
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

42

Design an Optimized Compiler to Enhance Performance

of Android Applications

Marwa Dahdouh
PhD Student

Dept. Computer
Engineering

Faculty of Electrical and
Electronic Engineering
University of Aleppo,

Syria

Mouhamad Ayman
Naal

Associate Professor
Dept. Computer

Engineering
Faculty of Electrical and
Electronic Engineering
University of Aleppo,

Syria

Souheil Khawatmi
Associate Professor
Dept. Systems and
Computer Networks

Faculty of Informatics
Engineering

University of Aleppo,
Syria

Amer Bouchi
Assist Professor
Dept. Computer

Engineering
Faculty of Electrical and
Electronic Engineering
University of Aleppo,

Syria

ABSTRACT

This paper presents a detailed study of the mechanism to

design a compiler of Smali language to generate optimized

Android applications. Smali language; which includes the dex

bytecode; is the assembly language under Android OS, it is

generated from the Java source code. The phases of designing

the target compiler are described and the structure of files that

are the input and output of the compiler are explained.

The structure of the input files of ART (Android RunTime)

compiler is explained, with the focus on the dex file (Dalvik

EXecutable) and its corresponding Smali language file, that

includes dex bytecode code. The proposed compiler, Which is

called MySMALI compiler, generates optimized Smali code

by replacing some blocks in the Smali code by other blocks

more efficient in performance and equivalent in behavior with

original blocks. Reverse Engineering techniques are used to

decompile and verify the correctness of the generated

optimized APKs. As result, an optimized compiler is designed

and the experimental evaluation shows that the compiler is

able to save from 4.8% to 12.9% of the overall execution time

in various application scenarios. This ratio of improvements

increases up with the size and complexity of the optimized

code.

General Terms

Reverse Engineering, Compiler optimization, Android

Application Performance.

Keywords

Design Compiler, lex & yacc, Lexical analyses, Smali

language, bytecode optimization, APK Decompiler,

1. INTRODUCTION
Over the past two decades, many important changes and

challenges have taken place in mobile devices, which have

limited processing power, memory, and battery life. So the

optimization of mobile applications for better performance is

considered a critical task.

Android is an operating system designed for mobile devices

and acquired by Google in 2005 [1]. It’s now widespread, and

lots of applications are developed each day. First it ran DVM

(Dalvik Virtual Machine) and had different types of

compilers. From Android 2.2, JIT (Just-In-Time) Compiler

was added to improve the execution time, it translates the

source code into native code during runtime. JIT compilers

were of two types, MB-JIT (Method-Based Just In Time) and

TB-JIT (Trace-Based Just In Time). Second, ART

environment was introduced in Android 4.4.

ART supported multiple compilers based on AOTC (Ahead

Of Time) compilation [2]. AOTCs are divided into two

categories: standalone-mode and mixed-mode. A standalone-

mode AOTC compiles whole application into native codes,

while a mixed-mode AOTC compiles only hot methods of

code [3]. The Icing framework was released in 2011, it is

based on MB_JIT compiler. In 2012 hybrid JIT framework of

Android proposed the combination of MB-JIT and TB-JIT

techniques to achieve a great performance [4]. ART is the

default execution environment instead of Dalvik from

Android 5.0, Lollipop version [5]. ART supports two backend

compilers, which were a quick compiler and an optimizing

compiler [6].

In this article new compiler is designed for Smali (Assembly

Android) language. Smali is an ASM-like language used to

represent dex bytecode instructions as a human readable

language [7]. The goal of the proposed compiler is to generate

optimized Smali code. The execution time of dex bytecode

instructions was measured in different working environments.

The results were analyzed and compared, and instructions

with the smaller execution time were defined to be adopted in

the MySMALI compiler.

The rest of the paper is organized as follows. Section 2

defines the files of Android compiler. Next, in Section 3 an

overview of this approach steps is given and explained, the

practical phases of designing a MySMALI compiler are

described in section 4. Section 5 illustrates the input and
output files of MySMALI compiler. While the proposed

algorithms are explained in Section 6. Finally, experimental

results of MySMALI compiler are discussed and analyzed in

Section 7 and conclusion is given in Section 8.

2. ANDROID COMPILER FILES
Android OS uses many files during the compilation, the input

and output files of Android compilation process vary

according to the executable environment of Android.

1. (.class) file: This file contains JVM (Java Virtual

Machine) instructions or Java bytecode and the

symbols table, as well as other ancillary information

[8].

2. (.dex) file: The dex file format is made up of several

sections, which are used to hold a set of class

definitions and their associated adjunct data [9].

