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ABSTRACT 

The paper proposes a method using Shuffled Frog Leaping 

Algorithm (SFLA) to identify the optimal frequencies (center 

frequency and bandwith) of the bandpass filter. Addtion, fast 

kurtogram is also used to find the optimal bandpass filter.  

Simulated results on the data sets of the CWRU Bearing Data 

Center verify the effectiveness of SFLA approach, and show 

that the proposed method outperforms fast kurtogram.  
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1. INTRODUCTION 
Rolling element bearings (REBs) are one of the most 

important elements of rotating machines. Their failures, such 

as outer race faults, inner race faults or rolling element faults, 

are the most frequent reasons for machine breakdown. Hence, 

early detecting these failures will prevent breakdown 

occurring. Vibration signals generated by faults in REBs have 

been widely studied and very powerful diagnostic techniques 

are now available [1].  

Antoni [2] introduced the fast kurtogram which uses the 

kurtosis to determine the optimal bandpass filter. The 

vibration signal is band-pass filtered at various narrow-bands, 

and the kurtosis value determines the extent of impulsiveness 

in the filtered data. The filter specification returning the 

highest kurtosis can be selected as the optimal narrow-band 

for further envelope spectrum analysis.  

SFLA is a swam-based optimization method and has been 

successfully applied to solve various optimization problems 

such as combinatorial optimization problems [3], power-

quality improvement problems [4], application to 0/1 

knapsack problem [5], preemptive project scheduling 

problems with resource vacations based on patterson set [6], 

optimizing water distribution networks [7], economic dispatch 

with valve loading effect [8], designing fuzzy controller [9]. 

In this paper, SFLA is used to find optimal frequencies of the 

bandpass filter for bearing diagnosis. 

The remaining paper is organized as follows: Section 2 

presents review of the fast kurtogram and Shuffled Frog 

Leaping Algorithm. Section 3 introduces the fundamentals of 

the bearing fault detection as well as envelope detection 

technique. Section 4 shows the obtained results and Section 5 

concludes this paper. 

 

2. REVIEW OF FAST KURTOGRAM 

AND SHUFFLED FROG LEAPING 

ALGORITHM 

2.1 Fast kurtogram 
Based on the Wold–Cramer representation, a zero-mean non-

stationary random process      can be decomposed into: 

            
    

    
              (1) 

where        is an orthonormal spectral increment and where 

       is the complex envelope of      at frequency  . The 

spectral kurtosis can then be defined as the fourth-order 

normalised cumulant: 

      
           

            
     (2) 

where                        stands for the temporal 

average of function      and the constant -2 comes from the 

fact that        is complex. [2] 

The kurtogram is a fourth-order spectral analysis tool for 

detecting and characterising non-stationarities in a signal. It 

relies on the assertion that each type of transient is associated 

with an optimal (frequency/frequency resolution) dyad 
       which maximises the kurtosis. [2] 

Computation of the kurtogram for all possible combinations 

of centre frequencies     and bandwidths      is obviously 

costly and not convenient for practical purposes. Antoni [2] 

developed a fast method based on 1/3 binary filter banks to 

calculated the spectral kurtosis. The paving of 1/3 binary filter 

banks is shown in Fig. 1. 

 

Fig. 1: Paving of the original kurtogram proposed by 

Antoni [2] 
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2.2 Shuffled frog leaping algorithm 
The SFLA is a meta-heuristic optimization method that 

mimics the memetic evolution of a group of frogs when 

seeking for the location that has the maximum amount of 

available food.  

The algorithm contains the elements of the local search and 

global information exchange. The SFLA involves a 

population of the possible solutions defined by a set of virtual 

frogs that is partitioned into subsets referred to as 

memeplexes. Within each memeplex, the individual frog 

holds ideas that can be influenced by the ideas of other frogs, 

and the ideas can evolve through a process of the memetic 

evolution. The SFLA performs simultaneously an independent 

local search in each memeplex using a particle swarm 

optimization-like method. To ensure global exploration, after 

a defined number of memeplex evolution steps (i.e. local 

search iterations), the virtual frogs are shuffled and 

reorganized into new memeplexes in a technique similar to 

that used in the shuffled complex evolution algorithm. 

