin [28].  

4.1 Research Design 
To reach the goal of this experiment, the following Research 

Question (RQ) was formulated: 

RQ: How effectively does the video module complement 

information provided by the audio module to support 

recognition of non-articulatory sounds with the aid of 

AVIS? 

To answer this RQ, was investigated whether the AVIS visual 

recognition module can separately improve speech production 

from the audio recognition module.  The 

Goal/Question/Metric (GQM) model adapted from Wohlin 

[28] was used. The GQM model presents the objectives of the 

experiment divided into five parts: 

 Object of study: the AVIS system is the object of study. 

 Purpose: the experiment aims to verify how effectively the 

video module complements information provided by the 

audio module for recognition of nonarticulatory sounds in 

                                                           
3
 https://www.tensorflow.org 

real scenarios. 

 Perspective: this experiment is carried out from the 

researchers’ standpoint. 

 Quality focus: effectiveness of the AVIS system, measured 

by the number of correctly recognized sounds (blow, tongue 

popping, and kiss), is the main effect under investigation. 

 Context: this experiment involves 11 people in one 

controlled and two simulated noisy scenarios. 

4.2 Experiment Design 
This investigative study comprises two different experiments 

     ;    . For both experiments, the audio      and visual 

     speech signal were recorded for three non-articulatory 

sounds (blow, tongue popping and kiss) in three different 

scenarios: (i) a controlled environment i.e. without any noises; 

and (ii) two simulated noisy scenarios evolving rain and TV 

sounds. 

These experiments were conducted with 12 audio-visual 

datasets. Each dataset was related to one non-articulatory 

sound for the three scenarios. Nine datasets were recorded by 

11 participants      ;                , eight male and 

three female, aged from 20 to 45 years. The three other 

datasets were recorded by one person representing our control 

pattern (       

The video data obtained for the participants and control 

pattern were recorded with the smartphone back camera. 

Video recording parameters were the following: Audio 

sample frequency = 8kHz (one sample 16bit.), Video frame 

rate = 30fps, and size of a single video image = 10920 x 1080 

pixels. 

The effectiveness of the audio and video recognition using 

precision (P), Recall (R), and Accuracy (A) metrics were 

evaluated. Precision is the ratio of correctly predicted positive 

observations to the total predicted positive observation. Thus, 

Precision (P) is defined as the number of true positives (TP) 

over the number of true positives plus the number of false 

positives (FP), as can be seen in equation 5.  

   
  

     
 

Recall (R) is the ratio of correctly predicted positive 

observations to the all observations in actual class. Thus, 

Recall (R) is defined as the number of true positives (TP) over 

the number of true positives plus the number of false 

negatives (FN), as can be seen in equation 6. 

   
  

     
 

Accuracy (A) measures how often the classifier takes the 

correct decision, determined as the ratio between the number 

of correctly classified non-articulatory sounds and the total 

number of non-articulatory sounds (see equation 7). 

   
     

           
 

Table 1 lists the activities we used to perform the experiments 

and the descriptions of such activities. 

5. RESULTS AND DISCUSSION 
To address RQ, 12 datasets of segmented non-articulatory 

signals were used: three for controlled scenario, three for tv 

sound scenario, three for rain sound scenario and three for 

control pattern that was used as the baseline. All these 

datasets correspond to the classes tongue popping, blow and 

(5) 

(6) 

(7) 
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kiss. The next sections describe the experimental results. 

5.1 Audio Recognition 
In the first experiment     , only the audio signal was 

analyze. These datasets allowed us to execute the SVM 

training phase and to evaluate the effectiveness of audio 

recognition. Figure 4 depicts the classification accuracy of 

audio signals for each scenario when compared to the control 

pattern. 

First, ninety percent of our control pattern dataset was used 

for training; the remaining 10\% was employed as test set in a 

10-fold cross validation setup. The recognition accuracy for 

this dataset was about 97\%, represented by the first bar in 

Figure 4. In this case, accuracy was expected to be high 

because the aim of cross-validation is to evaluate the 

generalization capacity of the model. 