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

43

Parsing the dex file is a complex task as it involves

running bytecode and selecting relevant data [10].

3. (.odex) file: The odex (Optimized DEX) file is

generated by dexopt tool in DVM to optimize

Dalvik bytecode instructions. In ART environment,

oat file is generated instead of it [11].

4. (.apk) file: APK (Application PacKage) file is used

to distribute applications in Android [12] [13].

5. (.smali) file: Smali code is based on Jasmin syntax

and usually saved in text format, is a human

readable representation for dex bytecode [14].

6. (ELF) file: ELF (Executable and Linking Format)

file is created by the assembler and link editor. ELF

is object file format participates in building and

running a program. The object files are binary

representations of programs.

7. (.oat) file: OAT (Of-Ahead Time) is generated by

dex2oat tool in ART [15]. This ELF file includes

the main information of dex file and native code.

The compiler of Android OS is developed upon many stages.

Table 1, summarizes the compiler development.

Table 1. Evolution of Android compiler

year Compiler Environment Advantages

2008
JIT

Interpreter
Dalvik simple

--- MB-JIT Dalvik
better than JIT

interpreter

--- TB-JIT Dalvik

 speed,

performance

default

environment

2011 MB- AOT
Icing framework

with Dalvik

Three times faster

than past

2012 Hybrid JIT Dalvik optimized code

2013 AOT or JIT ART or Dalvik dex2oat is defaul

2014 AOT ART(Android 5.0) faster by %80

2015

quick and

Portable
ART fuzzing

framework released

quick is default

 dex-to-dex

dexFuzz

merging JIT

and

techniques

T2R framework
 improvement the

execution static bytecode

optimization

optimized

backend

 energy

optimization

framework

 improve the energy

processor

2017
optimized

backend
 compiler-based app

instrumentation
application
protection

Many approaches were accomplished on optimization issues

for enhancing the Android applications performance, however

the techniques of production compilers still are challenging

[16]. The efforts proceed to combine the improvement of

compilers with other techniques. Such as, in 2015, T2R

framework has released, which improved the execution

performance of applications by 10.5-16.2% and decreasing

the size of the code cache by 4.6-28.5% [17]. Source-level

Energy-optimization framework was proposed in 2016, saved

from 6.4% to 50.2% of the CPU energy consumption [18]. In

2017, ARTist (Android Runtime Instrumentation and Security

Toolkit) framework introduced as a compiler-based

application for security solutions [19].

Table 2, shows the comparison between compilers in the two

runtime platforms [20].

Table 2. Comparison between Android compilers

Advantages AOT (ART) JIT (Dalvik)

performance

 app occupies a

smaller memory

footprint, faster

execution and shorter

launch time

extra memory for JIT

code cache, slower

execution

battery life

 frees the CPU, so

leads to a longer

battery life

 JIT compilation is CPU

bound

installation

time

dex bytecode is

translated during the

app installation

The translation is done

during the app execution

storage

footprint
keep a larger storage keep a smaller storage

3. GENERATION THE OPTIMIZED

APKS
All steps for generating optimized APKs, from writing a Java

source code to decompilation, are illustrated in Fig 1.

First, Java program is written and its corresponding APK file

is built using Android Studio v3.5. Second, APK file is

decompiled using APK_Easy Tool v1.55. APK_Easy Tool

v1.55 is a reverse engineering tool, latest version [21]. During

the decompiling process of APK [22], many Smali files and

folders are extracted inside the decompiled Smali folder. Such

as AndroidManifest.xml file that informs the system about the

application components. Third, Smali files are opened,

analyzed, modified and saved. In this approach, the

modification isn't done manually in a random form. Indeed,

MySMALI compiler applies the required modification in

Smali files based on the proposed replacement technique.

Fourth, repackaging of Smali code and folders is done by

reverse engineering tool. APK_Easy tool is reused again to

recompile and reassemble the modified Smali source files.

The optimized APK file is generated to enhance the

performance of Android applications.

After the recompiling, APK_Easy tool allow two options:

ZipAlign and sign. Android doesn’t allow installation APK

file of an application that isn’t signed [23]. As result, all

optimized APKs be digitally signed with a special certificate.

APKs can be installed on any mobile device to calculate the

execution time of an application instructions.

Three different files are generated by MySMALI compiler.

These files are as the following:

OptZCompiled_output.smali is the optimized Smali file. This

file is renamed as the input file (sourcefile_Name.smali) and

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

44

replaced instead of the original file into the decompiled Smali

folder. OptZCompiled_output is reassembled with other

decompiled folders using the reverse engineering tool to

generate the optimized APK file.

