
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

17

A Comparative Study of Existing Cloud Security System

Models as against an Implementation of the CDDI Model

Dubbed SecureMyFiles System

Frimpong Twum
Kwame Nkrumah University of

Science and Technology
Department of Computer Science

Kumasi - Ghana

J. B. Hayfron-Acquah
Kwame Nkrumah University of

Science and Technology
Department of Computer Science

Kumasi - Ghana

J. K. Panford
Kwame Nkrumah University of

Science and Technology
Department of Computer Science

Kumasi - Ghana

ABSTRACT
Prior studies have established the security of resources

outsourced for cloud storage heavily preys on subscribers’

minds. Existing cloud security frameworks classified as direct

architectures (such as provided by DropBox, Box, Google,

BackBlaze B2) and indirect architectures provided by the

Cloud Access Security Brokers (CASB)/Security as a Service

(SECaaS) providers have been found to be inadequate in

assuring the cloud subscriber of the security of resources in

terms data corruption, privacy, and performance in recovering

data. This study employed an experimental lab set-up using

JAVA, SQL, and PHP to develop the Cloud Data Distribution

Intermediary (CDDI) framework into software system dubbed

Secure My Files (SMF). The SMF system provides users a

choice of selecting one of four data priority levels (Low,

Normal, Important, or Critical) at the time of uploading their

data resource for cloud storage. The priority level selected

determines: the uploading and downloading process the system

uses, the amount of data that can be recovered in the event of

data corruption, and the performance during data recovery. The

security strength of the SMF system in relation to assuring of

confidentiality, Integrity, and Availability of cloud data was

found to be much stronger than the existing models and

systems provided by DropBox, Box, Google Drive, BackBlaze

B2, and CASB/SECaaS. This is because with the SMF System

the cloud subscriber data is distributed across different Cloud

Service Providers (CSP’s) distributed storage infrastructures as

against the existing frameworks and systems where the data

reside with one single provider.

General Terms

Cloud Computing, Cloud Security Framework, Cloud

Subscriber, Cloud Service Providers, Security, Privacy, Cloud

Computing Framework

Keywords
Cloud Computing, Cloud Security Framework, Cloud

Subscriber, Cloud Service Providers, Security, Privacy, Cloud

Computing Framework

1. INTRODUCTION
Cloud computing come with numerous benefits but also faces

several security issues especially in terms of data privacy, data

integrity, and data availability. Cloud computing characteristics

of resource pooling, multi-tenancy, on-demand self-service,

broad-network access, and rapid elasticity introduces new

security threats in terms of data accessibility, data ownership

and data accuracy and hence demand new approaches for

dealing with them. Traditional counter security measures have

been found to be inadequate for dealing with cloud security

issues, an example been that encrypting data before sending it

to a single CSP does not protect the data from been decrypted,

deleted, or altered (O’Reilly, 2017). A survey conducted by

the Cloud Security Alliance CSA in 2016 identifies twelve

security concerns of cloud computing including data breaches,

data loss, malicious insiders and Denial of Service among

others (The Treacherous 12, 2017). Other cloud security issues

include: the cloud provider profiting from using the

subscriber’s data entrusted in their care for advertising, or

using the data to learn more about the subscriber for their own

interest.

Although research suggests that cloud security threats from

multi-tenancy architecture have been reduced by major CSPs

such as Amazon and Microsoft, the threats are still real

especially for smaller CSP’s (Shapland, 2017). In addition,

although different countries have different privacy and security

laws, acts, and regulations that govern the protection of data for

example, the Asia Pacific Economic Cooperation (APEC)

privacy framework, the Organisation for Economic

Corporation and Development (OECD) privacy framework and

the European Economic Area (EEA) data protection laws, the

actual responsibility of ensuring that data and other resources

outsourced to the cloud are secured and protected against data

loss, damage, misuse usually rest with the custodian of the

data - the CSP (CSA, 2011; OpenCirrus, 2017). However,

given that data is the life blood of every serious organisation

and that with cloud computing the subscriber’s vital data asset

is outsourced to third party organisation, it is critical the cloud

subscriber take key interest in ensuring the safety of their data

been outsourced for cloud storage. Hence, this study is of the

same view with Fahmida (2016) that with cloud computing, the

data owner (cloud tenant) even bears paramount responsibility

in ensuring security of its data than the custodian of the data.

Especially where critical business data such as trade secrets,

financial data, employee data, or health data are been

transferred for cloud storage. This assertion is more critical

because when it comes to cloud computing service provision

there is a chain of inter-dependency of services provisioning

and hence tracing data leakage(s) could be extremely difficult.

This study proposes secure data security architecture and

system that ensures data is useful only to the owner.

Aim and Objectives - This paper implements a secured cloud

data security solution in a defense-in-depth design based on the

CDDI framework (Twum et. al. 2019) that alleviates the cloud

subscriber’s fear of their data security in respect of the data

accessibility, data usage, data location, data accuracy, and data

ownership. The objective of the study is to implement and test

a total robust cloud security solution framework dubbed Cloud

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

18

Data Distribution Intermediary (CDDI) in terms of strength and

performance against existing cloud security frameworks.

2. LITERATURE REVIEW

2.1 Review of Existing Cloud Storage

Security Architectures
Subscriber → Provider (Direct) Model

The prevalent model among users of cloud storage is the direct

link to the Cloud Storage Provider (CSP) via the web interface

or the desktop/mobile client as shown in Figure 1. CSPs such

as Google Drive, Dropbox and Box all provide an interface

through which the client can upload or download files, and in

the case of desktop or mobile interfaces, synchronize files and

folders on their desktop or mobile device. In the direct model,

data security while the file is being transferred and while it is

residing in the cloud storage space, is the responsibility of the

CSP (TipTopSecurity, 2016). Different CSPs implement

security in a different way but the most common approach is to

split the file into chunks on the subscriber’s end, encrypt the

chunks, then transfer the chunks individually to the provider’s

infrastructure over the internet.

Figure 1 - Direct Model of Subscriber-CSP interaction

Subscriber -> Cloud Access Security Broker (CASB) ->

Cloud Storage Provider (Indirect) Model

In this model, the subscriber adds to data security by involving

a Security-As-A-Service (SECaaS) system in the cloud storage

setup (Figure 2). Cloud Access Security Broker (CASB)

systems are SECaaS implementations that function as a

software guard for the data that moves around within and out

of an organization. A CASB acts as an independent

intermediary between a cloud subscriber and cloud provider.

CASB’s are on-premises or cloud-hosted software that

sits between cloud subscribers and CSP’s to enforce security,

compliance, and governance policies for cloud usage

(SkyHigh, 2017). By employing a CASB introduces an extra

layer of security in the cloud environment which gives the

subscriber security assurance and install some level of trust

(DoubleHorn, 2017). CASB systems enforce the regulations on

what data can be transferred in and out of the organization,

especially to Cloud Servers (Rubens, 2017).

