
International Journal of Computer Applications (0975 – 8887) 

Volume 177 – No. 26, December 2019 

11 

A Swarm-based Algorithm for Solving Economic Load 

Dispatch Problem 

Esraa Salem Al-Manaseer 
Department of Computer Science, 

Al-Balqa Applied University 
Al-Salt, Jordan 

 

 

Hind Mousa Al-hamadeen 
Minestry of Education 

Al-Salt, Jordan 

 
 
 

Abdelaziz I. Hammouri 
Department of Computer 

Information Systems, Al-Balqa 
Applied University 

Al-Salt, Jordan 

 

ABSTRACT 

Economic Load Dispatch problem (ELD) is considered a NP-

hard combinatorial optimization problem. The function of 

(ELD) determines low price process regarding a power system 

through dispatching the power generation sources in order 

according to supply the load demand. In this paper, one of the 

most known electrical problems has been displayed by the 

(ELD). Various methods have been used to make the ELD 

solutions better, most well-known employing meta-heuristic 

algorithms. The aim of paper is to find the optimal or near-

optimal ELD fuel cost (fuel cost with the minimum cost) by 

involving a newly created meta-heuristic algorithm, mainly 

Salp Swarm Algorithm (SSA). Using four test systems 

generating datasets, the swarm intelligence (SI) has 

contributed in creating the notion of SSA to get the required 

value of the present approach. Moreover, it will be measured 

and contrasted with other similar types or with those of the 

same significant style that are available in the literature. 

Accordingly, the results make it clear that the SSA is able to 

represent the ELD problem and it able to obtain acceptable 

solutions. 

Keywords 

Economic Load Dispatch, Salp   Swarm-Based Algorithm, 

swarm intelligence, optimization, meta-heuristic, population 

based algorithm. 

1. INTRODUCTION 
Economic Load Dispatch problem (ELD) is considered a NP-

hard combinatorial optimization problem. The function of 

(ELD) determines low price process regarding a power system 

through dispatching the power generation sources in order to 

supply the load demand. In this research, one of the most 

known electrical problems has been displayed by the (ELD). 

Various methods have been used to make the ELD solutions 

better, most well known employing meta-heuristic algorithms. 

The major aim in this paper is to attempt solving the problem 

of Economic Load Dispatch (ELD) by using one of the newest 

meta-heuristics algorithms (Salp Swarm Algorithm), and 

making some amendments to this Algorithm. 

2. ELD PROBLEM FORMULATION 
The Economic Load Dispatch (ELD) is a vital operation in a 

fashionable power grid like unit commitment, Load 

prediction, At the Market Transfer Capability (ATC) 

calculations, Security Analysis, and planning of fuel purchase 

etc. To approach the problem of ELD, different numerical 

optimization techniques have been employed [1]. In classical 

way, ELD problem is overcome by depending mathematical 

programs that built upon optimization methods and 

mechanisms such as: lambda iteration, gradient method [2], 

[3]. Complex restricted ELD is tackled by intelligent methods. 

These methods include various algorithms: genetic algorithm 

(GA) [4], Evolutionary Programming (EP) [5], Tabu Search 

[6], and Particle Swarm Optimization (PSO) [3, 7]  etc. For 

calculation simplicity, current ways are used the second order 

fuel value functions that involve approximation and 

constraints area unit which is handled singly, though generally 

valve-point effects area unit thought-about. 

ELD is known as a process at the aim of sharing the total load 

of power system among the several power generation stations 

in order to achieve highest economy of operation. However, it 

is possible solving the problem of the ELD (nonlinear 

optimization problem) by producing an ideal amount of power 

from the fossil fuel. This can be achieved by downsizing the 

fuel cost as well as satisfying all system restrictions of power 

system. It is necessary noting that, the careful and smart 

scheduling of the generating units will decrease the cost of 

operating cost significantly besides assuring higher reliability 

and security of power system [8, 9]. 

The “classical economic dispatch” downside to find the best 

combination of power generation that minimizes the whole 

fuel value, whereas satisfying the whole needed demand are 

often formulated in the following equation: [6, 10] :  

             
    

 

   
  +  )       (1) 

Where: 

 Fi (Pi) denotes Total Fuel Cost ($/h). 

 ai, bi, ci denotes Fuel cost parameters of 

generator i. 

 Pi denotes the generated power of generator i 

(MW Mega Watt). 

 n denotes the quantity of generators. 

