
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 19, November 2019

26

A Combined Preemptive SJF and Preemptive Priority

Algorithm to Enhance CPU Utilization

Asma Joshita Trisha
Lecturer

Premier University
Chattogram, Bangladesh

Senjuthi Bhattacharjee
Lecturer

Premier University
Chattogram, Bangladesh

ABSTRACT

A computer system performs its tasks by executing processes.

In a CPU multiplexed system multiple processes can execute

concurrently by switching among them. For handling the

processes CPU scheduling techniques are used, through which

the CPU utilization can be enhanced. There are several CPU

scheduling algorithms for deciding which of the processes in

the ready queue is to be allocated in the CPU. The existing

algorithms have some problems that may lead to huge average

waiting time or starvation. The SJF results the minimum

average waiting time, but it also introduces starvation for

bigger processes. The priority scheduling works on the basis

of priority assigned to each process results waiting time that is

greater than SJF. Sometimes it is required to apply an

algorithm which will give attention to both of these

algorithms. The proposed algorithm will work as a bridge

between SJF and priority on the basis of their arrival.

General Terms

CPU scheduling algorithms, Shortest Job First algorithm,

Priority algorithm.

Keywords

CPU scheduling, SJF, Priority, preemptive, Gantt chart,

turnaround time, waiting time, response time.

1. INTRODUCTION
Among various tasks of operating system, process scheduling

is the most crucial one. When multiple processes are

simultaneously in the ready state, they need to allocate

resources to execute their task [1]. This resource allocation is

done by the CPU scheduler. In case of multiple process’s

arrival, one process will allocate resource and the others will

be in the waiting state until the resources are released.

To maximize the CPU utilization there must be some

procedure running all the time. There are several algorithms to

accomplish the task of selecting processes from the ready

queue. In choosing among the algorithms in a particular

situation, some properties of the various algorithms must be

considered such as; average turnaround time, average waiting

time, average response time [2]. Some characteristics are used

for comparison can make a substantial difference in which

algorithm is judged to be best in case of maximize CPU

utilization and throughput, and at the same time minimize

turnaround time, waiting time and response time [3]. The

following criteria are needed to be focused:

 CPU utilization: to keep the CPU busy by allocating

processes. The expected CPU utilization rate is

100%. But in a real system it ranges from 40% to

90%.

 Throughput: number of processes completed per

hour by the system [4]. The higher the number of

completed processes, the better the system is.

 Turnaround time: it is the statically average time

from the moment of submission of a process to the

moment it is completed.

 Waiting time: sum of time that a process spent in

the ready queue.

 Response time: time between issuing a request until

the first response is perceived.

The mostly used algorithms that works on the basis of the

above criterion are FCFS (first come first serve), SJF (shortest

job first), Priority and Round Robin. Amon these the SJF

gives the minimum average waiting time but at the same time

it introduces starvation in the long processes. On the other

hand, the priority scheduling depends only on the given

priority number. The lower the number, the higher the priority

is.

The SJF algorithm is based only in the burst time, whereas the

Priority algorithm schedules the processes according to the

priority. In the proposed algorithm, a theory has been

developed on a combination of both of the SJF and Priority

scheduling algorithm. It gives better result in contrast with the

original basic algorithms in the basis of average waiting time

and average turnaround time. However, scheduling algorithms

can be applied in both preemptive and non-preemptive

manner [5].

2. LITERATURE REVIEW
Operating System plays a vital role to allocate CPU according

to the arrival of different processes. As the processes arrives

randomly with their different types, they require scheduling

algorithms for working in the real environment. Varieties of

algorithms are available just to make efficient allocation of

the CPU so that the CPU can be utilized at its fullest extent

and complete its execution in a minimum time. Researches

has been done to improve the basic scheduling algorithms.

Some of them has reviewed in this section.