CASBs support a varying set of functions including, but not

limited to, visibility into cloud usage within the organization,

enforcement of compliance with the organization’s regulations

for cloud interaction, protection from external malware and a

way to ensure that data is stored in the cloud securely. Notable

CASBs are Forcepoint CASB, Skyhigh Networks, Cisco

Cloudlock and Microsoft Cloud App Security. By way of

securing data sent to the cloud, CASBs often encrypt the

organization’s data before upload. In cases where the data in

the file is marked as too important to risk its contents being

disclosed, the CASB protects the organization by preventing

the upload of the file to the CSP. Figure 3 is an example

implementation of CASB via Cloud Proxy.

Figure 2 - Indirect Model of Subscriber-CSP Interaction

Using Cloud Access Security Broker

Figure 3 - Example Implementation of Cloud Access

Security Broker via Cloud Proxy (Forcepont, 2017)

3. METHODOLOGY
The Cloud Data Distribution Intermediary (CDDI) framework

(appendix 2) is implemented into software using the Java, SQL

and PHP programming languages. The software is named

SecureMyFiles (SMF) System.

3.1 The SecureMyFiles (SMF) System
The SecureMyFiles (SMF) system has modules as follows:

3.1.1 File Upload Module: The file upload module

depicted by Figure 4 is sub-components SMF system. The user

first selects the file to upload regardless of the size, format or

type and whether zipped or unzipped. It should be noted

though that the Java Virtual Machine (JVM) allocates memory

for the program based on the hardware Random Access

Memory (RAM). The implication here is that files with a

substantially large size can cause an OutOfMemory Exception

during runtime.

The file name is hashed using SHA-1 as the first layer of

system security to obscure the identity of the file being

uploaded. The system uses Secure Hash Algorithm 1 (SHA-1)

from Java’s inbuilt Security package. Though the Message

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

19

Digest 5 (MD5) was considered as an alternative hashing

method but the MD5 algorithm is now widely regarded as

cryptographically broken (Kessler, 2017). This means that the

hash from an MD5 function can be reversed to obtain the

original data which was hashed. As such, the MD5 algorithm

was discarded in favor of SHA-1 which is still a one-way

hashing scheme. Further, SHA-1 produces a longer string than

MD5. This is useful in that it is more difficult to break a longer

string than a shorter one.

As a second layer of security, the contents of the file are

obfuscated (transposed) using the encryption function of

transposition cipher algorithm based on the motions of the

Rubik’s cube to generate a cipher text (an encrypted output).

The system uses a hash value based on the user’s credentials as

the encryption key. The system applies a custom algorithm to

transform the hash value into a sequence of rotations. During a

decryption, the rotation sequence is read from the last to the

first and each rotation is carried out in the counter-clockwise

direction. This undoes the clockwise rotations done during the

encryption (Twum et.al., 2019a).

As a third layer of security, the encrypted output file is split

into shards using a File Splitting and Erasure Protection

Modules for example the Reed-Solomon coding technique or

the Checksum Data Recovery technique (CDR) (Twum et.al.,

2019b). To make use of Reed Solomon Coding, first an

encoding polynomial is generated after which it is used to

encode the data in a file (Twum et. al, 2016a, Twum et. al,

2016b, Twum et.al,2017). After the erasure protection

techniques have been applied, the shards are saved as

individual files on the disk. Figure 5 shows the results of

splitting a file.

As a fourth layer of security, the shards upload to a particular

cloud account is not done in the order which the splits are

produced. Instead, the splits are distributed in a non-

deterministic manner to the user’s subscribed selected

multiple cloud providers’ storage facilities using a shuffling

method. Since the data is uploaded in no particular order, it is

difficult to determine the total number of shards from the

content of one drive. The total number of shards is very

necessary if an intruder wants to reconstruct the files from its

shards.

A file’s metadata file is used to keep record of which split

chunks are sent to which cloud provider’s facility for storage.

Finally, the SMF System user metadata is updated to keep

track of user’s uploaded files and to help in retrieval of

uploaded files from the various cloud accounts.

3.1.2 File Download Module: The download module is

composed of 7 activities as shown by Figure 6

The user selects the file to download from their profile by

clicking on the appropriate file name which is actually kept in

the user metadata.

The selected file name is hashed by applying the same hash

function as that of the upload module to obtain the same hashed

value if the file integrity has not been tempered with; the

resulting hashed value is used with the file metadata file to

obtain the required split chunks/shards from the user’s cloud

accounts storing them to a temporary storage (a buffer area).

The downloaded shards are then decoded or joined using the

Reed-Solomon decoding method (Twum et. al., 2017) or the

CDR decoding method (Twum et. al., 2019b).

The resultant file is re-transposed by applying the decryption

function of the Rubik’s Cube transposition cipher (Twum et.

al., 2019a) used in the upload module.

The decrypted file output is renamed to the selected file name

and delivered to the SMF user.

4. IMPLEMNTATION
The system uses the hashing methods in the

java.security.MessageDigest package to hash the file name.

The input to the system’s hashing method is a string (the file

name). The method returns the digest of the file name as a

string. Listing 4.1 is a code snippet of the implementation of

the hashing method.

public static String getHash(String txt){

 java.security..MessageDigest md =

 MessageDigest.getInstance("SHA1");

 byte[] array = md.digest(txt.getBytes());

 StringBuilder sb = new StringBuilder();

 for (byte anArray : array)

 sb.append(Integer.toHexString((anArray & 0xFF) |

 0x100).substring(1, 3));

 return sb.toString();

}

Listing 4.1 - getHash method to generate the hash of a string

Implementation Of File Splitting And Erasure Protection

Module (FSEPM) Using Java

For the SMF system to guard against data loss or corruption, it

makes use of Reed Solomon coding (Twum et. al, 2016a,

Twum et. al, 2016b, Twum et.al,2017) or the CDR technique

(Twum et.al., 2019b) to create parity data with which the file

can be reconstructed in the event of data loss or corruption. The

SMF system user is given the choice of choosing a file priority

at the time of uploading a file to the cloud. The selected file

priority determines the parameters for creating the parity data.

The system provides four file priority levels as follows; “Low”,

“Normal”, “Important” and “Critical.”

Implementation of the Erasure Protection via Reed

Solomon Coding

Reed Solomon Coding refers to a method of error detection and

correction that computes recovery information before the file is

transmitted. The recovery information, called “parity”, is

transmitted together with the file data. The presence of an

“error” can be detected by examining the parity information

while an “erasure” is the complete absence of a portion of the

data. To perform a Reed Solomon Encoding, the system needs

the number of data shards as well as the number of parity

shards. These numbers are passed to the encoding method

which breaks the file into “data” number of shards and

computes “parity” number of metadata information which can

be used to recover lost or corrupt data shards (Twum et. al,

2016a; Twum et. al, 2016b, Twum et. al, 2017).