 Constraints 

The optimization drawback is confined by two kind’s 

constraints  

1. Equality constraints 

The volume power generated should stay the equal as like the 

total request in addition to the total transmission losses. 

           
 
                                                                                                                                                  (2) 

Where: 

         denotes load demand. 

        denotes power transmission loss. 
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2. inequality constraints 

It is necessary that power generation of each generator takes 

place between extreme and lowest values of power 

generation, which can be defined as the following: 

Pi(min) ≤Pi≤Pi(max)                        (3) 

Where: Pi(min) is the minimum generation of power. And 

Pi(max) is the maximum generation of power. 

In ELD with ‘‘valve point loadings’’, where objective 

function F is showed using complicated equation, as shown in 

the eq. (1.4):  

F = min (       
 
   ) 

 =min(     
  

             

                                     )  

(4) 

Where:  ai, bi, ci, ei, fi are the cost coefficients of unit i. 

Hence, the aim of the ELD problem is decreasing the total 

fuel cost at the thermal power plants and respond with the 

requirement of a power system while satisfying equality and a 

set of inequality constraints [11]. 

We suggested and introduced a newly greated algorithm for 

solving this problem, it is called “Salp Swarm algorithm 

(SSA)” which helps to obtain:  

1. An improved solution with low fuel cost. 

2. Improve the initial random solutions. 

3. META-HEURISTIC ALGORITHM 

FOR ELD 
The researcher interested in meta-heuristic techniques, 

especially in the last years, in many different areas that focus 

on many different issues, such as: scheduling problems [12-

16], data classification [17], time series [18, 19], data 

clustering [20, 21], and global optimization [22]. Because of 

these methods, have multiple capabilities, the researchers 

concerned in depending them in developing solutions for the 

aim of resolving ELD. Based on the obtained results, it was 

found that applying such these methods on ELD achieved 

high efficiency and provided robust solutions. 

We provide a number of algorithms, which have dealt with 

Economic Load Dispatch. 

 Particle Swarm Optimization: 

 Genetic Algorithm 

 Harmony Search Algorithm 

 Grey Wolf Algorithm 

 Krill Herd Algorithm 

 Salp Swarm Algorithm 

 Differential Evolution 

 Cuckoo Search 

 Teaching Learning Based Optimization 

 Social Spider Algorithm 

 Backtracking Search Algorithm 

 Chaotic Bat Algorithm 

3.1 Work Mechanism of Salp Swarm 

Algorithm 
Salp Swarm Algorithm (SSA) [23] is a novel optimization 

algorithm for solving optimization problem. The main 

revelation of SSA is the swarming behaviour of salps when 

navigating and foraging in oceans. 

Salps are also pelagic tunicates together with a complicated 

life cycle that alternates sexual (solitary) and asexual 

(aggregate) generations. Huge swarms of salps periodically 

improve with remarkable rapidity and contain enormous 

numbers regarding animals. These swarms are well known to 

many oceanographers as nuisances that clog plankton nets, 

however, Salps also play an essential energetic role great 

areas of the ocean. [24]. 

Biological researches of this creature are still in the early 

milestones, mainly because their living habitats are extremely 

inaccessible, and it is fairly difficult to sustain them in a 

laboratory environment. One of the most interesting 

behavioral characteristics of salps is their highly sophisticated 

swarming behavior. In deep oceans, salps often form a swarm 

called salp chain. This chain is illustrated in Figure 1, and the 

shape of salp is shown in Figure (2) below.  

 

Fig 1: A Salp Chain.  

 

Fig 2: shape of Salp 

Originally, the salps’ population was divided into two groups: 

head and followers to formulate the mathematical model for 

salp chains. The position of the head is at the initial part of the 

chain, whereas the rest are the followers. The leading salp 

guides the path and propulsion of the swarm, whereas the 
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followers depend on other salps in the chain. A design 

concept of salp chain is established in (Figure 3). [23, 25, 26]. 

 

Fig 3: Illustration of a Salp Chain. 

Figure 4 and 5 shows the flowchart and the pseudo-code of 

the original SSA, respectively. 

 

Fig 4: Flowchart of SSA. 

 

 

Fig 5: Pseudo code of the SSA algorithm 

3.2 Improvement Phase for the SSA 

algorithm 
Improve the initial solution by update the position of the 

leader as shown in the following equation:  

  
 = 

               –                        

   –         –                            

  
(5) 

Where (  
 ) shows the position of the salp heading a chain 

(the leader)in a given (j-th) dimension. (  ) is the position of a 

food source in the (j-th) dimension, while (   ) indicates the 

upper bound of the(j-th) dimension, (   ) represents the lower 

bound of the (j-th) dimension. (C1), (C2), and (C3) are just 

random numbers.  