LogOutputfile.txt file file contains all the information stored in

the base symbol table and the modified symbol table

information resulting from the implementation of the

replacement algorithm.

CompiledOutputfile.smali file includes the source code of the

input file. This file is generated after all phases of analysis

(lexical, syntax, semantic) have finished by MySMALI.

Java Program

.APK file

optimized.APK file

ANDROID
STUDIO

MySMALI COMPILER

Decompile

SMALI

AndroidManifest.
xml

.res
APKTOOL.yml

sourceFile.smali

MainActivity.smali

Rename

replace

MainActivity.smali

LOGOutputfile.txt
compiledOutputfile.smali

OptZCompiled_output.smali

original

res

Build

SMALI

AndroidManifest.
xml

APKTOOL.yml

Recompile

APKEASYTOOL

APKEASYTOOL

Fig 1: Steps of generating an optimized APK file

4. COMPILER DESIGN
The optimized compiler steps are described in Fig 2 [24].

Fig 2: Flowchart of designing process

The optimized compiler is designed by using Lex (LEXical

analyzer) and Yacc (Yet Another Compiler-Compiler) tools.

EditPlus v5.2 (build 2281) 64-bit and Flex Windows (Lex and

Yacc) tool are used. Smali instructions, keywords and

identifiers are defined to be used in specification and tokens

recognition [25]. Lexical, syntax, semantic analysis and other

phases of designing a compiler are applied [26].

At the beginning, an input Smali source file is translated into

tokens by Lex. Tokens are utilized to generate a syntax

analyzer. Then Smali language grammars are formulated [27].

Structures are extracted from the analyzing process of Smali

files. AST (Abstract Syntax Tree) is constructed [28]. At last,

the proposed replacement technique is applied depending on

the structures. Then a Smali target file of the compiler is

produced as output file. The proposed instructional structures

allowed the optimized compiler to perform a better analysis

and replacement. The process of identifying the appropriate

structures for the bytecode instructions is one of the most

important stages.

The practical steps of building the optimized compiler can be

summarized as follows.

First, Lex file compilation process is performed with the

statement: flex MySmali.l. A C language file (Lex.yy.c) results

from the compilation.

Second, Yacc compilation process is performed with the

statement: Bison –dy MySmali.y. As a result of the

compilation, two files (Y.tab.c, y.tab.h) are generated.

The final stage of building process is accomplished through

instruction: gcc lex.yy.c y.tab.c. As a result, (MySmali.exe)

file is generated. Fig 3 shows these steps.

Fig 3: Steps of building MySMALI compiler by Lex/Yacc

(yyparse)

y.tab.c yac

c

MySmaliy

MySma

li.l lex

gc

c

y.tab.h

(yylex

Lex.yy.c

MySMALI.e

xe

smali_Tree.

h

smali_Treeh

structures.h

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

45

5. MYSMALI COMPILER FILES

5.1 Smali.L file
The regular expressions are represented into this file. Regular

expressions formally describe the recognized tokens that may

be founded in Smali source code. Rules section; the

significance part; is declared. Each rule is specified by a

pattern and its corresponding action.

Table 3, illustrates some of the proposed regular expressions

of the declared patterns.

Table 3. The declared regular expressions

Pattern Regular Expression

COMMENT #.*

JAVA_ID [\[]?[L][_a-zA-Z][_a-zA-Z0-9/$]*;

ID [_a-zA-Z][_a-zA-Z0-9$]*

Register_ID (v|p)[0-9]+

CONSTRUCT_INIT <[_a-zA-Z][_a-zA-Z0-9]*\>

DOUBLEQ_STRING \"([^\\\"\r\n]|\\[^\r\n])*\"?

HEX_NUMBER [+-]?0[xX][0-9a-fA-F]+(L|s|t)?

Sml_NUMBER
([0-9]*\.?[0-9]+|[0-9]+\.[0-

9]*)([eE][+-]?[0-9]+)?

ARRAY_TYPE [\[]+[a-zA-Z]+

PSWITCH_LABEL ":pswitch"[_a-zA-Z0-9]+

LABEL (":cond"|":goto")[_a-zA-Z0-9]+

The user declarations section is includes some macros for

defining the location of errors. Such as, YY_USER_INIT

macro is evaluated at the first invocation of yylex.

YY_USER_ACTION macro is executed each time a rule

matches.

