Abstract

Swarm Intelligence is driving research in multi-agent system based robotic and mobile control applications. A swarm optimization algorithm- Ant Colony Optimization (ACO) provides a stochastic ‘shortest path’ approach inspired by ant colonies to obtain global solution in an optimization problem. This paper reviews the impact of ACO in robotics, computer vision, control systems and sensor networks for autonomous systems. The performance of ACO as a metaheuristic or general optimization is discussed with respect to its consequences on parameters like energy efficiency, time for convergence, route selection, etc.

References

2. Thomas STUTZLE ‡ and Marco DORIGO IRIDIA, Université Libre de Bruxelles, Belgium
{t stutzle,m dorigo}

3. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman
Problem Marco Dorigo and Luca Maria Gambardella

optimization.” (2010).

image edge detection. 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence). doi:10.1109/cec.2008.4630880

planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost

7. H. Nezamabadi-Pour, S. Saryazdi, and E. Rashedi, “Edge detection using ant

optimization and Fuzzy Logic algorithms in unknown dynamic environments. 2013 International
Conference on Control, Automation, Robotics and Embedded Systems (CARE).
doi:10.1109/care.2013.6733718

IEEE International Symposium on Robotics and Manufacturing Automation (ROMA).
doi:10.1109/roma.2016.7847836

11. Guoliang Chen and Jie Liu, “Mobile Robot Path Planning Using Ant Colony Algorithm
and Improved Potential FieldMethod,” Computational Intelligence and Neuroscience,

http://www.scholarpedia.org/article/Ant_colony_optimization.

14. M. Dorigo, V. Maniezzo, and A. Colorni, Ant System: Optimization by a Colony of
29-41, 1996.

and particle swarm fusion algorithm. 2017 Chinese Automation Congress (CAC).
doi:10.1109/cac.2017.8242802

Multiobjective Ant Colony Optimization,” Applied Computational Intelligence and Soft

Transactions of the ASME, vol. 64, pp. 759–768, 1942.

19. A. Bagis, “Determination of the PID controller parameters by modified genetic algorithm

41. Chao Zhang, Zhen, Z., Daobo Wang, & Meng Li. (2010). UAV path planning method based on ant colony optimization. 2010 Chinese Control and Decision Conference. doi:10.1109/ccdc.2010.5498477

Index Terms

Computer Science

Control Systems

Keywords

Ant Colony Optimization, Robotics, Mobile Robots