Table 1. Activities description performed in experiments conduction

Activities  Description 

Video recording 

Video and audio were recorded together. For both experiments            ,  the non-articulatory 

sound (blow, tongue popping and kiss) was recorded by by    to     ,five times in each scenario 

(controlled, tv sound and rain sound) totaling 495 videos and 30 times by one person       totaling 

90 videos. 

Audio and video 

segmentation 

Each video was segmented because (i) it was necessary to capture a unique temporal dynamics 

within speech and (ii) the feature extraction step was based on each framed speech segment. 

Signals Separation 
The audio      and video      signals were analyzed separately and the signals produced by 

participants were recorded with the signals of the control pattern dataset     . 

Feature extraction 

For the audio module, the methods MFCC and Laplace transform were applied to extract 14 sound 

features. For the video module, the tensorflow library and the CNN were used with 2,048-d vector 

of features, which passed the features sequence to a separate LSTM. 

Audio and video 

recognition 

SVM and LSTM were employed to recognize sounds and video signals, respectively. It was 

possible to assess precision, recall, accuracy of both modules. In addition, the accuracy of each 

setting was evaluated for experiment     , and the frames setting with the highest accuracy were 

selected. 

Analysis 
An analysis was conducted in order to verify whether visual information could improve audio 

recognition of non-articulatory sounds in noisy environments. 

 

 

Figure 4. The accuracy of audio signals reference to non-

articulatory sounds produced by participants in each 

scenario compared to the control pattern. 

The accuracy of audio recognition obtained by using our 

proposed model was 75%, 55%, and 38% for the controlled 

scenario, tv sound scenario, and rain sound scenario, 

respectively, as compared to the control pattern. The accuracy 

of each scenario was the mean of all classes (tongue popping, 

blow and kiss).  

The data in Figure 4 revealed that the rain sound was the 

worst scenario for audio recognition by our system because 

similar sounds in terms of spectral density were being 

overlapped. In addition, certain types of sounds; e.g., kisses, 

blowing, water, rain, alarm, etc., have harmonic structures, 

which can also hamper recognition of the target sound. 

Figure 5 presents the precision and recall we achieved when 

we applied AVIS for audio recognition in each scenario. The 

results achieved were less than 60\% precision in the noisy 

scenarios (Figure 5.b and Figure 5.c). For the blow sound in 

Figure 5.c achieved 41\% recall at 38\% precision. In the case 

of the kiss in Figure 5.a achieved 65% recall at 83% precision.  

It was also noticed that, even though achieved reasonable 

recognition rate for the controlled scenario, low variability in 

the baseline could lead the system to false classification. For 

instance, if we consider the blowing sound produced by 

different people, signal may be extremely distinct, i.e, they 

can be shorter, faster, higher, lower, more intense, etc., so that 

the target sound can be interpreted as a different sound. 

However, for non-articulatory sounds (especially for sounds 

with in noisy environments), a baseline with only different 

speakers only may not be enough to achieve high recognition 

- features derived from other sources of information, such as 

facial movements may also be necessary. 

5.2 Video Recognition 
In the second experiment     , only the video signal was 

analyzed. These datasets allowed us to execute the training 

and classifying phases by using LSTM and to evaluate the 

video recognition effectiveness.  

First, thirty frames of each video were used for training, and 

the whole dataset (50 videos) was employed as test set in a 

10-fold cross validation setup. After cross-validation, tests 
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were performed with different samples included in the 

training base. Each test dataset video of the 11 participants 

was classified using the trained model.  

       

Figure 5. Precision and recall for non-articulatory sounds according to each scenario using SVM. (a) Data regarding the 

controlled scenario and (b) Data regarding the tv sound scenario. (c) Data regarding the rain sound scenario. 

Figure 6 presents the accuracy regarding the correctness of 

non-articulatory movements of video signals in 20 epochs for 

cross-validation. Figure 6 shows the accuracy of LSTM hits in 

20 epochs referring to the three non-articulatory movements 

for cross-validation. For each epoch, a gradual increase in 

accuracy was observed, reaching 100\% in epoch 20. It is 

natural to expect that: in the cross-validation, it achieves a 

high score, since the test is performed using a fold of the 

training dataset.  