5.2 MySmali.y
This file includes a definition section and production rules

section [29]. Rules section includes the grammars of Smali

language. Grammars are defined to specify how to understand

the input source code and what actions to take for each rule.

Types of tokens were defined, such as in Fig 4.

%token <s_value>

DOT_CLASS DOT_SUPER DOT_SOURCE

DOT_IMPLEMENTS DOT_ANNOTATION DOT_FIELD

DOT_METHOD DOT_END_METHOD …

%token

SEMICOLON OPEN_BRACK CLOSE_BRACK …

%type <nPtr>

Methods Method_struct Method_prototype Method_Body

direct_method virtual_method variables_List return_type

PSWITCH_LABELS packed_switch_statments …

%%

Fig 4. Types of tokens declaration

Fig 5. displays a piece of source code. The code includes a

declaration of a direct method in Smali language. The parser

tree of the source code is constructed, such Fig 6.

method public constructor <init>()V # direct methods

locals 0

line 7

invoke-direct {p0},

Landroid/support/v7/app/AppCompatActivity; -> <init> ()V

return-void

end method

Fig 5. A direct method in source Smali code

Fig 6. Abstract Syntax Tree of a direct method

Yacc derives a parser tree based on the matching production

rules. Table 4 displays some matched rules of a direct method.

For the best results for MySMALI compiler, the production

rules are defined so that they do not include any conflicting

rules of shift/reduce type or reduce/reduce type.

Table 4. Production rules of method instructions

Rule Action, corresponding to

methods

: Methods Method_struct COMMENTS

{$$=CompNode_define(three_State,3,$1,$

2,$3);}

| {$$=NULL;} /*Nothing*/

method_

struct

: DOT_METHOD Access_Modifier

Method_prototype COMMENTS

Method_Body DOT_END_METHOD EOL

method_

prototype

: direct_method

| virtual_method

direct_

method

: CONSTRUCTOR CONSTRUCT_INIT

Variables_declare EOL

| CONSTRUCTOR CONSTRUCT_INIT

Variables_declare return_type EOL

| CONSTRUCT_INIT Variables_declare

return_type

return_type

: JAVA_ID {$$=stringnNode_define($1);}

| primitive_type {$$=$1;}

| void_type {$$=stringnNode_define($1);}

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

46

5.3 Structures.h
This file is included in MySmali.l file and contains the

declaration of the suggested structures for Smali language

instructions.

During the compiler's analysis of the input file, each node in

the symbol table is analyzed and its type is determined in

order to build the appropriate structure according to its type.

Table 5, shows some structures of nodes.

Table 5. The proposed structures of some instructions

Typedef Struct declaration Description

BodyNODE

char *st_name;

int st_size;

int lineno;

char *token_type;

struct BodyNODE *next;

Structure

of Symbols

Table

Methods

_struct

char *Dot_Begin;

char *Register_Num;

char *Locals_Num;

int line_Begin; int line_End;

int index_Begin;

int index_End;

struct methods_struct *next;

Structure

of each

declared

method

IF_struct

char *if_name;

int Line_Num;

int index_Begin;

char *reg_1; char *reg_2;

char *cond_label;

struct IFInfo_struct *IFInfo;

struct List_instruction body;

Structure

of IF

statement

goto_struct

char *gotolbl_name;

struct gotoInfo_struct

*gotoInfo;

struct List_instruction

*body;

Structure

of goto

statement

Reg_struct

char *Reg_name;

int Reg_index;

char *Reg_Kind;

char *return_type;

struct Reg_struct *next;

Register

Structure

Loc_struct

char *Loc_name;

int B_index;

int E_index;

Structure

of Local

The suggested packed_switch structure consists of three

interconnected and overlapping structures. The structures are:

switch_struct, table_struct and branch_struct. Fig 7. shows the

suggested structure of packed_switch instruction.

Fig 7. The proposed structure of packed_switch

The switch instruction structure includes several fields to store

the basic information that will be used when the replacement

algorithm is implemented. Some basic stored information are:

the number of last line of the switch instruction block within

the input file (switchE_Line), first index in the symbols table

in which to start storing the block (switchB_index), last index

(switchE_index), total number of branches

(switchBranches_Num). This structure also includes a pointer

to the table_struct structure (table_Info).

The table_struct structure contains information about all

branches of packed_switch instruction. The information are:

the reference to the list of branches that includes all the

instructions to be performed when matching with each branch

(Branch_List), first value to compare with when evaluating

the first branch of a packed_switch instruction block

(first_value), first index in the symbol table where the branch

table information is stored within (TableB_index), last index

(TableE_index).