The system receives a file priority setting from the user at the

time of selecting a file for upload. Based on the file priority

setting, the system determines the number of data and parity

shards to use. The system can recover up to “parity” number of

shard loss and can correct up to half “parity” number of shard

corruption. This means that the larger the number of parity

data, the more likely it is that the file can be reconstructed in

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

20

case there is some loss of data. Hence, files with a higher

priority are given a larger number of parities. This makes

recovering them more likely than recovering files with a lower

priority. However, the higher the number of parity shards, the

more the computation that goes into checking for errors and

recovering missing or corrupt files. As such, files with higher

priority take a longer time to reconstruct and also require more

memory for the reconstruction operation. They also require

more disk space locally and on the cloud.

The priority levels that use Reed Solomon coding and their

associated data and parity shard counts are specified below.

Low - Files with “low” priority are split into 120 data shards

and 24 parity shards, regardless of the size of the file. In other

words, the splitting has no bearing on the size of the file. Each

of the 6 CSPs receives 24 shards for storage. This offers the

least protection since this configuration allows for 12 error

correction and 24 erasure recovery, meaning that the subscriber

can recover data if one of the CSPs is not available. However,

the computation is fastest and uses less memory.

Normal - Files with “normal” priority are split into 96 data

shards and 48 parity shards. Therefore, 24 errors can be

corrected and 48 erasures can be recovered. This means that

the data can be recovered even if two of the subscriber’s CSPs

are down. However, the encoding operation is slower than with

the “low” priority files and it requires more memory.

Important - Files with “important” priority are split into 72

data shards and 72 parity shards, allowing 36 errors to be

corrected and 72 erasure recoveries. In this configuration, the

data can be recovered even if three CSPs are unavailable. This

uses the most computational power as well as memory.

In all cases, SecureMyFiles breaks the file into a number of

data shards and computes the parity shards so that the total

number of shards is 144. Any number of shards from 2 to 256

can be used for the process, but 144 is an optimal value

because it balances the computation time and strength of the

Reed Solomon Encoding/Decoding process. In other words,

using a total shard count of 256 would have been the most

secure implementation of Reed Solomon encoding/decoding

but that would likely make heavy use of the device’s CPU and

memory. Further, SMF prefers that the minimum number of

CSPs connected to the SMF client is 6.

Listing 4.2 presents a snippet of code that shows how the data

and parity shard counts are set based on the user’s choice of a

priority setting (i.e. Low, Normal, or Important).

if (filePriority.equalsIgnoreCase("low")){

 dataShards = 120;

 parityShards = 24;

}

else if (filePriority.equalsIgnoreCase("normal")){

 dataShards = 96;

 parityShards = 48;

}

else if (filePriority.equalsIgnoreCase("important")){

 dataShards = 72;

 parityShards = 72;

}

Listing 4.2 - Snippet of code to show how the data and parity

shard counts are set based on the priority setting

Implementation of the Erasure Protection via the CDR

Technique

Unlike the other file priority options, the fourth priority level of

the SMF system dubbed “critical” does not use Reed Solomon

coding to protect the data. Instead it employs the CDR

technique that computes checksums for a file by taken bytes

from several different sets of data bytes. The checksum

information is stored in a metadata server for future reference

in order to ascertain whether the user’s data has been

corrupted. Furthermore, the checksum data is used to correct

errors within the file.

Encoding:

The processes involved in using the CDR technique are

presented below.

Internal Data Representation:

The system first reads data into a three-dimensional array. The

array has a special property that the cross section is array

that represents a single module (a data shard). The pseudocode

in Listing 4.3 represents a method to perform the conversion of

the file data into a three-dimensional array. Figure 7 illustrate

the Operations of the CDR. It depicts the formation of shards

from the modules of the CDR, using a 512-byte file.

function readFileToArray(file)

 oneDimensionalArray = readFileToByteArray(file)

 breadth = ceiling(oneDimensionalArray.length /

16.0)

 threeDimensionalArray = new array[breadth][4][4]

 a = 0

 for i=0 to breadth

 for j=0 to 4

 for k=0 to 4

 threeDimensionalArray[i][j][k]

=

 oneDimensionalArray[a]

 a++

 endfor

 endfor

 endfor

endfunction

Listing 4.3 – Function to read from a file into a three-

dimensional array

To implement above algorithm, the system read data from a

file into a one-dimensional array using a method from the

Apache Commons IO library. The system then writes the data

into a three-dimensional array in order to get modules for the

computation of parity information. Listing 4.4 shows a snippet

of the code used to perform the data reading and conversion.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

21

public Data(String fileName) throws Exception {

 this.filename = fileName;

 byte [] fileAsByteArray =

FileUtils.readFileToByteArray(new File(fileName));

 int i=0;

 int four = 4;

 int breadth = (int) Math.ceil(fileAsByteArray.length / 16.0);

 array = new byte[breadth][four][four];

 for (int j=0; j<breadth; j++){

 for (int k = 0; k < four; k++){

 for(int l=0; l < four; l++){

 if (i < fileAsByteArray.length){

 array[j][k][l] = fileAsByteArray[i++];

 }

 else {

 array[j][k][l] = 1;

 i++;

 }

 }

 }

 }

}

Listing 4.4 – reading file to 3-dimensional array

Parity Data Computation:

Module Parity Computation - After reading data into a three-

dimensional array, the system computes the parity value for

each module of the three-dimensional array. The

pseudocode in Listing 4.5 represents a function to compute the

module parity.

function computeModuleParity()

 sum = 0

 for row = 0 to 4

 for column = 0 to 4

 sum = sum XOR

module[row][column]

 endfor

 endfor

 return sum

endfunction

Listing 4.5 – Function to compute the module’s parity

Row and Column Parity - The system proceeds to compute

the parity values for each row and each column, but instead of

simply summing all the values in each row and column, the

system sums all the different combinations of the row data as

well as the different combinations of the column data. The

code snippet of Listing 4.6 represents a function that computes

the row and column parities.

for(int module = 0; module < this.data.length; module++){

 this.moduleParity[module] =

ComputeModuleSum(this.data[module]);

 int x =0, b = 0;

 for(int i =0; i < this.data[module].length; i++){

 for(int j =0; j < this.data[module][i].length;

j++){

 this.rowsParity[module][i][6] ^=

this.data[module][i][j];

 for(int k = j+1; k <

this.data[module][i].length; k++){

 this.colsParity[module][x][i] =

(byte)(this.data[module][j][i] ^ this.data[module][k][i]);

 x++;

 }

 for(int l = j+1; l <

this.data[module][i].length; l++){

 this.rowsParity[module][i][b] =

(byte)(this.data[module][i][j] ^ data[module][i][l]);

 b++;

 }

 }

 x = 0;

 b = 0;

 }

 this.colsParity[module][6] = this.data[module][3];

}

Listing 4.6 – Function to compute row and column parities

The system computes the parity data for each module as well

as the rows and columns in the modules. The parity for a

module is computed as the XOR sum of all the elements in the

 grid that made up the module and is stored in a single-

dimensional array.