 

Figure 6. Accuracy of LSTM regarding the correctness of 

non-articulatory movements of video signals in 20 epoch  

Figure 7 illustrates the prediction error of video signals in 20 

epochs for cross-validation. Figure 7 is a complement of 

Figure 6, because the smaller the error, the better the 

generalization capacity of the model achieved. 

 

Figure 7. The prediction error of LSTM regarding video 

signals in 20 epochs for crossvalidation. 

In Figure 8 each bar represents the average of hits of non-

articulatory sounds produced by each participant of the trained 

model. 

 

Figure 8. The accuracy of video signals reference to each non-articulatory sounds produced by participants. 
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Figure 8 reveals that the blowing video recognition was the 

worse, because this movement is similar to the kiss movement 

in terms of spectral density. For the blow sound, the median 

of accuracy achieved 51\%, tongue popping 66\% and kiss 

81\%. Therefore, the recognition of the kiss video is more 

efficient than blow and tongue popping video, since its 

accuracy increase in 29\% and 14\%, respectively. 

Based on outcomes, the hypothesis was confirmed: video 

information can complement audio recognition and assist 

non-articulatory sound recognition in a real home 

environment. 

6. RELATED WORK 
The speech produced by individuals with DS is limited due to 

their anatomical and motor specificities. Although some of 

these limitations of DS cannot be overcome, early speech 

training can improve the quality with which individuals with 

DS communicate. In this context, some studies have examined 

speech production by focusing on articulatory sounds made by 

children with DS [29-31]. 

In [29] is analyzed a system to assess and practice sounds 

aiming to improve the language ability of children with DS. 

This system uses the language ability of children with DS as 

input to generate graphs and to provide each child with 

suitable training. Moreover, the system acts as a DS 

information provider and a child data manager for parents and 

trainers. 

In [30] was analyzed whether the addition of vision to 

audition can improve the intelligibility of speech produced by 

individuals with DS. Felix et al. [31] presented a computer-

assisted learning tool for children with DS that uses mobile 

computing, multimedia design, and computer speech 

recognition to improve reading and writing abilities in 

Spanish through speech and drawing activities like letter 

identification, reading, spelling and handwriting. 

Some efforts have been directed toward improving the speech 

produced by children with DS. However, the most of these 

efforts focus on systems for articulatory sounds that address 

phoneme and word production. These sounds are easier to 

recognize than non-articulatory sounds. Therefore, systems to 

deal with non-articulatory sound recognition are fundamental 

because they must serve as preparatory activities for speech 

production by children with speech disorder, justifying the 

importance of our study. 

7. FINAL REMARKS 
An Audio-VIdeo Speech recognition system (AVIS) based on 

machine learning and neural networks for non-articulatory 

sound recognition was created and experimented. AVIS 

intends to be part of a mobile application that assists children 

with Down Syndrome during their training for the production 

of speech.  

Two experiments were conducted to assess the 

complementarity in audio and video recognition systems. We 

exploited MFCC and Laplace transform for audio recognition 

and, CNN and LSTM for video recognition. As expected, the 

controlled scenario was better than TV sound and Rain sound. 

Furthermore, the kiss precision was better than the others with 

83\%. Moreover, the results indicated that video features 

effectively aid recognition of non-articulatory sounds 

the. So, video information can complement audio recognition 

of non-articulatory sounds. 

In the video analysis, we employed a LSTM for classification 

and a CNN for features extraction which is considered state-

of-the-art and can be used with other classification techniques 

as well. Our visual feature extraction mechanism based on 

CNN and RNN effectively predicted the kisses and it was 

reasonably for blow sound and tongue popping samples. As a 

result, we can observe that a method for visual speech 

recognition totally depends on a large dataset for training, 

mainly if it works with no conventional sounds and face 

movements. 

As future work, will be planned: (i) a new experiment with a 

protocol to collect the sounds and a larger number of 

participants with DS; (ii) an investigation of new non-

articulatory sounds to be recognized in the same classification 

space; and (iii) the development of a mobile speech 

recognition prototype for children with DS. 
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