The branch_struct structure contains information about each

branch. The information stored in this structure is as follows:

a name of the branch (Branch_name), the first index in the

symbols table in which to start storing the branch

(BranchB_index), the last index in which the comparison

branch instructions are stored in the table (BranchE_index),

the instruction block for each branch to be approved later in

the replacement phase within the proposed if structure

(Bracnch_body).

5.4 Smali_Tree.h
The suggested structures for nodes types are declared in this

header file. These structures are specified during the creation

process of the symbols table. Two types of simple nodes are

declared (simple_inode int_value, simple_Snode

string_value). One type of complex node is declared

(compound_node compound_value). The complex type

includes a number of operators of each node and a reference

for each operator. Compound instructions have been

processed such as, jump statement (goto), conditional

statements (if, ifz), selection statement (packed-switch).

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

47

For example, If Lexer analyst finds the following packed-

switch statement: packed-switch v6, :pswitch_data_0.

The characters of this instruction will be divided into the

corresponding tokens and type of each token will be

determined. Finally information about tokens is stored in the

symbols table. The symbols table will include the following

information as in Table 6.

Table 6. Symbols table of packed-switch declaration

token

name

token index

in symbols

table

line number

in a source

file

token type

packed-

switch
i= 238 83

T_PACKED

_SWITCH

v6 i+1= 239 83 T_Reg_ID

, i+2= 240 83 COMMA

:pswitch

_data_0
i+3= 241 83

T_SWITCH

LABEL

6. PROPOSED ALGORITHMS
MySMALI compiler used several algorithms to implement a

proposed replacement technique. The replacement technique

involved several steps to modify specific instruction blocks

structures. So they are replaced by instruction blocks with less

execution time and similar behavior. The proposed instruction

blocks structure which will be modified are:

 A packed-switch instruction block that consumes a larger

execution time will be replaced by its equivalent if_block

instruction. If_block instruction consumes less execution

time.

 The replacement technique depends on conditional

overlapping instructions with a multi-way and two-way

if_else structure. The structure of a one-way conditional

instruction structure isn't replaceable because it causes a

change in instructional behavior. If_block conditional

statements are replaced by following conditional

instructions (if-ne, if-ge, if-le, if-nez, if-gez, if-lez) that

consume less execution time.

 The structure of nested instruction blocks within Smali

language, which is equivalent to the repetitive behavior of

instructions (for, do-while) in Java language. This structure

is suggested to be replaced by the structure of instruction

block equivalent to (while) instruction that is defined as

consuming less execution time.

After the analysis of Smali code of the input file, the

instruction structures have been built and the proposed

structures have been identified to replace their instructions in

order to reduce execution time. Optimized compiler applies

the replacement technique using the following algorithms:

6.1 Proposed algorithm for discovering

structures
MySMALI compiler applies a structures discovery algorithm.

There are several steps of this algorithm.

Methods structure is constructed and instructions are analyzed

in the input file for each method. All instructions for the most

efficient structures are analyzed and a global list of each

instruction is constructed. The efficient structures are: goto, if-

eq, if-ge, if-le, if-eqz, if-gez, if-lez, registers, Local,

packed_switch. These instructions are considered to have a

programmatic effect on MySMALI compiler. So they are

proposed to be modified by the replacement technique.

The basic structure of the proposed algorithm is illustrated by

a flowchart described in Fig 8.

Fig 8. Flowchart of structures discovery algorithm

6.2 Proposed replacement algorithm
Fig 9. Shows steps of the replacement algorithm for replacing
a packed_switch instruction with the equivalent if_block.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

48

Fig 9. Flowchart of replacement algorithm

The replacement algorithm is applied and proposed

replaceable instruction blocks are replaced by the equivalent

blocks of behavior. The steps of packed_switch replacement

algorithm can be summarized as follows.

Step1: A temporary symbols table is constructed and the

desired modification is applied.

Step2: Replaced if_block is built to include all the basic

information that is supported in the replacement process. The

basic information are: names of new registers, hexadecimal

values that are compared with each branch, goto labels

statement and condition labels of if statements, etc.

Step3: The second part of the replaced if_block is generated

instead of the switch statement. This part contains all the

instruction blocks to be executed when each condition of the

if_statement is valid. So, final form of the proposed

replacement code has been completed.

7. DISCUSSION AND ANALYSIS

EXPERIMENTAL RESULTS

7.1 MySMALI compiler
Different Smali files were generated to study each individual

instructions and instructions blocks. Two types of source files

were distinguished within this study. Simple file includes

individual instructions and compound file includes structural

blocks of instructions.