The code snippet in Listing 4.7 shows the implementation of

the module parity computation.

private byte ComputeModuleSum(byte[][] data){

 byte sum = 0;

 for(int row = 0; row < data.length; row++){

 for(int col = 0; col < data[row].length;

col++){

 sum ^= data[row][col];

 }

 }

 return sum; }

Listing 4.7 – Computation of module parity

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

22

The row parities are computed as the XOR sums of all the

combinations of the elements in the module row. Each row’s

parity data is stored in a row of a two-dimensional array that

holds the rows’ parity information for that module. The system

also computes the columns parity data as the XOR sums of all

the combinations of the column elements for any single column

in the module. Each column’s parity data is stored in a column

of a two-dimensional array that holds the columns’ parity

information for that module.

Listing 4.8 shows a snippet of code which implements the

computations of the row’s parity and column’s parity data.

 for(int module = 0; module < this.data.length;

module++){

 this.moduleParity[module] =

ComputeModuleSum(this.data[module]);

 int x =0, b = 0;

 for(int i =0; i < this.data[module].length;

i++){

 for(int j =0; j <

this.data[module][i].length; j++){

 this.rowsParity[module][i][6] ^=

this.data[module][i][j];

 for(int k = j+1; k <

this.data[module][i].length; k++){

 this.colsParity[module][x][i] =

(byte)(this.data[module][j][i] ^ this.data[module][k][i]);

 x++;

 }

 for(int l = j+1; l <

this.data[module][i].length; l++){

 this.rowsParity[module][i][b] =

(byte)(this.data[module][i][j] ^ data[module][i][l]);

 b++;

 }

 }

 x = 0;

 b = 0;

 }

 this.colsParity[module][6] =

this.data[module][3]; }

Listing 4.8 – Computation of row parity and column parity

Writing Parity Data to File:

The system creates a parity object from the computed parity

information and writes the data to three files for the module

parity, row parity and column parity. The code snippets in

Listing 4.9 and Listing 4.10 respectively shows

implementations of how the parity objects are populated and

written to file.

 Parity p = new Parity();

 p.setColumn(colsParity);

 p.setRow(rowsParity);

 p.setModule(moduleParity);

Listing 4.9 – Population of the parity object

public void writeToFile(String fileName) throws IOException

{

 int length = row.length * 28;

 byte[] array = new byte[length];

 File dir = new File(DIR);

 if (!dir.exists()) dir.mkdir();

 fileName = DIR + "/" + fileName;

 FileUtils.writeByteArrayToFile(new File(fileName +

".module"), module);

 int i = 0;

 for (byte[][] a : row){

 for (byte[] b : a){

 for (byte c : b){

 array[i++] = c;

 }

 }

 }

 FileUtils.writeByteArrayToFile(new File(fileName +

".row"), array);

 i = 0;

 for (byte[][] a : column){

 for (byte[] b : a){

 for (byte c : b){

 array[i++] = c;

 }

 }

 }

 FileUtils.writeByteArrayToFile(new File(fileName + ".col"),

array);

}

Listing 4.10 – Writing parity data to file

Data Splitting:

After the parity data has been computed for the file data, the

system splits the file into 16 shards. Each shard comprises of

all module elements of a particular location in the grid.

That is, every first element in the grid is collected into

one shard. The algorithm in Listing 4.11 represents a function

to split the data into shards for uploading to the cloud.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

23

function splitData()

 splits = new

array[16][threeDimentionalArray.length]

 for i = 0 to 4

 for j = 0 to 4

 current = (4 * i) + j

 for k = 0 to

threeDimensionalArray.length

 splits[current][k] =

threeDimensionalArray[k][i][j]

 endfor

 writeByteArrayToFile(splits[current])

 end for

 end for

end function

Listing 4.11 – Function to split file into shards

The algorithm is implemented using the Apache Commons IO

Java library (Listing 4.12).

public void split(Data data){

 String dir = "temp/split";

 File directory = new File(dir);

 if (!directory.exists()) directory.mkdirs();

 byte [][] splits = new byte[16][data.length];

 for (int i = 0; i < 4; i++){

 for (int j = 0; j < 4; j++){

 int a = 4 * i + j;

 for (int k = 0; k < data.length;

j++){

 splits[a][k] =

data[k][i][j];

 }

 FileUtils.writeByteArrayToFile(splits[a], new

File(dir + "/" + data.fileName + "." + a));

 }

 }

}

Listing 4.12 – Splitting data into 16 shards

Checksum Data Recovery (CDR) Technique Metadata:

There are three types of metadata, the rows parities metadata,

columns parities metadata, and module sum parity.

Module sum parity is a single dimensional array of length

similar to the length of the 3D data array. The entry values are

computed from the XOR of all entries of a module and stored

in the array. The module sum parity array has two main

benefits:

 It ensures no module is dependent on another module

(i.e. module abstraction).

 It reduces unnecessary iterations. Thus, the program

checks for corrupted entries in a module only when

the sum of entries in the module is not equal to the

value of module sum parity entry at that index.

Each of rows parities and columns parities metadata is a 3D

array of size similar to the 3D data array computed from the

data file. Each entry in the metadata array is a 2D array. Which

implies the 3D metadata arrays also contains modules in its

entries.

A module in the rows parities array is a 4 x 4C2+1 matrix and

the columns parities array is a 4C2+1 x 4 matrix, where C is

combination. Thus, for a byte of data to be uniquely recovered

in the event of an error, each byte in a module must have

relationships with entries on the same row and also entries on

the same column. For example, for a module of size 4x4

matrix, entry a(0,0) is related to entries a(0,1), a(0,2) and a(0,3)

as these are entries are on the same row. These relationships

are stored as row parities metadata. Similarly, entry a(0,0) is

also related to entries a(1,0), a(2,0) and a(3,0) as these are

entries on the same column. These relationships are also stored

as columns parities metadata.

Clearly there is a relationship between any two entries on the

same row or column as there are four entries on each row and

four on each column of a module. The parity metadata for a

given file is obtained by computing the relationships on each

row as 4 combination 2 (i.e. taking 2 entries at a time). The

combination (not permutation) used here is important because

the order of combining is not important since the relationship is

computed as the XOR of each pair of entry and this minimizes

the size of the metadata arrays.

