
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

8

Autonomous Decision Making for a Vehicle

Isha
Student

National Institute of Technology
Kurukshetra, India

Mamtesh
Assistant Professor

National Institute of Technology
Kurukshetra, India

ABSTRACT

It includes Deep Learning techniques using convolutional

neural networks for getting the predictions and probabilities

for the best decision that has to be made while driving a car

like lane detection, traffic signals recognition and their

localization and simultaneously developing a steering model

to help to take decision regarding steering wheel, throttle thus

stimulate a car like humans. In this paper, lane detection is the

main concern is to move the steering in appropriate direction

with proper angle and the problem is solved using

convolutional neural networks via creating a model which

then is trained over some collected training data of steering

decisions on a track in a simulated environment.

Keywords
Autonomous Car, Autonomous Vehicle, Driverless Cars,

Deep Learning, Convolutional Neural Network

1. INTRODUCTION
 In the world of improving technology day by day self driving

cars are one of the booming side of the technology

empowerment while during driving it is must that the driver

must pay his/her complete attention to minimize the risk of

accidents which is for sure a tiring task and since computers

can make computations, calculations and processing faster

than a normal human thus it can surely serve benefit in

making decisions in some day to day activities such as

driving. It can also help in optimizing fuel consumption by

calculating shorter paths and being in disciplined manner

while driving. This paper is associated with Deep Learning

and convolutional neural networks[11][17] to create an

autonomous decision maker for vehicles which can do all the

necessary calculations and computations and processing such

as being in right lane, identify traffic symbols and the main

thing which is steering control help a vehicle to drive as like a

human is driving it such a methodology have helped us to

greatly improve the visual traffic symbol recognition, object

localization and detection and simultaneously other

corresponding domains including self driving vehicles[1] etc.

There are mainly two modeling strategies. Earlier traditional

system does a lot of computations in order to find out what

would be the steering predicted angle and real time image is

captured from the cameras that are being fitted all over the car

to get the required complete overview of car surroundings.

But in end to end systems, we only need to take the data in

front of vehicle and from it give out a steering angle.

Although using end to end models for real self driving car

requires a lot of labeled data which is still not present

according to Andrew Ng [3][4]. But their performance can be

seen on demo systems. In this paper, implementation is

divided into 3 aspects:

 Lane detection part which concerns with detecting the

lanes on the roads and highways which becomes the

foremost part of the implementation via which one can

come up with a decision to be in right lane while driving

always. Also there is a challenge with the curvy roads

which can be tackled bird eye view and sliding window

approach to get the resulted line describing the interested

lane.

 Traffic sign recognition- The objective of this module is

to recognize traffic signs so that rules should be followed

by autonomous car.

 Predict the angles at which the car needs to be moved

similar to what a human would do.

The remaining sections of this paper are as follows. Section 2

discusses about the literature survey of autonomous cars.

Section 3, 4, 5 about implementation. Section 6 represents the

result and observations. Finally section 7 discusses about the

limitations of the current work, and covers the future

directions of this work.

2. BACKGROUND

2.1 Convolution Neural Network
Convolutional neural network is also a category of neural

network [1] with some added layers. These are vital in order

to process an image including in it are Convolutional layer,

non linearity, pooling and fully connected layer[3][13].

Fig 2.1: Convolutional Network [3]

Convolving Step

It uses filters in order to take out features from the image part.

Filters are matrix of dimension axb. And these filters are

moved across the image in order to find the parts where there

is possibility of a feature to be present[16].

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

9

In above figure, Image is converted in set of pixels and on it

filter is moved which is given by:

1 0 1

0 1 0

1 0 1

The filter is of dimension 3x3.Above given image sample is

of dimension 5x5 and the output will be of dimension (n-f+1).

* (n-f+1) . where n is size of image and f is size of filter ,i.e.

(5-3+1) x (5-3+1) which is equal to 3x3. Here the value of one

cell of convolved feature is defined by element wise

multiplying the filter with the image on which it is currently

present and adding those numbers together.

Padding can also be useful in order to put off the removal of

important features from border after adding a padding of p,

output will be of dimension (n-f+2*p+1) * (n-f+2*p+1).