The test process was applied to 139 simple source files, and

100 compound files. All input files result from unpacking

APK files so they are correct and error free. Assuming

MySMALI compiler detects an error, the compilation process

will be stopped immediately. Then first grammatical error will

be located, and an alert message will be printed indicating the

line number and column that included the error. Table 7,

displays the percent ratio of correction.

Table 7. Results of MySMALI compiler

type of source file
number of

tested files

percent of

correction

simple file 139 %100

compound file 100 %100

As result, experiment proved the following:

 Some source code instructions such conditional statements

(if-eq, if-lt, if-gt) and IFz (if-eqz, if-ltz, if-gtz) consume

more execution time. These instructions should not always

be replaced by instructions with less execution time

consumption (if-ne, if-ge, if-le, if-nez, if-gez, if-lez).

Replacing process of one-way conditional statement

changes the original code behavior.

 The common-purpose instruction block is distributed

within the source code of Smali language file in non-

sequential lines of code. Collecting process of all single

blocks instructions sequentially led to grammar errors in

Smali language and was not useful. Errors prevent the

reassembling process of files and prevent the optimized

APKs generation. So MySMALI compiler did not compile

the instruction blocks in successive lines.

 Verification and validation of APK files proved that the

code behavior after applying the replacement algorithm is

equivalent to the behavior required from the original code.

The Android applications that are reassembling their files

and folders using APKTool is more than preserves its

original behavior as has been proven [30].

7.2 Optimized Smali file
After MySMALI compiler generated optimized Smali files,

the corresponding optimized APKs are generated by

APK_Easy Tool. Experiments have shown that all APK files

have been successfully executed on a real mobile device and

do not contain any bugs. Table 8, illustrates comparison of

Smali generated code between MySMALI compiler and other

compilers.

Table 8. Comparison generated Smali code between

MySMALI compiler and other compilers

Smali code corresponding (to)

Android Studio

(v3.1.1 , v 3.5)

APK_Easy tool

5.5
MySmaliCompile

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

49

packed-witch v6,

:pswitch_data_de

.line 25

const/16 v6, 0xf

goto :goto_30

.line 23

:pswitch_2c

const/16 v6, 0xa

goto :goto_30

.line 21

:pswitch_2f

const/4 v6, 0x5

.line 26

:goto_30

#...second part

:pswitch_data_de

.packed-switch

0xa

:pswitch_2f

:pswitch_2c

.end packed-

switch

packed-switch

v6,

:pswitch_data_0

.line 25

const/16 v6, 0xf

goto :goto_1

.line 23

:pswitch_0

const/16 v6, 0xa

goto :goto_1

.line 21

:pswitch_1

const/4 v6, 0x5

.line 26

:goto_1

#...second part

:pswitch_data_0

.packed-switch

0xa

:pswitch_1

:pswitch_0

.end packed-

switch

const/16 v0 , 0xa

if-eq v6 , v0,

:cond_3

const/16 v0 , 0xB

if-eq v6 , v0,

:cond_4

.line 25

const/16 v6 , 0xf

goto :goto_1

.line 23

:cond_4

const/16 v6 , 0xa

goto :goto_1

.line 21

:cond_3

const/4 v6 , 0x5

.line 26

:goto_1

Reverse engineering of APK files (decompile and recompile)

is done using following tools:

 APK_Easy tool v1.541 (2018-09-16), APKTool 2.3.4.

 APK_Easy tool v1.55 (2019-05-09), APKTool 2.4.0,

latest version.

A case study is conducted to test packed_switch statement

using MySMALI compiler. Several applications are

implemented that included different states of switch

instruction. Cases of packed_switch instruction are studied

according to a number of branches compared with them (two,

three, four or five branches). Some applications also included

switch instruction structure that is repeated a number of times.

Applications containing switch instructions are implemented

in different study cases and execution times are measured

with an average of 1000 repetitions per execution. The results

are displayed in Table 9.

Measurement of execution times is performed on a real

mobile device with the following specifications: (Galaxy

Grand Prime+, Android 6.0.1 , API 23). To ensure that

applications are executed within an ART environment.

minSdkVersion minimum SDK (Software Development Kit)

version is defined to be executed on 21, compileSdkVersion is

set to 26. The Android applications are implemented on a

device with the following specifications: (CPU: Intel Core i5,

System: Windows 7 Ultimate 64- bit, RAM: 8GB).

Comparison of original APK execution times with optimized

APK implementation times showed that optimized files

consume less execution time. Experience proved the

efficiency of optimized MySMALI compiler and that the

optimized compiler achieved desired results.