The additional column on the row parities array holds the XOR

of all entries in a row. This column is very important because

the algorithm uses the value held in the column to recover

corrupted entries on the row when the sum of the row does not

equate to the value held.

The additional row in a column parities array module contains

the AND of the last row and itself. This is important because

the whole error detection algorithm will use the last row as its

base or reference point.

How a Module Locates Its Metadata in the Checksum Data

Recovery (CDR) Technique

Given a module M [4] [4] at index [x] [4] [4] in the 3D data

array,

 Its corresponding module sum parity is at index [x]

within the module sum parity metadata array (a

single dimensional).

 Its rows parity module is at index [x] of the rows

parity metadata array.

 Its columns parity module is at index [x] of the

columns parity metadata array.

Implementation of the Data Dispersal Technique (The

Shuffling Method)

The shuffling is implemented using the Java Collection class in

the Utility package. An array list is created to contain integer

numbers that correspond to the number of the derived shards

after splitting of the file. The shuffling of the integer numbers

in the array list is achieved by passing the array list as a

parameter to the static Shuffle method called from the

Collections class. Appending the numbers from the newly

shuffled list to the original file name, a new name is formed

(filename.extension.number) which is used to get the

individual shards from the source (temporary storage where the

shards are kept after splitting) to be ready for upload. Now the

data shards are distributed depending on the SMF user’s

selected number of cloud providers. For instance, if two cloud

storage providers are selected (i.e. Dropbox and Box), then half

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

24

of the appended list are randomly distributed to the Dropbox

and the other half to the Box. Figure 8 is the snippet code of

the implementation of the data dispersion technique.

Implementation of SMF System’s Metadata

In order to keep track of file information, the system uses a

metadata file (dubbed, file metadata) to record information

about the file and its shards. The information the system

captures includes:

1. File Name

2. File Size

3. File Priority

4. Date of File Upload

5. Number of Data Shards

6. Number of Parity Shards

7. Cloud Service Destinations for the Shards

The system hosts the file metadata on SMF servers for easy

access from multiple devices and locations. A plain text file is

used to hold the metadata information. The data is encoded in

JavaScript Object Notation (JSON). The Google Gson library

is used for encoding and decoding the metadata.

After a file is selected for upload and the file priority is set, a

metadata object is created and the fields in the object are set

with the file name, size, priority, number of data and parity

shards. After the shards are shuffled and assigned cloud

accounts, the destination information is also captured into the

metadata object (Listing 4.13).

The system uses the Gson library to create a JSON string from

the metadata object. The string is then written to a file with the

hash of the original file name as the name of the metadata file

(Listing 4.14). The extension for metadata files is “meta”.

When the system is done creating and updating the contents of

the metadata file, the file is uploaded to the SMF Metadata

Server for safekeeping.

metadata.File metadata =

 new metadata.File(tempFile.getName(),

 Date.from(Instant.now()),

 filePriority,

 dataShards,

 parityShards,

 cols,

 size);

Listing 4.13 - Instantiation of a metadata file object

public static void writeFile(String content, File file) {

 FileWriter writer = new FileWriter(file);

 writer.write(content);

 writer.close();

}

Listing 4.14 - Method to write metadata string to file

Shards Upload Module

After the shards have been prepared for upload, SMF makes

use of the Application Programmer Interface (API) of the

Cloud Service Provider to send the file over the internet to the

CSP. Listing 4.15 shows a snippet of code from the SMF that

does the file upload to Dropbox and Box.

if (cloud.equalsIgnoreCase("dropbox"))

 try {

 dbx.uploadFile(f);

 } catch (IOException | DbxException e) {

 e.printStackTrace();

 }

else if (cloud.equalsIgnoreCase("box"))

 try {

 box.uploadFile(f);

 } catch (IOException e) {

 e.printStackTrace();

 }

Listing4.15 - Snippet of code showing file upload to Dropbox

and Box

File Downloading Process

When the user selects a file to download, the system

downloads the metadata file from SecureMyFiles servers. The

system then read the text from the metadata file as a string

(Listing 4.16) and then uses a method from the Gson library to

create a metadata object that contains all the information in the

file (Listing 4.17). The selected file name is hashed by

applying the same hash function as that of the upload module

to obtain the same hashed value if the file integrity has not

been tempered with; the resulting hashed value is used with the

file metadata file to obtain the required split chunks or shards

from the user’s cloud accounts storing them. The downloaded

shards are then decoded or joined through using the Reed-

Solomon decoding method. The resultant file is re-transposed

by applying the decryption function of the proposed Rubik’s

Cube transposition cipher (Twum et. al., 2019a) used in the

upload module. The decrypted file output is renamed to the

selected file name and delivered to the SMF user.

public static String readFile(String fileName){

 String fileContent = "";

 try {

 Scanner scan = new Scanner(new java.io.File(fileName));

 while (scan.hasNextLine())

 fileContent += scan.nextLine();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 return fileContent;

}

Listing 4.16 -Method to read text from a file to a string

String metadata = FileHandler.readFile("metadata/" + hash +

".meta");

metadata.File meta = new Gson().fromJson(metadata,

metadata.File.class);

List<Destination> destinations = meta.getDestinations();

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

25

Listing 4.17 - Snippet of code showing how the system creates

a metadata object from a file and accesses the list of

destinations from the object

CDR decoding:

Reconstruction of the file from file shards

The system read the shards that are downloaded from the cloud

and write them into a three-dimensional array representing the

data. Listing 4.18 shows a code snippet of the function that

joins the file shards to form a three-dimensional array.

public byte[][][] join(String fileName){

 String dir = "temp/split";

 File directory = new File(dir);

 if (!directory.exists())

 throw new FileNotFoundException("No

'split' directory");

 byte[] bytes = null;

 int length = FileUtils.readFileToByteArray(new

File(dir + "/" + fileName + "." + 1)).length;

 byte[][][] data = new byte[length][4][4];

 for (int i = 0; i < 4; i++){

 for (int j = 0; j < 4; j++){

 int a = 4 * i + j;

 bytes =

FileUtils.readFileToByteArray(new File(dir + "/" + fileName +

"." + a));

 for (int k = 0; k < bytes.length;

k++){

 data[k][i][j] = bytes[k];

 }

 }

 }

}

Listing 4.18 – Reading file shards to form a data array

Reading Parity Data from Files

The system read the parity data from three files, one for the

row parity, one for the column parity and a last one for the

module parity. The data from the files are used to populate a

parity object. Listing 4.19 shows a code snippet used for the

reading of files into the parity object.

