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ABSTRACT 

Optimal power flow (OPF) is one of the most vital tool for 

power system operation analysis, which require complex 

mathematical formulation to find best solution .particle swarm 

optimization is one among many methods for solving 

nonlinear optimization problems and it one of the swarm 

intelligences. Optimal power flow is one of nonlinear 

constrained and occasionally combinatorial optimization 

problems of power system the objective of an optimal power 

flow is to  find steady state operation point which minimizes 

generation cost, loss, load ability. The OPF solution includes 

an objective function. A common objective function concerns 

the active power generation cost. A particle swarm 

optimization (PSO) is proposed to solve OPF problem. After 

solving OPF problem the results of PSO would be compered 

by using many methods such as linear programming, genetic 

algorithm .The proposed PSO is verified by IEEE-30 in all 

case studies PSO shown to achieve a lower cost and losses 

than it when there is line outage and generator outage.  

 Conventional load flow is used to perform the equality 

constraints. A computer program, written in MATLAB 

environment, is developed to represent the proposed method. 

Keywords 

Optimal power flow, particle swarm optimization, economic 

dispatch 

1. INTRODUCTION 
In electric power grids, the optimal power flow (OPF) 

problem is of great importance for power system operators 

(SO) to maintain a reliable and economic power system 

operation. The main goals of OPF are to optimize the fuel 

cost, power losses, voltage stability, and emission cost, while 

satisfying system constraints. Traditional OPF involving 

conventional fossil-fuel power plants is a highly nonlinear, 

nonconvex and mixed integer problem [1]  [2]. Optimal 

Power Flow (OPF) solution methods have been developed 

over the years to meet this very practical requirement of 

power system operation [3] [4]  

[5]has discussed the optimal power flow problem since its 

introduction. Because the OPF is a very large, non-linear 

mathematical programming problem, it has taken decades to 

develop efficient algorithms for its solution. Many different 

mathematical techniques have been employed for its solution. 

the OPF is a non-linear, non-convex optimization problem 

due to the cost functions and constraints of a large number of 

power plants integrated into the power grid. A wide range of 

traditional optimization techniques such as quadratic 

programming, nonlinear programming, interior point method, 

mixed integer programming [6] [7] [8]have already been 

implemented in this field. Some of the techniques have even 

been adopted by industry because of their fast convergence 

and robustness. However, those approaches linearize the OPF 

problem first, and fail to consider the non-smooth, non-

differentiable and non-convex properties. of the system. To 

circumvent such problem, various modern heuristic 

optimization algorithms have been developed for power 

system optimization [9]because such techniques tackle the 

original problem without modifying it. In general, heuristic 

algorithms are developed based on two categories, which are 

single-solution based, and population based approaches. 

Several examples of single-solution based approach are tabu 

search and simulated annealing [10] [11]while population 

based approaches include particle swarm optimization (PSO), 

gravitational search algorithm (GSA), differential evolution 

(DE), genetic algorithm (GA), harmony search, and artificial 

bee colony [12][1] [13][14] [15]. The majority of the 

techniques discussed in the literature use one of the following 

five methods [16] [17] 

1. Lambda iteration method, also called the equal 

incremental cost criterion (EICC) method. 

2. Gradient method. 

3. Newton’s method. 

4. Linear programming method. 

5. Interior point method. 

Newly developed heuristic approaches called particle swarm 

optimization (PSO) has been introduced. This method 

combines social psychology principles and evolutionary 

computation to motivate the behaviour of organisms such as 

fish schooling, bird flocking, etc. Particle swarm optimization, 

abbreviated as PSO, is based on the behaviour of a colony or 

swarm of insects, such as ants, termites, bees, and wasps; a 

flock of birds; or a school of fish. The particle swarm 

optimization algorithm mimics the behaviour of these social 

organisms. The word particle denotes, for example, a bee in a 

colony or a bird in a flock. Each individual or particle in a 

swarm behaves in a distributed way 

using its own intelligence and the collective or group 

intelligence of the swarm. As such, if one particle discovers a 

good path to food, the rest of the swarm will also be able to 

follow the good path instantly even if their location is far 

away in the swarm. Optimization methods based on swarm 

intelligence are called behaviourally inspired algorithms as 

opposed to the genetic algorithms, which are called evolution-

based procedures. The PSO algorithm was originally proposed 

by Kennedy and  Eberhart in 1995 [18]. In this paper many 

method are dependent particle swarm optimization - based on 

optimal power flow for generation cost minimization  using as 

control variable the generator active power compared with 

linear programming, genetic algorithm based on optimal 

power flow. The proposed PSO, LP, GA based on OPF in 

order to find the minimum generation cost values. The 

proposed approach has been examined and tested on IEEE 30 
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bus.  

At the end of the optimization process, the transmission losses 

and convergence time of each test systems are comparatively 

analysed. In addition, the optimal results obtained from the 

PSO in this study are compared to the results of LP, GA 

reported in the literature. As a result, PSO shows better 

performance in terms of finding lower cost values than those 

in the literature in a shorter time. 