Table 9. Comparison execution times between original

APKs and optimized APKs

statement

cases
Averages of execution times of APKs

(nano_second)

packed-

switch
Before After

profit

time percent
optimization

2 branches 1513.527 1440.473 73.05 % 4.826

3 branches 1547.394 1457.994 89.4 % 5.777

4 branches 1568.761 1465.71 103.1 % 6.568

5 branches 1611.225 1453.249 158 % 9.804

repetition

2_switch
1655.38 1522.922 132.5 % 8.001

repetition
3_switch

1674.601 1458.173 216.4 % 12.924

Fig 10, shows a comparison of the average rate of original and

optimized APK files execution times and how the execution

time for applications has been improved.

Fig 10: Comparison of execution times for applications

before and after using replacement technology

8. CONCLUSION
In this paper, an optimized Smali compiler is designed. This

research improves application performance by generating

Smali optimized files and corresponding optimized APK files.

The research consists of 1) building a lexical analyzer that

recognizes all vocabulary of Smali language; 2) parsing

several Smali files to formulate all grammars; 3) building a

syntax analyzer that includes all rules formulated for Smali

language; 4) developing algorithms to apply the proposed

replacement technique; 5) designing an optimized MySMALI

compiler that replaces dex bytecode instructions with

instructions equivalent to behavior and consumes less

execution time.

The original Smali files are generated using the reverse

engineering tool to decompile APK files. MySMALI compiler

generates optimized Smali files by applying the proposed

replacement technology. Optimized Smali files have been

reassembled with decompiled folders using APK_Easy tool to

generated optimized APKs. The performance of original APK

files are compared with optimized APKs performance.

Comparison proved that optimized APK files do the same

behavior with better performance. The results demonstrate the

efficiency and accuracy of the optimized compiler and that

MySMALI compiler has improved the performance of

Android applications.

0

200

400

600

800

1000

1200

1400

1600

1800

Ex
ec

u
ti

o
n

 T
im

e
(n

an
o

 s
ec

o
n

d
)

state of packed_switch

Before_Replacement

After_Replacement

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 24, December 2019

50

As for the future work, MySMALI compiler may be apply in

different fields of reverse engineering for optimizing Smali

code. Another future work may focus on using the proposed

algorithms on static and dynamic analysis techniques of

APKs. The mechanism that is used in this research can also be

used to build a new tool. The suggested new tool allows

modifying the performance of Android applications and

hacking their information.

9. REFERENCES
[1] Ms. Debosmita Sen Purkayastha, Mr. Nitin Singhla, June

2013, "Android Optimization: A Survey, International

Journal of Computer Science and Mobile Computing",
IJCSMC, Vol. 2, Issue. 6, pg.46 – 52.

[2] Jeehong Kim, Inhyeok Kim, Changwoo Min, Hyung

Kook Jun, Soo Hyung Lee, Won-Tae Kim, and Young Ik

Eom, 2015, "Static Dalvik Bytecode Optimization for

Android Applications", Institute for Information &

Communications Technology Promotion (IITP), ETRI
Journal.

[3] Chih-Sheng Wang, Guillermo A. Perez, Yeh-Ching

Chung, Wei-Chung Hsu, Wei-Kuan Shih, 2011, "A

Method-Based Ahead-of-Time Compiler for Android
Applications", ACM 978-1-4503-0713.

[4] Chung-Min Kao, Wei-Chung Hsu, Yeh-Ching Chung,

Guillermo A. Pérez, 2012, "A Hybrid Just-In-Time

Compiler for Android, Comparing JIT Types and the
Result of Cooperation", ACM.

[5] Abhishek Vasisht Bhaskar, 2016, "Automated code

extraction from packed android applications", Syracuse
University.

[6] CENSUS S.A, 2015, "Fuzzing Objects d’ART Digging
Into the New Android L Runtime Internals".

[7] Aleksandr Pilgun, Olga Gadyatskaya, Stanislav

Dashevskyi, and all, 2018, “Fine-grained Code Coverage

Measurement in Automated Black-box Android

Testing”, University of Luxembourg, Luxembourg,
arXiv:1812.10729v1 [cs.CR].

[8] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex

Buckley, 2014, "The Java Virtual Machine
Specification". Addison.Wesley, Java SE 8 Ed. 600p.

[9] Google Inc.dex, 2007, "Dalvik Executable Format".

[10] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, Dinghao Wu, ,

2016, "Adaptive Unpacking of Android Apps", The

Hong Kong Polytechnic University, et al.