public void readFromFiles(String fileName) throws

IOException {

 fileName = DIR + "/" + fileName;

 byte[] rowArray = FileUtils.readFileToByteArray(new

File(fileName + ".row"));

 byte[] colArray = FileUtils.readFileToByteArray(new

File(fileName + ".col"));

 module = FileUtils.readFileToByteArray(new File(fileName

+ ".module"));

 int length = rowArray.length / 28;

 row = new byte[length][7][4];

 column = new byte[length][4][7];

 int a = 0;

 for (int i = 0; i < row.length; i++) {

 for (int j = 0; j < row[i].length; j++) {

 for (int k = 0; k < row[i][j].length; k++) {

 row[i][j][k] = rowArray[a++];

 }

 }

 }

 a = 0;

 for (int i = 0; i < column.length; i++) {

 for (int j = 0; j < column[i].length; j++) {

 for (int k = 0; k < column[i][j].length; k++) {

 column[i][j][k] = colArray[a++];

 }

 }

 }

 del(fileName); }

Listing 4.19 – Reading parity data from files

Error Location

The system re-computes the module parity for the three-

dimensional data array and compare the computed parities with

the module parity data that was read form the file. The two

parity information are compared for equality. Where there is

inconsistency, the data is flagged as corrupt and the system

proceeds to check the rows and columns for the offending array

element (Listing 4.20).

void LocateDefectedModule(){

 boolean errorExist = false;

 for(int i =0; i < data.length; i++){

 if(ComputeModuleSum(data[i]) !=

moduleParity[i]){

 System.out.println("module

"+(i+1)+" has error");

 LocateErrorInModule(this.data[i],i);

 errorExist = true;

 }

 }

 if(!errorExist)

 System.out.println("no error exist");

}

Listing 4.20 – Checking modules for errors

Error Correction

The system resolves the data corruption by looking through the

rows parity and columns parity that is read from file and

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

26

performs an XOR sum at the appropriate locations to correct

the error

Writing Corrected Data to File

The system finally writes the corrected data to file. Listing 4.21

shows the function that writes the data to file.

public void writeToFile() throws IOException {

int length = array.length * 16;

 int a = 0;

byte[] bytes = new byte[length];

for (byte[][] b : array){

for (byte[] c : b){

for (byte d : c)

bytes[a++] = d;

}

}

 a = length - 1;

 while (bytes[a] != 1)

a--;FileUtils.writeByteArrayToFile(new File(filename),

Arrays.copyOf(bytes, a + 1));

}

Listing 4.21 – writing data from the three-dimensional array to

file

5. TESTING, RESULTS AND

DISCUSSIONS
The sections that follow disclose the process used to test

various sub-systems that were implemented and integrated to

create the SMF system and the results obtained. The testing

was carried out in an experimental lab set-up using JAVA,

SQL, and PHP software development tools installed on a very

high-spec PC (64-bit Intel Core-i7 CPU running at 3.60GHz,

12.0GB RAM) and Laptop (64-bit Intel Core-i7 CPU running

at 2.20GHz, 8.0GB RAM). In addition, the experimental setup

required a stable computer network infrastructure. Various

testing scenarios were set-up for experimentations to evaluate

the SMF system capability of recovering a file in an event of

corruption (whether shards modifications or shards deletion).

Results from the experiments conducted using the Reed

Solomon Erasure protection and also the CDR erasure

protection under different testing scenarios are presented later

in this section.

Cloud Service Providers

There are a number of cloud service providers that provide

premium and free services. Those that are available for use

with the SMF App are Dropbox, Google Drive, and Box. Each

of these cloud accounts is connected to the SMF App via their

respective Java APIs. These APIs provide safe and secure

connections to the cloud accounts just as it is when accessing

an account on the cloud provider’s website. A user needs to

sign up to a minimum of two cloud accounts and a maximum

of six e.g. Dropbox, Google Drive, iCloud, and Box before

using the SMF App. For testing the proposed system, three

cloud accounts were used. However, six is highly

recommended for a good balance between performance and

security.

5.1 RESULTS
File Uploading Sequence

The final phase of the upload process is to connect to the cloud

service through the service provider’s API and send the file

over secure HTTP into the user’s cloud account. Depending on

the SMF user choice of a file priority level (Low, Normal,

important, or critical) the system distributes shards to the user’s

cloud accounts in accordance to the data and parity

computation as set out in section 4 above. Testing and results

from the selection of the ‘Normal’ and ‘Important’ file priority

levels which employs the Reed Solomon Erasure protection for

file recovery under different scenarios are presented (See

appendix 1 - Scenarios 1 and 2). The test results from the

critical priority level which uses CDR described in Section 4 is

also presented (See appendix 1 - Scenario 3). By choosing the

critical file priority option, the SMF user may lose up to 12

shards out of the 16 total shards for any file size uploaded

(Refer to figure 7 in section 4) and still be able to recover the

corrupted file.

File Downloading Sequence

The file downloading sequence follows the process outlined

and implemented by the file download module presented in

section 3 (See Figure 6).

Scenario 1: Downloading a file uploaded using the

‘Normal’ file priority level.

Case 1

Figure 11 (Appendix 1) depicts file reconstruction during

download for a scenario where 24 of the distributed shards are

corrupted or an event where one of the six CSP’s refuses to

grant a subscriber access to shards stored on their storage

servers in the event of a dispute over say subscription payments

or for any other reason.

Case 2

Figure 12 (Appendix 1) depicts a situation where 48 shards are

corrupted or where two of the CSP’s systems are down but the

SMF system is able to recover the full file and present to the

owner.

Case 3

Unlike Case 1 and Case 2, Case 3 presents a scenario that

depicts a situation where more than 48 shards are corrupted i.e.

when more than two CSP’s systems are inaccessible. As

described above, the ‘Normal’ file priority level stores 48

parity information and hence cannot be able to recover data

corruption of more than 48 shards. Hence as depicted in

figure 13 (Appendix 1) the file recovery process failed for files

uploaded using the ‘Normal’ priority level with more than 48

corrupted shards.

Scenario 2: Downloading a file by choosing the ‘Important’

file priority level.

Case 1

The ‘Important’ priority level when selected splits a file into 72

data shards and 72 parity shards that are used for file recovery

in the event of corruption making a total of 144 shards that are

uploaded to the six CSP’s using the data dispersal technique.

Although slower in recovering a file than the ‘Normal’ priority

level, the ‘Important’ priority level enables a file to be

recovered even if 72 shards are corrupted or when three CSP’s

servers are inaccessible.

Figure 14 (Appendix 1) depicts a scenario where 72 of the

distributed shards are corrupted or a situation where three of

the six CSP’s servers are unreachable but the SMF system still

recovered the full file during download.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

27

Case 2

Case 2 presents a scenario that depicts a situation where more

than 72 shards are corrupted i.e. when more than three of the

CSP’s systems are inaccessible. As stated above, the

‘Important’ file priority level stores 72 parity information and

hence cannot recover data corruption of more than 72 shards.