The above equation shows that the leader only modifies its 

current position depending on the food source location. The 

coefficient (C1), is the most significant parameter in the SSA, 

since it balances both the exploration, and exploitation as 

defined in following equation [23]: 

C1=2 
  

  

 
 
 

 
(6) 

Where (l) is the current iteration and (L) is the maximum 

number of iterations.  

The parameters (C2) and (C3) are random numbers uniformly 

generated in the interval of [0,1]. In fact, they dictate the step 

size and whether the next position in the (j-th) dimension 

should be leaning towards positive or negative infinity. 

The below equation (Newton’s law of motion) is applied to 

modify the following salps positions [23]. 

Xj
i=

 

 
 at2 + v0t (7) 

where (i≥2), (Xj
-i) shows the position of the(i-th) follower salp 

in the (j-th) dimension, (t) stands for time, and (v0) is the 

initial speed, (a) is calculated as shown in the following 

equation: 

a=vfinal/v0 (8) 

where v = (x-x0)/t Because the time used to attain 

optimization changes over several iterations, the discrepancy 
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between iterations is equal to (1), and v0 is assumed to equal 

zero. Eventually, the following equation can be produced: 

Xji=
 

 
 (Xji + Xji-1) (9) 

Where (i≥2) and (xji) shows the position of an (i-th) follower 

salp in a (j-th) dimension. 

SSA goes through several steps: firstly, the SSA algorithm 

initiates several salp at unsystematic positions to approach the 

global optimum. After that, it computes the each individual 

salp fitness to locate the fittest salp. Once the fittest salp is 

determined, its position is assigned to the variable (F), which 

denotes the food source that a certain salp chain is targeting. 

In the time being, the coefficient (C1) is changed for each of 

the dimensions, and the leading and following salps positions 

are consequently modified.  If any of the salps goes astray 

beyond the search space, it will be located and brought back 

to be included within the search space margins. 

4. EXPERIMENTAL RESULTS 
The SSA performance was assessed in this research through 

four testing systems (6, 13, 15, 40) generating units. 

4.1 Input Parameters 
Experiments of the SSA were implemented using Net Beans 

IDE 8.2 platform on a Windows 10 pro operating system, and 

a mother board of Intel Core i7 8th generation CPU, and an 8 

GB DDRAM. Input parameters in the four testing systems (6 

generators, 13 generators, 15 generators, and 40 generators) 

were incorporated in all of the experiments that were 

conducted based on the values shown in the below tables 

(1,.2,.3, and.4) [27, 28].  

Table 1: Shows Input Parameters of the First Testing 

System1 (6 Generators) 

Unit A B C Pmin Pmax 

1 0.0070 7.0 240 100 500 

2 0.0095 10.0 200 50 200 

3 0.0090 8.5 220 80 300 

4 0.0090 11.0 200 50 150 

5 0.0080 10.5 220 50 200 

6 0.0095 12.0 190 50 120 

 

Table 2: Shows Input Parameters of the Second Testing 

System2 (13 Generators) 

Unit A B C E f Pmin Pmax 

1 0.00028 8.1 550 300 0.035 0 680 

2 0.00056 8.1 309 200 0.042 0 360 

3 0.00056 8.1 307 200 0.042 0 360 

4 0.00324 7.74 240 150 0.063 60 180 

5 0.00324 7.74 240 150 0.063 60 180 

6 0.00324 7.74 240 150 0.063 60 180 

7 0.00324 7.74 240 150 0.063 60 180 

8 0.00324 7.74 240 150 0.063 60 180 

9 0.00324 7.74 240 150 0.063 60 180 

10 0.00284 8.6 126 100 0.084 40 120 

11 0.00284 8.6 126 100 0.084 40 120 

12 0.00284 8.6 126 100 0.084 55 120 

13 0.00284 8.6 126 100 0.084 55 120 

 

Table 3: Shows Input Parameters of the Third Testing 

System3 (15 Generators) 