[11] Alexandre Bartel, Jacques Klein, Yves Le Traon, Martin

Monperrus, 2012, "Dexpler: Converting Android Dalvik

Bytecode to Jimple for Static Analysis with Soot",
ACM, ISBN 978-1-4503-1490.

[12] Pooja Singh, Dr. Santosh Singh, Pankaj Tiwari, 2015,

"Discovering Persuaded Risk of Permission in Android

Applications for Malicious Application Detection",
AMET University.

[13] Quan Qian, Jing Cai, Mengbo Xie, Rui Zhang, 2016,

"Malicious Behavior Analysis for Android

Applications", International Journal of Network Security,
Vol.18, No.1, PP.182-192.

[14] Patrick Schulz, Daniel Plohmann, 2012, "Code

Protection in Android", Institute of Computer Science,
university of Communication and Distributed Systems.

[15] Geonbae Na, Jongsu Lim, Kyoungmin Kim, and Jeong

Hyun Yi, "Comparative Analysis of Mobile App Reverse

Engineering Methods on Dalvik and ART", Journal of

Internet Services and Information Security, 2016.

[16] Yang Wenbo, Zhang Yuanyuan, Li Juanru, Shu Junliang,

Li Bodong, Hu Wenjun, Gu Dawu, 2015, "AppSpear:

Bytecode Decrypting and DEX Reassembling for Packed

Android Malware", National Science and Technology

Major Projects of China.

[17] Yi-Ping You, Jian-Ru Chen, 2015, "A static region-based

compiler for the Dalvik virtual machine", National Chiao
Tung University.

[18] Xueliang Li, John P. Gallagher, 2016, "A Source-level

Energy Optimization Framework for Mobile
Applications", arXiv:1608.05248v1 (cs.SE).

[19] Michael Backes, Sven Bugiel, Oliver Schranz, Philipp

von Styp-Rekowsky, Sebastian Weisgerber, 2017,

"ARTist:The Android Runtime Instrumentation and
Security Toolkit", IEEE.

[20] Paul Sabanal, 2015, "Hiding Behind ART", IBM
Security Systems, IBM X Force.

[21] https://forum.xda-developers.com/android/software-

hacking/tool-apk-easy-tool-v1-02-windows-gui-

t3333960. [Accessed 14/5/ 2019].

[22] Dewashish Upadhyay, et al, 2016, "Detecting Malicious

Behavior of Android Applications", IJSTE, International

Journal of Science Technology & Engineering , Volume
2, Issue 10, ISSN (online): 2349-784X.

[23] Chit La Pyae Myo Hein, 2014, "Permission Based

Malware Protection Model for Android Application",

International Conference on Advances in Engineering
and Technology.

[24] Evgeniy Ilyushin, Dmitry Namiot, 2016,"On source-to-

source compilers", International Journal of Open
Information Technologies ISSN: 2307-8162.

[25] Malaga, Spain, 2018, "Model Checking Software", 25th
International Symposium, SPIN.

[26] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.

Ullman, 2007, "Compilers principles, Techniques, &
Tools", Second Edition, QA76.76.C65A37.

[27] https://github.com/JetBrains/android/tree/master/smali.
[Accessed 14/2/ 2019].

[28] Lu CHEN, Xing LIU, Yuan-yuan MA, Cong-cong SHI

and Ni-ge LI, 2016, "Research on Static Analysis

Technology of Android Application Security Defects",

International Conference on Electrical Engineering and
Automation, ISBN: 978-1-60595-407-3.

[29] Annal Ezhil Selvi S, J . Persis Jessintha, 2018, "Compiler

Design Concepts, Worked out Examples and MCQs for

NET/SET",https://www.researchgate.net/publication/316
560022.

[30] Yauhen Leanidavich Arnatovicha, et al, 2018,

"Comparison of Android Reverse Engineering Tools via

Program Behaviors Validation Based on Intermediate

Languages Transformation", IEEE Aceess, Digital
Object Identifier 10.1109/ACCESS.2018.2808340.

IJCATM : www.ijcaonline.org

https://forum.xda-developers.com/android/software-hacking/tool-apk-easy-tool-v1-02-windows-gui-t3333960
https://forum.xda-developers.com/android/software-hacking/tool-apk-easy-tool-v1-02-windows-gui-t3333960
https://forum.xda-developers.com/android/software-hacking/tool-apk-easy-tool-v1-02-windows-gui-t3333960
https://github.com/JetBrains/android/tree/master/smali