Stride can also be included to this which defines step width

((n+2*p-f)/s)+1 * ((n+2*p-f)/s)+1

Fig 2.2: Convolution over Volume

Non Linearity
If non linearity is not functional, the output will be reliant

upon the input in a linear form and thus it hysterics the data

almost linearly and it is of no use in case if we use large

amount of layers.

Pooling Layer

It reduces size of output layer height and width, as it just

extracts features which is required from a particular region

ignoring other. Pooling Layer[16][15] can be of 2 types: Max

and average Pooling. In max pooling, there is a window of

some resolute size and it is moved over the output of previous

layer and this window finds out the maximum value inside the

existing window. In average pooling, we take the average of

the current window. There is no trainable parameter in this

window.

Flattening the Layers

After finishing the previous steps, we supposed to have a

pooled feature map by now. In this step convert the matrix

into 1-D array.

Fully Connected Layer

This is the final layer responsible for decision making and

produces output just similar to neural layers. The trainable

parameters between these layers are given by Nneurons in

current layer * Nneurons in next layer. Output can be softmax

layer in case of classification problem statement or regression

output.

3. ADVACNE LANE DETECTION
The one of the most required activity in driving a car is to be

in right lane to avoid any mishappening, thus one of the main

concerns becomes to detect the lane so that the automated car

can run in a prescribed area and avoid accidents. This

approach is used to minimize the errors as much as possible.

The detailed procedure of identifying lane is described as

below.

The following picture describes with what we are going to

start

Fig 3.1: Picture of Unprocessed Image

Camera Calibration: In the real world when a picture is

captured in camera there comes distortion due to conversion

of 3D plane in 2D plane. The algorithm where image is

converted from 3d to 2d, suffers dilemma of winding at edges.

Therefore, first step in detecting lanes become calibration of

camera[5][6]. This progression involves calculating point on

image and point on real object in 3d plane object of

predefined form of a chess board, the reason it uses a chess

board is that a chess board has a preset shape and we can

easily judge when it is distorted. Around 20 pictures are

picked from a chess board which is taken from unusual

angles.

Fig 3.2: Images to Correct Deformation

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

10

Fig 3.3: Finding Points on Image

Pseudo code for camera calibration is

def find_corners(array_of_chessboard_images)

start

 for every image of chessboard used for calibration

objectpoints=create a grid of points like in the 3d space

(0,0,0),(0,1,0)…(8,5,0) where z always zero as 2d

imagepoints=find_Chessboard_Corner(image,(points_in

_x_dir,points_in_y_dir))

save imagepoints and objectpoints in the list

 return list

end

Distortion Removal: The next step is distortion removal.

Since due to tilting and various angles at which picture is

taken distortion is introduced. Using points calculated in

earlier step, calibration is achieved. It results in some matrix

and vectors which helps to map one type of points on actual

object to points on an image for every further image that we

wish to correct.

function

undistort_image(image,imagepoints,objectpoints)

 #caliberate_Camera using imagepoints and objectpoints

#camera matrix that is used to transform 3d image to 2d

image

#distortion vector that consist of 5 vectors that is used to

correct the distortion in an image

vectors,matrix=caliberate_Camera(imagepoints,objectpoi

nts,image_shape)

#undistort image using camera matrix and distortion

vector

return undistort (image,mtx,dist)

Fig 3.4: Distortion Removal Over a Sample Image

Perspective Transform: Since camera is recording from

front, the lanes appear to converge at far distance due to

which curvature recognition becomes difficult.. Actual lanes

are parallel but due to this distance and shape size

proportionality they appear to meet at far distance which

created difficulties for identifying the lane and its curvature.

Therefore there is needed to look it from some different

perspective where they still appear parallel. The best

Perspective is to stare from top which is recognized as bird

eye view.

Fig 3.5: Applying Perspective Transform

Pseudo Code:

function transform_perspective(image,S_points,

D_points)

start

#here source_points and destination_points are point on a

real and wraped image respectively

#source_points and destination_points representing a

polygon

matrix=find_matrix_for_transformation(source_points,de

stination_points)

bird_eye_view=apply_perspective_on_image(image,mat

rix)

return bird_eye_view

end

Visualizing Image in Various Color Space – COLOR

THRESHOLDING: Visualizing image in different color

spaces helps us to select the channel which best distinguish

lane lines, where Thresholding is important parameter for

retrieving the information from some sort of data such as

important information from an image or its background.