Shweta Jain, Dr. Saurabh Jain, “A Review Study on the CPU

Scheduling Algorithms”. International Journal of Advanced

Research in Computer and Communication Engineering”,

2016 [6], have discussed about various researches done in the

field of CPU scheduling and its performance. In this paper,

they have given the review of those different scheduling

algorithms that are performed with different parameters, such

as turnaround time, burst time, response time, waiting time,

throughput, fairness and CPU utilization. It gives a brief

overview to the problem of scheduling jobs/processes on the

central processing unit (CPU) of the computer system.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 19, November 2019

27

Chandra Shekar N, Karthik V, “Analysis of Priority

Scheduling Algorithm on the Basis of FCFS & SJF for

Similar Priority Jobs”, 2017 [7], proposed a scheduling

algorithm, in which processes having equal priority is

executed on the basis of burst time, i.e. the process which

have shortest burst time will execute first. The SJF based

priority algorithm results in reduced average waiting time and

turnaround time.

Ahana Roy, Aspen Olmsted, “An Improved Priority

Scheduling Algorithm Using Time Slice to Minimize

Response Time”, 2018 [8], propose an algorithm, where the

process with highest priority is allocated first and those with

the same priorities are scheduled by FCFS policy. Then all the

sorted process will be allocated to CPU for a predetermined

time slice. This algorithm aids in minimizing some of the

performance parameters such as response time, waiting time

for lower priority processes ensuring each process is given a

fair chance to access resources.

3. OVERVIEW ON EXISISTING SJF

AND PRIORITY ALGORITHM

3.1 Shortest Job First (SJF) Algorithm
The working policy of SJF associates the burst time of

execution with the process. When a process with smaller burst

time arrives in the ready queue, CPU is assigned to that

process next. If the burst time of next two consecutive

processes become same, then the tie will break applying the

FCFS algorithm. SJF can be applied as both preemptive and

non-preemptive based on their arrival [9]. In a non-

preemptive SJF, the CPU will be assigned to the shorter

processes by ignoring their arrival time. But a preemptive SJF

proceeds according to their arrival time. When a shorter

process is arrived, the currently executing process will be

preempted by releasing the CPU for the newly arrived shorter

process and stays in the waiting queue [10].

SJF algorithm is possibly optimal. It executes the short

process before the long process and thus reduces the waiting

time for the short process more than increases waiting time for

long process. Consequently, it ends up with a minimum

average waiting time compared to the other scheduling

algorithms [3].

3.2 Priority Based Algorithm
In the priority scheduling algorithm, each process is

associated with a priority and the CPU is allocated based on

highest priority. Equal priority processes are executed on first

come first serve basis. Priority can be either preemptive or

non-preemptive. A preemptive priority algorithm preempts

the currently executing process from the CPU if the newly

arrived process contains a higher priority [11]. In the non-

preemptive priority scheduling algorithm, the currently

running process will complete its full task and the newly

arrived process are just added to the head of the ready queue.

One drawback of priority scheduling algorithm is the

indefinite waiting or starvation. A process is considered as

blocking when it is in the ready queue buy waiting for the

CPU to become available. Lower priority processes are often

undergoing through an indefinite waiting.

4. PROPOSED ALGORITHM
SJF scheduling focuses only in the burst time. Both the

preemptive and non-preemptive SJF are based on the CPU

burst time. Again, the priority scheduling algorithm

concentrate solely in the priority of the processes. When a

process with shorter burst time but lower priority arrives in

the ready queue it suffers from huge waiting in the ready

queue which may cause starvation. In the proposed

algorithm, these types of process are kept in front of the ready

queue by emphasizing in both the burst time and the priority.

In the proposed algorithm, when a process arrives in the ready

queue, it compares both of its burst time and priority with the

currently running process. This comparison is accomplished

on the basis of the summation of the burst time and priority. If

the summation of newly arrived process is less than the

summation of the currently running process, then the CPU

will be preempted from the running process and assigned it to

the new process. In case of equal summation of the burst time

& priority, FCFS scheduling will be used as a tie breaker.

This comparison will be performed each time when a new

process arrives in the ready queue.

Through this proposed algorithm smaller burst time and lower

priority will get a privilege to get into the CPU. Moreover, it

results better than the original preemptive-priority algorithm

and approximately equal result of the preemptive-SJF in the

criteria of average turnaround time, average waiting time and

average response time. Thus, will give better CPU utilization

by eliminating indefinite waiting and starvation.