Unit A B C Pmin Pmax 

1 0.000299 10.1 671 150 455 

2 0.000183 10.2 574 150 455 

3 0.001126 8.8 374 20 130 

4 0.001126 8.8 374 20 130 

5 0.000205 10.4 461 150 470 

6 0.000301 10.1 630 135 460 

7 0.000364 9.8 548 135 465 

8 0.000338 11.2 227 60 300 

9 0.000807 11.2 173 25 162 

10 0.001203 10.7 175 25 160 

11 0.003586 10.2 186 20 80 

12 0.005513 9.9 230 20 80 

13 0.000371 13.1 225 25 85 

14 0.001929 12.1 309 15 55 

15 0.004447 12.4 23 15 55 

 

Table 4: Shows Input Parameters of the Fourth Testing 

System4 (40 Generators) 

Unit A B c E f Pmin Pmax 

1 0.0069 6.73 94.705 100 0.084 36 114 

2 0.0069 6.73 94.705 100 0.084 36 114 

3 0.02028 7.07 309.54 100 0.084 60 120 

4 0.00942 8.18 369.03 150 0.063 80 190 

5 0.0114 5.35 148.89 120 0.077 47 97 

6 0.01142 8.05 222.33 100 0.084 68 140 

7 0.00357 8.03 287.71 200 0.042 110 300 

8 0.00492 6.99 391.98 200 0.042 135 300 

9 0.00573 6.6 455.76 200 0.042 135 300 

10 0.00605 12.9 722.82 200 0.042 130 300 

11 0.00515 12.9 635.2 200 0.042 94 375 

12 0.00569 12.8 654.69 200 0.042 94 375 

13 0.00421 12.5 913.4 300 0.035 125 500 

14 0.00752 8.84 1760.4 300 0.035 125 500 

15 0.00708 9.15 1728.3 300 0.035 125 500 

16 0.00708 9.15 1728.3 300 0.035 125 500 

17 0.00313 7.97 647.85 300 0.035 220 500 

18 0.00313 7.95 649.69 300 0.035 220 500 

19 0.00313 7.97 647.83 300 0.035 242 550 

20 0.00313 7.97 647.81 300 0.035 242 550 

21 0.00298 6.63 785.96 300 0.035 254 550 

22 0.00298 6.63 785.96 300 0.035 254 550 

23 0.00284 6.66 794.53 300 0.035 254 550 
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24 0.00284 6.66 794.53 300 0.035 254 550 

25 0.00277 7.1 801.32 300 0.035 254 550 

26 0.00277 7.1 801.32 300 0.035 254 550 

27 0.52124 3.33 1055.1 120 0.077 10 150 

28 0.52124 3.33 1055.1 120 0.077 10 150 

29 0.52124 3.33 1055.1 120 0.077 10 150 

30 0.0114 5.35 148.89 120 0.077 47 97 

31 0.0016 6.43 222.92 150 0.063 60 190 

32 0.0016 6.43 222.92 150 0.063 60 190 

33 0.0016 6.43 222.92 150 0.063 60 190 

34 0.0001 8.95 107.87 200 0.042 90 200 

35 0.0001 8.62 116.58 200 0.042 90 200 

36 0.0001 8.62 116.58 200 0.042 90 200 

37 0.0161 5.88 307.45 80 0.098 25 110 

38 0.0161 5.88 307.45 80 0.098 25 110 

39 0.0161 5.88 307.45 80 0.098 25 110 

40 0.00313 7.97 647.83 300 0.035 242 550 

 

4.2 Comparison with Methods 
In this paper there are four different testing systems of 

different computational complexity levels were carried out to 

test the SSA algorithm effectiveness. 50 individual trial runs 

were carried out to determine the performance of SSA . The 

results of the optimum and mean fuel cost were listed for each 

of the four testing systems. For the 6 generators problem, the 

average run time was around (18.82101 seconds), which was 

the first testing system, and (31.6979 seconds) for the 

40generators problem, which was the last testing system. The 

comparisons are illustrated in tables below. 

Table 5: Fuel Cost and Statistical Results for 50Trial Runs 

of the First Testing System1 (6 Unit Testing System) 

No. Algorithm Mean 

Fuel 

Cost 

($/hr) 

Best Fuel 

Cost 

($/hr) 

Max. Fuel 

Cost($/hr) 

Run 

Time 

(s) 

S. D 

1 SSA 15470.32 15444.88 15515.83 18.82 17.95 

2 

 

NPSOLRS 

[29] 

15454 

 

15450 

 

15452 

 

NA 

 

NA 

 3 DE[30] 15449.62 15449.58 15449.65 3.634 NA 

4 GA[31] 15469.21 

 

15451.66 

 

15519.87 

 

NA 

 