Image is converted to various spaces like in rgb, hls, grayscale

and required minimum and maximum threshold for intensity

is applied to create a mask and HLS works best for our case

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

11

Fig 3.6: Poor Separation of Lane Lines in Gray Scale

Fig 3.7: Thresholding on Red Channel

Fig 3.8: Best Detection in Saturation Channel of HLS

Pseudo Code:

Gradient Thresholding: For images with poor and non-

uniform illumination, gradient thresholding is required to

separate the objects of attention from the background.

Now to find sudden changes in the input frame which is edges

Sobel transform is used[8]. Here combination of x, y, xy and

directional Sobel is used. Directly canny edge is not used

because Sobel gives us flexibility to find edges with

directionality and intensity constraint which removes

unwanted edges and give a more specific filtering.

Pseudo Code:

Fig 3.9: Experimenting Various Threshold and Kernel

Parameters for Sobel x

Fig 3.10: Directional Thresholding Parameters

Experimentation

Combining Color and Gradient Thresholding: The Binary

pictures generated from these thresh hold are combined

together to form one output.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

12

Pseudo Code:

Fig 3.11: After Applying Color and Gradient

Thresholding on Warped Image

Drawing histogram: Histogram of perspective image is

drawn by summing pixels of y direction and peaks of

histogram shows the x positions where lane lines are present.

Because the intensities at that position will be maximum.

Pseudo Code:

function find_histogram(image)

/* function to create histogram based on intensities in y

direction*/

Cropped=image[(height//2):,:]

#crop image and get bottom half image

hist=calculate sum on vertical axis i.e axis=0 with sum

function return hist

Fig 3.12: Identification of Lanes Using Histogram

Sliding Window: X position from drawing histogram gives

starting position for applying sliding window approach. This

approach helps to find white points which are present under

the sliding window. The output of this step is points under

sliding window which is likely to be a part of lane line

Fig 3.13: Application of Sliding Window Approach

Fitting Polynomial: After getting the points of lanes from

sliding window approach a 2nd degree polynomial is fitted to

coordinates of points founded which will give a clear line of

lane identified after the processing the image which the major

goal of the lane detection. The complete procedure is done

once only because lines mostly remain same and previous

curve can give us wide information about new curve

Pseudo code:

function lane_fit(image)

start

hist=find_histogram(image)

left_start,right_start=find_peaks(hist)

set parameters for sliding window

non_zero=find nonzero points

if initial_info_present then

left_fit=A*(nonzero_y)^2+B*nonzero_y+C

left_lane_inds=inds of non-zero points present within a

margin from left_fit

right_fit=A’*(nonzero_y)^2+B’*nonzero_y+C’

right_lane_inds=inds of non-zero points present within a

margin from right_fit

percentage_of_points_inside_sliding_window=((sum(left

_lane_inds)+sum(right_lane_inds)) //len(nonzero)

if percentage_of_points_inside_sliding_window<req_per

or no previous information then

for w in range 0 to(no_of_total_windows-1)

calculate dimensions of current window

sliding_left=save inds from nonzero which is present

under sliding window moving on left_lane

sliding_right=save inds from nonzero which is present

under sliding window moving on right_lane

append these points to the left_lane_inds and

right_lane_inds respectively

 if len(sliding_left)>min_pixels:

#determiningstart for next window to accommodate

curving of lanes

left_lane_start=mean of dimensions of points under

left_lane

if len(sliding_right)>min_pixels:

right_lane_start=mean of dimensions of points under

right_lane

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

13

#fit_2_degree curve on left lane with x axis as y_left and

y axis as x_left

left_fit=polyfit(y_left,x_left,2)

right_fit=polyfit(y_right,x_right,2)

#save information of curve and nonzero points and

dimensions of sliding window in left_lane_info and

right_lane_info

return left_line_info,right_lane_info

Additional information: Radius of curvature is calculated

which is an essential measure for driving cars. Formula used

is called curvature formula.