In addition, to provide the opportunity for random generation 

of the improved information, random virtual frogs are 

generated and substituted in the population if the local search 

cannot find better solutions. The local searches and the 

shuffling processes continue until defined convergence 

criteria are satisfied. The flowchart of the SFLA is illustrated 

in Fig 2. 

 

Fig. 2: Flowchart of the SFLA  

The idea updating frog leaping rule which is expressed as: 

               (3) 

                          (4) 

Where Xb and Xw are identified as the frogs with the best and 

the worst fitness, respectively; r is a random number between 

0 and 1; c is a constant chosen in the range between 1 and 2. 

Refer to [8] and [9] for more information. 

3. BEARING FAULT DETECTION 

3.1 Fundamentals 
Fig. 3 shows typical acceleration signals produced by 

localised faults in the various components of a rolling element 

bearing, and the corresponding envelope signals produced by 

amplitude demodulation.[1] 

 

Fig. 3: Typical signals and envelope signals from local 

faults in rolling element bearings [1] 

The defect frequencies of bearing are calculated from 

geometric dimensions of the bearing, number of balls and 

shaft frequency as given as follows: 

Ball Pass Frequency Outer Race: 

     
   

 
   

 

 
        (5) 

Ball Pass Frequency Inner Race: 

      
   

 
   

 

 
        (6) 

Where    is the shaft speed,   is the number of rolling 

elements, and   is the angle of the load from the radial plane. 

3.2 Envelope detection technique 
As shown in [1], the spectrum of the raw signal contains little 

useful information in order to be able to detect bearing faults, 

and over many years the envelope analysis has been 

established as the benchmark method for bearing diagnostics, 

where a signal is bandpass filtered in a high frequency band in 

which the fault impulses are amplified by structural 

resonances. It is then amplitude demodulated to form the 

envelope signal, whose spectrum contains the desired 

diagnostic information.  

Initialize: 

Population size (N) 

Number of memeplexes (m) 

Number of evolution step within 

each memeplex (iter) 

Generate population (P) randomly 

  
  Evaluate the fitness of (P) 
  
  Sort population in descending order 

Partition (P) into m memeplexes 
 
  Local search 

Iterative updating the worst frog 

of each memeplex 

Determine the best solution 
 
  

 

Convergencecriteria satisfied? 

Start 

End 

Shuffle the memeplexes 

Yes 

No 
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3.3 Procedure to detect bearing fault 
Fault identification process using SFLA or fast kurtogram is 

shown in Fig. 4. SFLA is used to maximise amplitude of the 

envelope spectrum: 

                       (7) 

Where,   is the amplitude of the envelope spectrum at defect 

frequency of the bearin;     is the center frequency and    is 

the bandwith of the bandpass filter;      is the defect 

frequency of the bearing (BPFO, BPFI);     is the sample 

frequency. 

In this paper, SFLA is used to maximise  . The central 

frequency and bandwidth of bandpass filter were optimised by 

SFLA so as to achieve highest   at the desired defect 

frequency in envelope spectrum. 

Begin

Calculate defect frequencies

Filter signal by AR

Run SFLA/ Fast kurtogram

Bandpass filter

Hilbert Transform

Calculate analytic signal

Extract envelope signal

FFT Transform

Calculate characteristics

Identify faults

End
 

Fig. 4: Fault identification process 

4. EXPERIMENTAL RESULTS 

4.1 Data sets 
Vibration signals used in this paper were provided by the 

bearing test rig of the CWRU bearing data center. This 

experimental setup is shown in Fig. 5, which consists of a two 

horsepower Reliance Electric motor, a torque 

transducer/encoder, a dynamometer and control electronics. 

Further details can be found on the CWRU Bearing Data 

Center Website. 

 

Fig. 5: The bearing test rig 

Data sets provided by CWRU give many cases that is 

combination of the bearing fault types such as, outer race 

fault, inner race fault, rolling element fault, fault size and 

motor load. In this paper, the following combinations are 

considered as Table 1 and 2. 