NA 

 5 MABC [32] 15449.89 15449.89 15449.89 0.62 0.0 

6 GAAPI[31] 15449.81 15449.78 15449.85 NA NA 

7 MTS [33] 15451.17 15450.06 15450.06 1.29 0.93 

8 SA[33] 15488.98 15461.1 15461.1 50.36 28.37 

9 TS[33] 15472.56 15454.89 15454.89 20.55 13.72 

10 CBA [27] 15454.76 15450.23 15518.65 0.704 2.97 

 

These results show that SSA is significantly better than other 

algorithms in the comparison in generating. In terms of 

standard deviation, the values that were acquired by SSA are 

much less than most of the methods compared with, which 

confirms that the SSA algorithm is stable in finding at optimal 

solutions. Whereas the minimum value of the Mean Fuel Cost 

is (15,449.81$/hr). In addition, the minimum value of the 

Max. Fuel Cost is (15,449.6508 $/hr). Moreover, the 

minimum run time is (0.62s) and the minimum standard 

deviation is (0.9287).  Table 6 shows a testing system that has 

just over twice the number of generator, which consists of 

13generators with a load demand of 1800 MW. It contains 

valve point loading, which can introduce a number of local 

minima, thus creating a multimodal cost curve. The best cost 

achieved by SSA is (18,751.11 $/hr). It is taken into account 

that all the generations meet the generation limit constraints. 

Table 6: Fuel Cost and Statistical Results for 50Trial Runs 

of the Second Testing System2 (13 Unit Testing System) 

no. Algorithm Mean 

Fuel 

Cost 

($/hr) 

Best 

Fuel 

Cost 

($/hr) 

Max. 

Fuel 

Cost 

($/hr) 

Run 

Time 

(S) 

S. D  

1 SSA 18810.18 18751.11 19019.61 12.48 112.3 

2 

 

PSO-SQP [34] 18029.99 

 

17969.93 

 

NA 

 

33.97 

 

NA 

 3 

 

HCRO-DE 

[35] 

17960.59 

 

17960.38 

 

17961.04 

 

4.91 

 

0.069 

 4 

 

EP [34] 18127.06 

 

17994.07 

 

NA 

 

157.43 

 

NA 

 5 

 

CE-SQP [36] 17965.97 

 

17963.85 

 

NA 

 

NA 

 

NA 

 6 

 

PSO [34] 18205.78 

 

18030.72 

 

NA 

 

77.37 

 

NA 

 7 

 

EP-SQP [35] 18106.93 

 

17991.03 

 

NA 

 

121.93 

 

NA 

 8 

 

CEP [37] 18190.32 

 

18048.21 

 

18404.04 

 

NA 

 

NA 

 9 

 

IFEP [37] 18127.06 

 

17994.07 

 

18267.42 

 

NA 

 

NA 

 10 

 

CGA_MU 

[36] 

- 

 

17975.34 

 

NA 

 

NA 

 

NA 

 11 CBA[3] 17965.48 

 

17963.83 

 

17995.22 0.97 

 

6.85 

        

Table 7: Convergence Results for 50Trial Runs of the 

Third Testing System3 (15 Unit Testing System) 

No. Algorithm 

 

Max.  Total generation cost 

Minimum        Average 

 

S.D  

1 SSA 33350.56 32917.44 33136.03 97.48 

2 SGA [38] 33005 32711 32802 35.584 

3 SOH-PSO 

[39] 

32945 32751.39 

 

32878 - 

4 MTS [33] 32796.15 32716.87 32767.21 17.51 

5 BF-NM [40] - 

 

32784.50 

 

32976.81 

 

85.77 

 6 GAAPI [31] 32756.01 32732.95 32735.06 - 

7 GA [41] 33337 33113 33228 - 

8 APSO [42] - 32742.77 32976.68 133.92 

9 SOH-PSO 

[39] 

32945 

 

32751.39 

 

32878 

 

- 

 10 BSA [43] 32704.5 

 

32704.45 

 

32704.47 

 

0.028 

 11 PSO [41] 33331 32858 33039 - 

 

This testing system consists of 15 generating units. The data 

used is obtained from Table 3 and the power demand is 2630 

MW. The results achieved by SSA are compared with other 

methods in Table (7). The results in this table show that the 

other methods achieved better results in terms of best fuel 

cost, which make them better than SSA. 

This system is made of forty generators meeting a demand 

of10,500 MW. It contains valve point loading effects, which 

results in introducing a number of local minima, and as a 

result, leads a further problem difficulty. The system data is 

taken from Table 4.4 which shows the idea generation values 

along with the cost achieved. The best fuel cost obtained by 

SSA is (128,875.1 $/hr), which is not an optimal value when 

compared with other methods tested as shown in the table. 