R= [1+(y’(x))2]3/2 /|y’’(x)|

Here y(x) is the 2 degree polynomial

y`(x), y``(x) is single derivative and double derivative

respectively

R is radius at point y=point at foot of road

Fig 3.14: Final Output of Detected Lane

Old versus New Approach Output Comparison

This approach is advance version of the approach discussed in

minor project. The output of earlier approach looks like below

Fig 3.15: Minor Project Approach of Lane Detection

Some differences in output are as follows:

 In earlier version, A 1d line of type y=mx+c is fitted and

simple image processing techniques are used to detect

them. But in advance version a quadratic function is used

to fit the lines with some advance algorithms which

seems to be a better fit for the lane lines

 Lane fitting in earlier version does not do that much great

on curves and these lines seem to merge together.

Therefore, In the new approach the lane lines are fitted

from different angle like viewing from above to better

detect lines which appear to meet at end of road but in

actual they are parallel which can be easily viewed If it is

looked from above

 In current version more advance metric calculation can

be done like calculating twist, but this can’t be achieved

in earlier version.

 A better and smooth fit is obtained in current version as

compared to previous versions

4. END-TO-END DECISION MAKING

FOR STEERING ANGLES
Main important part of self driving car is to predict the angles

at which the car needs to be moved similar to what a human

would do.

Data Collection

In this paper, data is collected by actually driving the car in

the training mode given in the software. The collected is

stored in a .csv file having seven columns, first three columns

provides the link for the left, right and center captured images,

a column for steering angle, throttle, brake and speed is

stored. .

Fig 4.1: Image Captured of Different

Views(Center,Left,Right)

Fig 4.2: Training and Testing Software

Data Balancing

 The main aim is to balance the data so that the car is not

trained on a biased data centered to a particular value for

which training data has to collected and be balanced using

data augmentation technique and collecting data from the

training mode at specific places in the laps. Collected training

data at specific places of the track ensures that the collected

data has sufficient data of less occurring places of the track

which in turn also make sure that the data is not revolving

around a particular value. The problem here is that if the

model is trained over data centralized at 0 degree angle or any

other particular value of angle than in autonomous mode it

become difficult for the car to take turn if the data is

centralized over zero degree that is the car will majorly learn

that whatever is the case being a turn, a curve or straight path

it need not to turn the steering much and moreover decide

precisely where to rotate at turns. Same as the case if model is

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

14

trained on the data with lot of left right steering then the car

will not travel straight even on a straight road because it will

learn to rotate the steering as much as it learned from left and

right steers during the training. The problem arises due to this

is that the car would not be able to travel along a straight line

and keep on deflecting from the required lane which can

surely increase the chances of sever accidents and hence this

is why we need to balance the data. There are two techniques

used to balance the data in this project which are discussed as

below.

 Advanced Data Collection Technique: In this

technique the goal is to collect data in a smart way such

that it balances the data according to the requirements.

This is achieved by collecting the data at some particular

locations of the track.

Fig 4.3: Visualization of Data Collected (nearly centralized

to zero degree)

Now to eradicate this problem the strategy made was to

increase the data at which steering is at some angle and to do

so the car at data collection mode of simulator was drove

randomly at left and right angles of steering even on the

straight road as a result of which they get data rid of biasness

around zero degree. Now again as a problem the car started

moving not in a straight even at the straight road. Thus to get

rid of all this data is balanced precisely over a particular

values. Data augmentation is performed which is discussed

later. Thus via this technique data balancing can be achieved

and this is how the dataset is improved to required extent.

 Data Augmentation: End to end system works better

with a lot of data more good therefore in order to reduce

the biased parts in order to prevent the network to always

at 0 angle we add different augmentation[9] techniques.