Table 1. Outer race fault case 

Case Fault size Motor load Speed 

1 0.18 mm 0 hp 1796 RPM 

2 0.53 mm 3 hp 1719 RPM 

 

Table 2. Inner race fault case 

Case Fault size Motor load Speed 

3 0.18 mm 0 hp 1796 RPM 

4 0.53 mm 3 hp 1727 RPM 

 

Fig. 6 shows vibration signal of case 1. 

 

Fig. 6: Vibration signal of case 1 

The next sections present the results of identifying the fault of 

the bearing. 

4.2 Detect fault using fast kurtogram 

4.2.1 Case 1: fault size 0.18mm, motor load 0hp 
In this case, defect frequencies are given as Table 3 (using 

equations 5, 6). 

Table 3. The defect frequencies of the case 1 

BPFO (Hz) BPFI (Hz) 

107.3 162.1 
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Fig. 7 is the kurtogram of the vibration signal after filtered by 

AR. The region has largest kurtosis (yellow color) is 

resonance region. The parameters of the bandpass filter 

obtained as follows: central frequency is 5625Hz     
       , bandwidth is 750Hz           . Then, this 

filter is used to find envolope signal. 

 

Fig. 7: Kurtogram of vibration signal 

Fig. 8 is the spectrum of the envolope signal. From figure, it 

can be seen that peak of the spectrum at frequency 107.7 Hz. 

This value is very much larger than others. This frequency is 

the defect frequency of the outer race fault. 

 

Fig. 8: Spectrum of the envolope signal 

After spectrum of envelope is extracted, its peaks at defect 

frequencies are checked for how much amplification and Peak 

to Mean Ratio (PMR) has been attained [12]. Results are 

shown in Table 4. 

Table 4. The characteristic values of the case 1 

Defect frequencies (Hz) Amplification PMR 

107.85 4.47 2052.19 

161.50 0.03 106.90 

 

Remark: Based on Table 4, it can be seen that at defect 

frequency 107.85 Hz, amplification and PMR values are very 

much larger than values at other frequencies. That verifies the 

bearing is outer race fault, which is compatible with test data.  

4.2.2 Case 2: fault size 0.53mm, motor load 3hp 
In this case, defect frequencies are given as Table 5. 

Table 5. The defect frequencies of the case 2 

BPFO (Hz) BPFI (Hz) 

102.7 155.15 

 

Fig. 9 is the kurtogram of the vibration signal after filtered by 

AR. The region has largest kurtosis (yellow color) is 

resonance region. The parameters of the bandpass filter 

obtained as follows:           ,           . 

 

Fig. 9: Kurtogram of vibration signal 

 

Fig. 10: Spectrum of the envolope signal 

Amplification and PMR values are shown in Table 6. 

Table 6. The characteristic values of the case 2 

Defect frequencies (Hz) Amplification PMR 

103.00 24.23 385.94 

153.99 0.10 19.73 

 

Remark: At defect frequency 103.00 Hz, amplification and 

PMR values are very much larger than values at other 

frequencies as case 1. 

4.2.3 Case 3: fault size 0.18mm, motor load 0hp 
In this case, defect frequencies are given as Table 7. 

Table 7. The defect frequencies of the case 3 

BPFO (Hz) BPFI (Hz) 

107.3 162.1 

Fig. 11 is the kurtogram of the vibration signal after filtered 

by AR. The region has largest kurtosis (yellow color) is 

resonance region. The parameters of the bandpass filter 

obtained as follows:          ,         . 

 

Fig. 11: Kurtogram of vibration signal 
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Fig. 12: Spectrum of the envolope signal 

Amplification and PMR values are shown in Table 8. 

Table 8. The characteristic values of the case 3 

Defect frequencies (Hz) Amplification PMR 

108.03 0.41 57.02 

161.86 0.68 2728.76 

 

Remark: At defect frequency 161.86 Hz, PMR values are very 

much larger than value at other frequencies. 

4.2.4 Case 4: fault size 0.53mm, motor load 3hp 
In this case, defect frequencies are given as Table 9. 

Table 9. The defect frequencies of the case 4 

BPFO (Hz) BPFI (Hz) 

107.3 162.1 

 

Fig. 13 is the kurtogram of the vibration signal after filtered 

by AR. The region has largest kurtosis (yellow color) is 

resonance region. The parameters of the bandpass filter 

obtained as follows:          ,         . 