Therefore, as depicted in figure 15 (Appendix 1) the file

recovery process failed.

Scenario 3: Downloading a file by choosing the ‘Critical’

file priority level.

Case 1

Figures 16, 17, and 18 respectively (Appendix 1) depict a

scenario where 4, 8 and 12 of the distributed shards are

corrupted during download and the SMF system reconstructs

the file successfully with Critical option.

Case 2

It was realized during testing as shown by Figure 19 (Appendix

1) that the ‘Critical’ priority option cannot recover a file when

more than 12 of the shards are corrupted.

6. CONCLUSION
The SMF system with its characteristics provides solutions to

the cloud data security challenges outlined by this study. The

system is unique as no single product of its kind was found in

the market. All the existing cloud security solution systems

either secures subscribers data on a single CSP’s infrastructures

(Direct model) or employ the service of SECaaS provider

through setting up regulations and policies via a CASB.

Appendix 3 presents how the SMF systems which is based on

the CDDI model compares with the existing systems.

7. REFERENCES
[1] O’Reilly, J. (2017). 7 Ways to Secure Cloud Storage.

[Online]Availablefrom:https://www.networkcomputing.co

m/data-centers/7-ways-secure-cloud-storage/866645128

[Accessed: 15th Oct., 2017]

[2] The Treacherous 12, (2017). The Treacherous 12: Cloud

Computing Top Threats in 2016 [Online]. Avalable from:

http://www.storm-clouds.eu/services/2017/04/the-

treacherous-12-cloud-computing-top-threats-in-2016/

 [Accessed: 25th October, 2017]

[3] Shapland, R. (2017). Multi-Tenancy Cloud Security

Requires Enterprise Awareness. Available from:

http://searchcloudsecurity.techtarget.com/tip/Avoid-the-

risks-of-multi-tenant-cloud-environments-through-

awareness [Accessed: 10th October, 2017]

[4] CSA (2011). Security guidance for critical areas of focus

in cloud computing V3.0. [Online] Available from:

https://cloudsecurityalliance.org/guidance/csaguide.v3.0.p

df [Accessed: 10th May, 2015]

[5] OpenCirrus (2017). Cloud Computing Challenges In

2017. [Online] Available from:

http://www.opencirrus.org/cloud-computing-challenges-

2017/ [Accessed: 4th Sept., 2015]

[6] Fahmida Y. R. (2016). The dirty dozen: 12 cloud security

threats. [Online]. Available from:

https://www.infoworld.com/article/3041078/security/the-

dirty-dozen-12-cloud-security-threats.html [Accessed: 15th

March, 2017]

[7] Twum F., Hayfron-Acquah J. B, Panford J.K. A Proposed

New Framework for Securing Cloud Data on Multiple

Infrastructures using Erasure Coding, Dispersal Technique

and Encryption, International Journal of Computer

Applications, Vol. 181, No. 50, pp. 38-49, April 2019.

[8] SkyHigh (2017). What is CASB? Available from:

https://www.skyhighnetworks.com/cloud-security-

university/what-is-cloud-access-security-broker/

[Accessed: 10th October, 2017]

[9] DoubleHorn,(2017). Cloud Services Brokers: The future

of SaaS and IaaS Consumption [Online]. Available from:

https://doublehorn.com/cloud-services-brokers-the-future/

[Accessed: 15th October, 2017]

[10] Rubens, P. (2017). Six Top CASB Vendos. [Online].

Available from:

https://www.esecurityplanet.com/products/top-casb-

vendors.html [Accessed: 5th Nov., 2017]

[11] Forcepoint, (2017). How Forcepoint Web Security Cloud

Works. [Online]. Available from:

https://www.websense.com/content/support/library/web/h

osted/getting_started/cws_explain.aspx [Accessed: 15th

Oct., 2017]

[12] Kessler, G. C. (2017). An overview of Cryptography.

[Online]. Available from:

http://www.garykessler.net/library/crypto.html [Accessed:

1st May, 2017]

[13] Twum F., Hayfron-Acquah J. B, Morgan-Darko W.,

(2019a). A Proposed Enhanced Transposition Cipher

Algorithm Based on Rubik’s Cube Transformations,

International Journal of Computer Applications, Vol. 182,

No. 35, pp 18-26, January 2019.

[14] Twum F, Hayfron-Acquah, J. B., Oblitey, W. W.,

Morgan-Darko, W., (2016a). Reed Solomon Encoding:

Simplified explanation for Programmers. International

Journal of Computer Science and Information Security

(IJCSIS), Vol. 14, No. 12

[15] Twum F, Hayfron-Acquah, J. B., Oblitey, W. W., Boadi,

R. K., (2016b). A proposed algorithm for generating the

Reed-Solomon Encoding Polynomial Coefficients over

GF(256) for RS[255,223]8,32. International Journal of

Computer Applications (IJCA), Vol. 156, No. 1, pgs. 24-

39

[16] Twum F, Hayfron-Acquah, J. B., Oblitey, W. W.,

Morgan-Darko, W., (2017). Reed Solomon Decoding

Simplified for Programmers. International Journal of

Computer Science and Information Security (IJCSIS),

Vol. 15, No. 1

[17] Twum F., Hayfron-Acquah J. B, Panford J.K., (2019b). A

Proposed New Framework for Securing Cloud Data on

Multiple Infrastructures using Erasure Coding, Dispersal

Technique and Encryption, International Journal of

Computer Applications, Vol. 181, No. 50, pp. 38-49,

April 2019.

[18] TipTopSecurity,(2016).Is Google Drive Safe to Use? How

Google Secures Your Files Online [Online]. Available

from: https://tiptopsecurity.com/is-google-drive-safe-to-

use/ [Accessed: 1st Nov., 2017]

[19] Chima, R. (2016). Cloud Security – Who owns the data?

[Online]. Available from:

https://www.bbconsult.co.uk/blog/cloud-security-who-

owns-the-data [Accessed: 20th February, 2016]

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

28

[20] FileCloud, (2016). Data Ownership in the Cloud – How

does it affect you? [Online]. Available from:

https://www.getfilecloud.com/blog/2016/11/data-

ownership-in-the-cloud-how-does-it-affect-

you/#.WgG7_I-0Pct [Accessed: 15th March, 2017]

File Upload Module

Figure 4 – File Upload Module

Figure 5 - Splitting of file and computation of parity.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

29

Figure 6 - File Download Module

Figure 7: The formation of shards from the modules of the CDR using a 512 byte file.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

30

Figure 8 - Code for implementation of the data dispersion technique (the shuffling method)

Appendices

APPENDIX 1

Scenario 1: Uploading a file by choosing the ‘Normal’ file

priority level.