Here we have used left and right view as also a part of

dataset with same steering angles but with little changes

done to it to encounter their views. Then the image is

flipped using horizontal axis and steering angle is made

negative to accommodate the change which in turn can

create more data for the particular side. After this image

is translated i.e. pixels are moved and depending upon

pixels that is moved steering angle is changed according

to it. Then random brightness is provided to image by

converted image into HSV and changing its V

component. Also random shadow is applied by converted

image into HSL and changing light component of image

and hence a lot of translations, transformation are applied

to balance the data. Data augmentation can be proved a

best technique to generate data at runtime which is used

up and destroyed after usage at the run time as well. This

is effective approach as it can overcome the problem of

memory as well. Using data augmentation drastic

changes to the dataset has been observed which is

favorable to the project as it remove completely the

problem of data centralization over zero value and

proved to be good technique for run time data creation

and memory constraints.

Fig 4.4: Data Balancing via Data Augmentation

5. TRAFFIC SIGNAL DETECTION
Traffic signs are an important part of road understanding and

autonomous and instantaneous decision making. Without

these signs the probabilities of road accidents will escalate. So

to further improve the functionality of our model, we have

introduced this essential and vital feature called Traffic Sign

Detection. In this paper, German traffic signs are used which

basically have 43 classes of various traffic signs viz.

Fig 5.1: Random Samples from Training Set One from

Each Class

The objective of this module is to recognize these traffic sign

and classify them based on classes to which it belongs First

step for this is to preprocess the images using following

methods as given in research paper [12]

Changing the color schema from RGB to YUV. Here we

convert the 3 channeled RGB image into YUV where only Y

channel is used.

Changing image contrast suitably. Some images contrast is

not upto mark, So to enhance this its contrast is enlarged by

means of Histogram Equalization.

Standardizing or Normalizing Image is normalized to

improve optimizer rapidity for convergence. For this, Mean is

subtracted and divided with its standard deviation.

Model Architecture

In starting, A simple model LENET[16]is used [13].There are

2 CNN layers present and maxpooling is used in this with relu

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

15

as non linearity constraint.2 FCC layer is employed having

softmax output of 43.Gradient Descent is used as a method to

reduce loss. This model produces following accuracy

Output accuracy for this is not up to mark. So we moved to

more complex model, changing basic lenet, adding more

deepness and layers to network and also data augmentation is

also employed. A more advance optimizer i.e. adam optimizer

is used to train model. The architecture is shown below

This modified model helps to improve the accuracy up to 98%

Following method is used to augment our images.

Data Augmentation Various data augmentation techniques as

mentioned in that section are applied to get an array of

randomly plotted images. Datasets of images are generally

big. So storing them is a challenging task. Also it solves the

issue of data imbalance across classes. Here data becomes

highly varied which cover general real time conditions. So we

use data augmentation here to generate many augmented

images at runtime for training. Image data generator of keras

is used for this point.

Fig 5.2: Sample Augmented images

6. RESULTS AND OBSERVATIONS

6.1 Steering Decision
The automated car is able to take decision based on the

runtime input frames and able to travel properly on the

required track in the simulated environment. The steering

decision can be viewed on the terminal screen and

collaborated with simulator the car can run.

Fig 6.1: Self Driving in Action

6.2 Lane Detection
The final lane is detected successfully and is bounded in a

green region depicting the required results. The curvature too

is calculated successfully using the formula mentioned in the

description of lane detection module along with the

information of alignment of the car from the center of the

lane. The final output of the lane detection module is shown

as below

Fig 6.2: Output of the Lane Detection

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 17, November 2019

16

6.3 Traffic Sign Classifier
The implemented model is successfully able to classify the

input traffic signs with an accuracy of nearly 98%.

7. CONCLUSION
Traditional systems do not have capability to take decision on

such various parameters and to slow run time capabilities and

memory constraints the challenge become more difficult. The

field of automation does a lot of computations in order to find

out what would be the predicted angle for the steering. In

earlier systems, the direct work is on the real time image that

is being captured from the cameras integrated with the sensors

which are being fitted all over the car to get the complete

overview of the surroundings in which car is traveling. The

information collected from these sensors is applied together

and get fused in order to produce a meaning full output of the

types of object in surrounding of the vehicle and also detect

where the lanes are present so that vehicle can stay on road.