 

Fig. 13: Kurtogram of vibration signal 

 

Fig. 14: Spectrum of the envolope signal 

 

Amplification and PMR values are shown in Table 10. 

Table 10. The characteristic values of the case 4 

Defect frequencies (Hz) Amplification PMR 

103.82 4.24 57.09 

155.64 1.56 575.52 

 

Remark: At defect frequency 155.64 Hz, PMR values are very 

much larger than value at other frequencies. 

4.3 Detect fault using SFLA 

4.3.1 Case 1: fault size 0.18mm, motor load 0hp 
In this case, SFLA is used to find parameters of the bandpass 

filter. Results obtained after running SFLA at defect 

frequency of outer race fault are:          ,    
       . 

Fig. 15 is the spectrum of the envelope signal after bandpass 

filtered. 

Amplification and PMR values are shown in Table 11. 

Table 11. The characteristic values of the case 1 

Defect frequencies (Hz) Amplification PMR 

107.85 18.84 738.15 

161.50 0.03 7.75 

 

4.3.2 Case 2: fault size 0.53mm, motor load 3hp 
Similarly, results obtained after running SFLA at defect 

frequency of outer race fault are:           ,    
       . 

Fig. 16 is the spectrum of the envelope signal after bandpass 

filtered. 

Amplification and PMR values are shown in Table 12. 

Table 12. The characteristic values of the case 2 

Defect frequencies (Hz) Amplification PMR 

103.00 32.80 253.49 

153.99 0.13 12.08 

 

4.3.3 Case 3: fault size 0.18mm, motor load 0hp 
Similarly, results obtained after running SFLA at defect 

frequency of outer race fault are:          ,    
       . 

Fig. 17 is the spectrum of the envelope signal after bandpass 

filtered. 

Amplification and PMR values are shown in Table 13. 

Table 13. The characteristic values of the case 3 

Defect frequencies (Hz) Amplification PMR 

107.85 1.34 13.11 

161.86 2.10 593.73 
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4.3.4 Case 4: fault size 0.53mm, motor load 3hp 
Similarly, results obtained after running SFLA at defect 

frequency of outer race fault are:             ,    
       . 

Fig. 18 is the spectrum of the envelope signal after bandpass 

filtered. 

Amplification and PMR values are shown in Table 14. 

Table 14. The characteristic values of the case 4 

Defect frequencies (Hz) Amplification PMR 

103.82 7.77 21.38 

155.64 4.17 314.28 

 

Remark: Similar to fast kurtogram, SFLA gives values of 

amplification and PMR at defect frequency very much larger 

than value at other frequencies. 

4.4 Comparison 
This section compares the obtained results when using fast 

kurtogram and SFLA. 

4.4.1 Outer race fault case 
Fig. x and Fig.x compare the spectrum of the envelope when 

using fast kurtogram and SFLA for two cases 1 and 2. 

 

Fig. 15: Spectrum of the envolope signal in case 1 

 

Fig. 16: Spectrum of the envolope signal in case 2 

4.4.2 Inner race fault case 
Fig. x and Fig.x compare the spectrum of the envelope when 

using fast kurtogram and SFLA for two cases 3 and 4. 

 

Fig. 17: Spectrum of the envolope signal in case 3 

 

Fig. 18: Spectrum of the envolope signal in case 4 

Remark: In all cases, SFLA gives results better than fast 

kurtogram. Amplitude of spectrum of the envelope signal as 

using SFLA has value larger than value as using fast 

kurtogram, especially in cases 1 and 3. This means that, SFLA 

gives fault diagnosis results more exact than fast kurtogram.  

5. CONCLUSION 
In this paper, SFLA is applied to find optimally the 

frequencies of the bandpass filter for bearing diagnosis. The 

simulated results on data sets of Case Western Reserve 

University Bearing Data Center show that SFLA outperforms 

the fast kurtogram about identifying the defect frequencies of 

the bearing. In the future, the author will continue extending 

these results by comparing the SFLA with other swarm 

intelligence optimisation techniques such as ACO, PSO, ....    
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