The results in table 4.8 show that the other methods have 

achieved better results in terms of best fuel cost, and are 
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superior to the results achieved by SSA, however, SSA ranked 

seventh of twenty methods for run time. 

Figures (6,7,8, and 9) indicate the graphs on the convergence 

curve of the best obtained solutions in each iteration for the 

SSA algorithm for a normal run. As shown in these figure the 

SSA have a fast convergence, where it can improve the 

solution quickly at the beginning of the search process, after 

that, the SSA entered the stagnant stage, where the solution 

has been improved slowly. The comparison showed 

impressive SSA results exceeding the ones generated by other 

existing methods found in the literature review, especially 

when the number of generators used was small. 

Table 8: Fuel Cost and Statistical Results for 50 Trial 

Runs of the Fourth Testing System4 (40 Unit Testing 

System) 

No Algorithm Mean 

Fuel Cost 

Best Fuel 

Cost 

Max Fuel 

Cost  

Run 

Time 

S.D 

1 SSA 141542.2 128875.1 155701.6 31.70 6539.4 

2 PSO-SQP 

[24] 

122245.2 122094.6 NA 

 

NA 

 

NA 

 
3 DSD [36] - 

 

121412.5 

 

NA NA NA 

4 HCRO-

DE [35] 

121413.1 121412.5 121415.68 7.64 91 

5 NPSO-

LRS 

[29] 

122209.3 121664.4 122981.5 3.93 NA 

6 MABC  

[32] 

121431.58 121412.59 121493.19 1.92 18.1 

7 DE [30] 121439.89 121412.68 121479.63 31.503 NA 

8 CE-SQP 

[36] 

121423.65 121412.88 NA NA NA 

9 BSA [28] 121474.88 121415.61 121524.95 13.12 

 

NA 

10 CRO [35] 121418.03 121416.69 121422.92 8.15 0.88 

11 AA (Dist.) 

[44] 

121788.7 

 

1217887 

 

NA 

 

NA 

 

NA 

 
12 QPS [3] 122225.07 121448.21 121994.03 48.25 

 

114.08 

13 CSO [29] 121936.19 121461.67 NA 

 

NA 

 

32 

 14 SOH-PSO 

[39] 

121853.57 121501.14 122446.3 NA NA 

15 θ-PSO [3] 121509.84 121420.90 121852.42 103.96 92.40 

16 BBO [45] 121508.03 

 

121426.95 

 

121688.66 NA 

 

NA 

 17 SQPSO 

[3] 

121455.7 

 

121412.57 121709.56 47.24 49.81 

18 EP-SQP 

[34]  

122379.63 122323.97 NA 

 

997.73 

 

NA 

 19 SCA [46] 125235.13 122713.68 130918.39 130.23 NA 

20 CBA [33] 121418.98 121412.54 121436.15 1.55 

 

1.611 

  

 

Fig 6: Convergence curve for the SSA for the Test System 

1 (6-generators). 

Fig 7: Convergence curve for the SSA for the Test System 

2 (13-generators).  

 

Fig 8: Convergence curve for the SSA for the Test System 

3 (15-generators) 

 

Fig 9: Convergence curve for the SSA for the Test System 

4 (40-generators). 
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5. CONCLUSIONS AND FUTURE 

WORK 
This paper is suggesting a new method to tackle ELD, in order 

to provide a good solution within reasonable time.in this 

research, ELD has been addressed by employing a newly 

created meta-heuristic method called SSA. The proposed 

approach was evaluated by using four testing systems with 

6,13,15,40 units respectively for generating stations. The ELD 

problem was resolved by SSA in a MATLAB environment, 

and then the results obtained by using SSA were compared 

with other methods as mentioned earlier. SSA outperformed 

the other methods in the comparison for a smaller number of 

generators. Conversely, the performance of SSA decreased as 

the number of generators increased. 

The main limitation is the inability to test the SSA on real-

world problems, as this method was only tested using standard 

ELD problem instances. The performance of the SSA 

algorithm degraded with the problem size increases. 

Consequently, it is crucial to test the ability of SSA to address 

similar problems on different real world perspective. 

In this future, we can enhance the performance of SSA on 

tackling the ELD problem by Incorporating SSA with other 

single or population based on meta-heuristic algorithms, and 

testing it on a large database. 
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