Along with all this it needs to detect and decode the meaning

of the traffic symbols which needs to be followed. Although

using end to end models for real self driving car requires a lot

of labeled data which is still not present this is according to

Andrew Ng. But surely their performance can be measured

and seen on the demo systems. In this paper practice of end to

end self driving car representation taken from nvidia and then

tried to implement a few important components that are useful

in actual systems which includes lane detection and traffic

sign classifier which can be moreover combined with sensors

fuse the information and path planners to detect the actual

angle which satisfies the main aim of the paper.

8. REFERENCES
[1] Brilian Tafjira Nugraha, Shun-Feng Su, Fahmizal et al.,

“Towards Self-driving Car Using Convolutional Neural

Network and Road Lane Detector”, 2nd International

Conference on Automation, Cognitive Science, Optics,

Micro Electro-Mechanical System, and Information

Technology (ICACOMIT), IEEE, 2017.

[2] Mochamad Vicky Ghani Aziz, Ary Setijadi Prihatmanto,

Hilwadi Hindersah et al., “Implementation of Lane

Detection Algorithm for Self-Driving Car on Toll Road

Cipularang using Python Language”, 4th International

Conference on Electric Vehicular Technology (ICEVT),

IEEE, 2017.

[3] LecunY, Bottou L, Bengio Y, et al.”Gradient-based

learning applied to document recognition”, Proceedings

of the IEEE, pp-2278-2324,1998

[4] Davida Del Testa, Daniel Dworakowski, Jiakai Zhang et

at., “End to End for Self Driving Cars”, Nvidia

Corporation Holmdel, NJ 07735, 2016.

[5] Zhang, Zhengyou et al., "Camera calibration with one-

dimensional objects." IEEE Transactions on Pattern

Analysis and Machine Intelligence, pp 892-899, 2004

[6] Zhang, Zhengdong, Yasuyuki Matsushita, and Yi Ma. et

al., “Camera calibration with lens distortion from low-

rank textures." CVPR 2011. IEEE, 2011.

[7] Gao, Wenshuo, et al., "An improved Sobel edge

detection.", IEEE 2010 3rd International Conference on

Computer Science and Information Technology, Vol. 5,

2010.

[8] Vincent, O. Rebecca, and Olusegun Folorunso.et al., "A

descriptive algorithm for sobel image edge detection.",

Proceedings of Informing Science & IT Education

Conference (InSITE). Vol. 40. California: Informing

Science Institute, 2009.

[9] Nan, Liangliang, and Peter Wonka, et al., "Polyfit:

Polygonal surface reconstruction from point clouds.",

Proceedings of the IEEE International Conference on

Computer Vision, 2017.

[10] Wang, Jason, and Luis Perez et al., "The effectiveness of

data augmentation in image classification using deep

learning." Convolutional Neural Networks Vis. Recognit

, 2017.

[11] [Rausch, Viktor et al. "Learning a deep neural net policy

for end-to-end control of autonomous vehicles.”, 2017

American Control Conference (ACC) IEEE, 2017.

[12] Pierre Sermanet and Yann LeCun et al., “Traffic Sign

Recognition with Multi-Scale Convolutional Networks”,

Courant Institute of Mathematical Sciences, New York

University

[13] Neena Aloysius and Geetha M,” A Review on Deep

Convolutional Neural Networks”, International

Conference on Communication and Signal

Processing(IEEE), pp-588-592, 2017

[14] R. C. Gonzalez, "Deep Convolutional Neural Networks",

in IEEE Signal Processing Magazine, vol. 35, no. 6, pp.

79-87, Nov. 2018

[15] S. Albawi, T. A. Mohammed and S. Al-Zawi,

"Understanding of a convolutional neural network," 2017

International Conference on Engineering and

Technology (ICET), Antalya, pp. 1-6, 2017

[16] S. Lu, Z. Lu, S. Aok and L. Graham, "Fruit Classification

Based on Six Layer Convolutional Neural Network,"

2018 IEEE 23rd International Conference on Digital

Signal Processing (DSP), Shanghai, China, pp. 1-5,2018.

[17] Kseniya P. Korshunova,” A Convolutional Fuzzy Neural

Network for Image Classification”, IEEE, 2018

IJCATM : www.ijcaonline.org