5. IMPLEMENTATION
The proposed algorithm is compared with preemptive SJF and

preemptive priority algorithm for a set of different processes.

The comparison has done on the basis of average turnaround

time, average waiting time and average response time.

5.1 Case 1
Table 1. Case study no. 1 with four processes

Process Burst Time Priority Arrival Time

 14 3 2

 9 2 0

 20 1 1

 5 4 3

According to the preemptive SJF the Gantt chart is:

0 3 8 14 28 48

Figure 1. Gantt chart of Preemptive SJF Scheduling

According to the preemptive priority the Gantt chart is:

0 1 21 29 43 48

Figure 2. Gantt chart of Preemptive Priority Scheduling

According to the proposed algorithm the Gantt chart is:

 0 9 14 28 48

Figure 3. Gantt chart of Proposed Algorithm Scheduling

In the proposed algorithm, at time 3, burst time of P2 is 6 and

summation of burst time & priority is 8. Whereas the burst

time of P4 is 5 and the summation of burst time & priority is

9. Hence, P2 will continue executing. As all other processes in

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 19, November 2019

28

ready queue at time 9, then the process which has lowest

summation of burst time and priority will execute first.

5.2 Case 2
Table 2. Case study no. 2 with four processes

Process Burst Time Priority Arrival Time

 8 3 2

 4 1 1

 9 2 0

 5 4 3

According to the preemptive SJF the Gantt chart is:

0 1 5 10 18 26

Figure 4. Gantt chart of Preemptive SJF Scheduling

According to the preemptive priority the Gantt chart is:

0 1 5 13 21 26

Figure 5. Gantt chart of Preemptive Priority Scheduling

According to the proposed algorithm the Gantt chart is:

0 1 5 10 18 26

Figure 6. Gantt chart of Proposed Algorithm Scheduling

In the proposed algorithm, the process which has lowest

summation of burst time and priority will execute first.

5.3 Case 3
Table 3. Case study no. 3 with four processes

Process Burst Time Priority Arrival Time

 10 3 2

 1 1 3

 2 4 1

 5 2 0

 7 5 4

According to the preemptive SJF the Gantt chart is:

0 1 3 4 8 15 25

Figure 7. Gantt chart of Preemptive SJF Scheduling

According to the preemptive priority the Gantt chart is:

0 3 4 6 16 18 25

Figure 8. Gantt chart of Preemptive Priority Scheduling

According to the proposed algorithm the Gantt chart is:

0 3 4 6 8 15 25

Figure 9. Gantt chart of Proposed Algorithm Scheduling

In the proposed algorithm, at time 1, there are P4 & P3 in the

ready queue consisting the same summation of burst time &

priority which is 6. As P4 has arrived at time 0, which is prior

to the arrival of P3, hence P4 will continue executing

according to FCFS algorithm.

Again, at time 3, the summation of burst time & priority of P4

is 2, whereas the summation of burst time & priority of P2 is

1. Therefore, P4 will be preempted from the CPU & P2 will

continue is execution. After that the process which has lowest

summation of burst time and priority will execute first.

6. RESULT
Table 4. Comparison of Preemptive SJF, Preemptive

Priority and Proposed algorithm based on Case study no.1

 Scheduling

 Algorithms

Scheduling

Criteria

Preemptive

SJF

Preemptive

Priority

Proposed

Algorithm

Average

Turnaround

Time

23 33.75 23.25

Average

Waiting Time
11 21.75 11.25

Average

Response Time
9.75 16.75 11.25

Table 5. Comparison of Preemptive SJF, Preemptive

Priority and Proposed algorithm based on Case study no.2

 Scheduling

 Algorithms

Scheduling

Criteria

Preemptive

SJF

Preemptive

Priority

Proposed

Algorithm

Average

Turnaround

Time

13.25 14.75 13.25

Average

Waiting Time
6.75 8.25 6.75

Average

Response

Time

4.5 7.25 4.5

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 19, November 2019

29

Table 6. Comparison of Preemptive SJF, Preemptive

Priority and Proposed algorithm based on Case study no.3

 Scheduling

 Algorithms

Scheduling

Criteria

Preemptive

SJF

Preemptive

Priority

Proposed

Algorithm

Average

Turnaround

Time

9 11.8 9.6

Average

Waiting Time
4 6.8 4.6

Average

Response Time
3.5 6.6 4.4

Figure 10: Graph showing comparative result of

preemptive SJF, preemptive priority and proposed

algorithm based on the average turnaround time.