The ‘Normal’ priority level splits a file into 96 data shards

and 48 parity shards that are used for file recovery in the event

of corruption. This result with a total of 144 shards that are

uploaded using the data dispersal method to the six CSP’s

each receiving 24 shards.

Case 1

Figure 9 depicts a successful file upload operation where the

SMF user selected the ‘Normal’ priority level. The figure

indicates none of the distributed shards are corrupted.

Figure 9 – A successful file upload choosing the Normal file priority level

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

31

Scenario 2: Uploading a file by choosing the ‘Critical’ file

priority level.

Reed Solomon coding can recover any number of data errors

up to half the number of parity data stored and can correct any

number of erasures up to the number of parity data stored

(Twum et. al., 2016b). This feature of Reed Solomon coding

places some limitation on the number of data that can be

successfully recovered in the event of data corruption. The

proposed CDR which although cannot recover data in the

event of total deletion without relying on backup can in most

cases recover a file to some extent if at least four of the data

shards exist. The ‘Critical’ file priority option uses the CDR

for erasure protection. Case 1 depicts a successful file

uploading operation where the SMF user selected the

‘Critical’ priority level.

Case 1

Figure 10 - Depicts a successful file upload operation where

the SMF user selected the ‘Critical’ priority level. The figure

indicates none of the distributed shards are corrupted.

Figure 10 - A successful file upload choosing the Critical file priority level

Figure 11 – successful file reconstruction during download for 24 corrupted shards with Normal option

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

32

Figure 12 – successful file reconstruction during download for 48 corrupted shards with Normal option

Figure 13 - Error! No text of specified style in document. – failed file reconstruction during download for more than 48

corrupted shards with Normal option

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

33

Figure 14 – successful file reconstruction during download for 72 corrupted shards with Important option

Figure 15 – failed file reconstruction during download for more than 72 corrupted shards with Important option

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

34

Figure 16 – successful file reconstruction during download for 4 corrupted shards with Critical option

Figure 17 – successful file reconstruction during download for 8 corrupted shards with Critical option

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

35

Figure 18 – successful file reconstruction during download for 12 corrupted shards with Critical option

Figure 19 – failed file reconstruction during download for more than 12 corrupted shards with Critical option

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

36

APPENDIX 2

Proposed Six-level Cloud Data Distribution Intermediary (CDDI) Framework (Twum et. al. 2019b)

APPENDIX 3

Comparison of the CDDI framework with existing architectures

 Direct Model Indirect (CASB) Model Indirect (CDDI) Model

Architecture The subscriber places a file into the

CSP’s interface for onward processing

and uploads to the Cloud.

The CASB monitors all data

transfers within the organization as

well as the transfer of files out of

(and into) the organization. All

transfers are therefore filtered by

the CASB. (Rubens, 2017)

The CDDI handles interactions

with the CSPs on behalf of the

subscriber. The subscriber is

required to have a minimum of

6 Cloud Storage accounts. The

CDDI performs data

obfuscation on behalf of the

subscriber.

Data Privacy The CSP is responsible for ensuring

the privacy of the subscriber’s data.

The method used to encrypt the file is

known to the CSP, as well as the key

or manner in which the key is

generated. As such, if the CSP so

desires, they may decrypt the file for

their personal purposes

(TipTopSecurity, 2016).

The CASB prevents unauthorized

access to the organization’s

confidential data by preventing the

confidential data from ever being

transferred to the cloud. The CASB

uses machine learning to determine

data transfers that infringe the

organization’s regulations, and then

halts the transfer.

In the proposed model, the

CDDI allows all transfers of

data to the cloud, but first

encrypts the data locally

(outside the CSPs reach) then

splits the data into a number of

shards, and randomly

distributes the shards to

multiple CSPs. The number of

shards received by each CSP is

insufficient to reconstruct the

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 31, January 2020

37

original file. This way, the file

remains confidential and useful

to only the owner.

Unauthorized Data Use The CSP has access to the entire data

and how to decrypt it. As such the CSP

can use the data for any purpose

without notifying the owner or

requiring the owner’s permission

(Chima, 2016).

The CSP has access to the

organization’s non-critical data

(data not captured in the

organization’s privacy regulations).

The CSP is able to decrypt this data

to use as they please.

The CSP has access only to

incomplete and encrypted

portions of the data. Without

the other portions of the data, it

is very difficult to decrypt as a

result of the encryption

algorithm used. Thus the CSP is

prevented from accessing the

data for their own purposes.

Unauthorized Data Access One set of credentials are required to

gain access to the data. Anyone with

this single set of credentials can access

the entire data.

The CASB serves as a proxy that

also filters the traffic moving into

and out of the organization. Thus

the only credentials needed to

access the data on the cloud, is the

login credentials for the cloud

account. Any individual with the

login credentials, therefore, has

access to the organization’s data.

The CDDI is designed to

demand login credentials of the

system (SMF). Further, to

access the data stored on the

cloud, each cloud account must

be signed into individually.

Thus requiring multiple

authentications before access

and usage.

Data Ownership Unless the client applies encryption

before sending the data to the Cloud

Service Provider, the provider can

claim full ownership of the data as

they have full access and control over

it (FileCloud, 2016).

The CASB may encrypt the data

before forwarding to the Cloud

Service Provider, to ensure that the

data is safe on the cloud.

The CDDI encrypts the data at

the SMF client side and splits

the data before distribution to

the CSPs. Since the data is sent

to multiple CSPs, no individual

CSP can claim ownership of the

complete data, except the data

owner.

Data Integrity The CSP is responsible for ensuring

the integrity of the data. Most CSPs

provide version control services which

allow the subscriber to revert to a

previous version of the file if the

current version is damaged or

otherwise modified. However, a

malicious insider within the CSP may

delete all traces of the file, making it

irrecoverable (TipTopSecurity, 2016).

The CASB turn over responsibility

of ensuring data integrity to the

CSP upon the upload of the data.

As such the subscriber has access to

previous versions of the file but

also suffers in the event of a

malicious insider attack.

The CDDI uses Reed-Solomon

Coding as well as the proposed

Checksum Error Detection and

Correction Program to verify

the integrity of data and

perform error corrections in the

event that portions of the data

get corrupted. The subscriber

however does not get access to

previous versions of the file but

is protected from malicious

insider attacks that happen in

one or more CSPs.

Data Availability The data is available anytime the CSP

is in operation. However, in the event

of a DoS/DDoS attack on the CSP, the

subscriber has no access to the data.

The CASB relies on the CSP to

ensure availability of the

subscriber’s data. (Rubens, 2017)

In the event of DoS/DDoS

attack on any of the CSPs, the

remaining data that is stored on

the other CSPs can be used to

reconstruct the original file.

Hence the subscriber is insured

and assured of data availability

even when some of the CSPs

are offline.

IJCATM : www.ijcaonline.org