Figure 11: Graph showing comparative result of

preemptive SJF, preemptive priority and proposed

algorithm based on the average waiting time.

Figure 12: Graph showing comparative result of

preemptive SJF, preemptive priority and proposed

algorithm based on the average response time.

From the above comparisons between preemptive SJF,

preemptive priority and proposed algorithm it can be observed

that the proposed algorithm gives almost equal result as the

preemptive SJF and definitely a better result than preemptive

priority in terms of average turnaround time, average waiting

time and average response time.

7. CONCLUSION
The intention is primarily to enhance the CPU utilization;

however, the difference with other algorithms is in the

approach. An alternative way has proposed to the steps where

processes are swapped symmetrically in order to avoid

starvation for low priority processes. The proposed hypothesis

of calculating the summation of burst time and priority for the

time slice value is less time consuming than preemptive

priority algorithm and it clearly shows maximum CPU

utilization and efficient handling of resources.

8. REFERENCES
[1] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,

“Operating System Concepts”, John Wiley & Sons Inc,

8th ed, Chapter No.5.

[2] Basit Shahzad, Muhammad Tanvir Afzal, “OPTIMIZED

SOLUTION TO SHORTEST JOB FIRST BY

ELIMINATING THE STARVATION”. Jordanian

International Electrical Engineering and Electronic

Conference, November 2005.

[3] William Stallings, “Operating System”, Pearson Prentice

Hall, 7th ed, Chapter No. 9.

[4] Andrew S. Tanenbaum, “Modern Operating System”,

Pearson Prentice Hall, 3rd ed, Chapter No.2.

[5] Sukumar Babu Bandarupalli, Neelima Priyanka

Nutulapati, Prof. Dr. P. Suresh Varma, “A Novel CPU

Scheduling Algorithm–Preemptive & Non-Preemptive”,

International Journal of Modern Engineering Research,

Vol.2, Issue.6, Nov-Dec. 2012 pp-4484-4490.

[6] Shweta Jain, Dr. Saurabh Jain, “A Review Study on the

CPU Scheduling Algorithms”. International Journal of

Advanced Research in Computer and Communication

Engineering”, Vol. 5, Issue 8, August 2016.

[7] Chandra Shekar N, Karthik V, “Analysis of Priority

Scheduling Algorithm on the Basis of FCFS & SJF for

Similar Priority Jobs”, International Journal of

Engineering Research in Computer Science and

Engineering, Vol. 4, Issue 3, March 2017.

0

10

20

30

40

Case 1 Case 2 Case 3

Preemptive SJF

Preemptive
Priority

Proposed
Algorithm

0

5

10

15

20

25

Case 1 Case 2 Case 3

Preemptive SJF

preemptive
Priority

Proposed
Algorithm

0

5

10

15

20

Case 1 Case 2 Case 3

Preemptive SJF

Preemptive
Priority

Proposed
Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 19, November 2019

30

[8] Ahana Roy, Aspen Olmsted, “An Improved Priority

Scheduling Algorithm Using Time Slice to Minimize

Response Time”, DOI: 10.13140/RG.2.2.20543.56489,

November 2018.

[9] Harshita Jha, Subrata Chowdhury, Ramya.G, “Survey on

various Scheduling Algorithms”, Imperial Journal of

Interdisciplinary Research, Vol-3, Issue-5, 2017.

[10] Ms. Rukhsar Khan, Mr. Gaurav Kakhani, “Analysis of

Priority Scheduling Algorithm on the Basis of FCFS &

SJF for Similar Priority Jobs”, International Journal of

Computer Science and Mobile Computing, Vol. 4, Issue.

9, September 2015, pg.324 – 331.

[11] Mohammed A.F. Al-Husainy, 2007, “Best-Job-First

CPU Scheduling Algorithm”. Information Technology

Journal, 6: 288-293.

IJCATM : www.ijcaonline.org