2. OPTIMAL POWER FLOW 
Optimal power flow purposes to optimize a certain objective 

function, which must be satisfied the system load flow 

equations and the limits of element operation condition. The 

optimal condition is executed by modifying the available 

controls to minimized an objective function subject to 

specified operation and security desires the OPF problem is 

formulated as a nonlinear optimization problem with equality 

and inequality constraints, as shown below [19]: 

Objective Function          : f(x, u)                                          (1) 

Equality Constraints        : g(x, u) = 0                                   (2) 

Inequality Constraints      : h(x, u) ≤ 0                                   (3) 

2.1 OPF objective function for full cost 

minimization 
The optimal power flow problem can be described as an 

optimizations problem is as follows: 

F (PGi) =    
  

          +      
                                             (4) 

Where: 

Fi (PGi) : cost function 

 i ,  i ,    : cost coefficients  

2.2 Limit Conditions 
1) Load Flow Equations 

              
 
                           (5) 

            

              
 
                           = 0(6) 

            

2) Generator Limits 

   
             

                                             (7)[1] 

   
             

                                                (8) 

   
             

                                                 (9) 

   
   : Minimum active power of the generator     

   
   : Maximum active power of the generator     

   
   : Minimum reactive power of the generator      

   
   : Maximum reactive power of the generator     

   
    Minimum voltage value of the generator     

   
   : Maximum voltage value of the generator     

3) Transformer Limits 

   
             

                                               (10) 

   
   : Minimum level control of the transformer     

   
    : Maximum level control of the transformer     

3. PARTICLE SWARM OPTIMIZATION   
Inspired by the flocking and schooling patterns of birds and 

fish, Particle Swarm Optimization (PSO) was invented by 

Russell Eberhart and James Kennedy in 1995. Originally, 

these two started out developing computer software 

simulations of birds flocking around food sources, then later 

realized how well their algorithms worked on optimization 

problems. Particle Swarm Optimization might sound 

complicated, but it's really a very simple algorithm. Over a 

number of iterations, a group of variables have their values 

adjusted closer to the member whose value is closest to the 

target at any given moment. Imagine a flock of birds circling 

over an area where they can smell a hidden source of food. 

The particles in the search space adjust their location and 

velocity according to their own experience and the experience 

of neighbors.  

i. The position and velocity vectors of a particle in an N 

dimensional search space are expressed in the equations (11) 

and (12) : 

                                                                             (11) 

                                                                              (12) 

    : Position of particle     in a search space with n particles 

    : Velocity of particle     in a search space with n particles 

The best position obtained by a particle is expressed as 

follows: 

           
            

                                                   (13) 

The particle that has the best position all among the other 

particles in the population is expressed in equation (14) : 

           
            

                                                   (14)  

The velocity and position of each particle updated after (k+1) 

steps is formulated as follows: 

  
     

    
        

     
                                                 (15) 

The velocity of    individual at (k+1) iteration is calculated in 

equation (16): 

  
     

 

    
                 

    
                  

  

  
      (16) 

                              : Number of iteration 

  
                               : Velocity of particle    at iteration k 

  
                           : Position of particle    at iteration k 

                           : Acceleration coefficients 

                             : Inertia weight parameter 

                 : Random numbers between [0,1]  

   Inertia weight parameter as a function of k iteration is 

expressed as follows: 

           
         

         
                                          (17) 

At this point Max.Iter and k are different from each other and 

indicate the maximum number of iteration and the current 

number of iteration, respectively. Maximum velocity is 

expressed as follows [20] 
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N          : number of intervals 

3.1 Optimal power flow based on PSO 

algorithm 
In this study, PSO is applied to IEEE 30 bus system to solve 

optimal power flow problem and it compared with IEEE 30 

bus in case of line-outage and generator-outage in order to 

check it efficiency and the way its work and the difference in 

cost function, losses in the cases that mentioned. It finds good 

starting values for initial population before PSO procedure 

using Newton Raphson Load Flow equations so that it can 

provide better probability of detecting global optimum 

.Application of PSO to OPF is shown in Fig (1). 

4. LINEAR PROGRAMMING 
Linear programming is a mathematical tool used to solve the 

optimization problems, it has the capability to solve linear 

objective functions and constraints and non-linear objective 

functions and constraints through linearization and it has the 

capability to easily handle the inequality constraints where 

this is one of Linear programming‘s powerful features [21]. 

There are several LP techniques that might be used to solve 

the optimization problems such as the Graphical method, the 

Standard (Canonical) form solution and the Simplex method, 

the last one is the most widely used due to speed and 

simplicity. 

5. GENETIC ALGORITHM 
GAs are general purpose optimization algorithms based on the 

mechanics of natural selection and genetics. They operate on 

string structures (chromosomes), typically a concatenated list 

of binary digits representing a coding of the control 

parameters (phenotype) of a given problem. Chromosomes 

themselves are composed of genes. The real value of a control 

parameter, encoded in a gene, is called an allele [22]. 

GAs are an attractive alternative to other optimization 

methods because of their robustness. There are three major 

differences between GAs and conventional optimization 

algorithms. First, GAs operate on the encoded string of the 

problem parameters rather than the actual parameters of the 

problem. Each string can be thought of as a chromosome that 

completely describes one candidate solution to the problem. 

Second, Gas use a population of points rather than a single 

point in their search. This allows the GA to explore several 

areas of the search space simultaneously, reducing the 

probability of finding local optima. Third, GAs do not require 

any prior knowledge, space limitations, or special properties 

of the function to be optimized, such as smoothness, 

convexity, unimodality, or existence of derivatives. They only 

require the evaluation of the so-called fitness function (FF) to 

assign a quality value to every solution produced. 

 

Fig 1: PSO-OPF flow chart 
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Table 1. IEEE 30 bus test system generator cos coefficient, 

Active and reactive power 

IEEE 30 Bus Test System Generator Cost Coefficients, 

Active and Reactive Power Outputs 

Bu

s 

a b c e f Pm

in 

Pm

ax 

Qmi

n 

Qm

ax 

1 0.00
375 

2 0 50 0.06
3 

50 20
0 

-40 200 

2 0.01

75 

1.7

5 

0 40 0.09

8 

20 80 -20 100 

5 0.06
25 

1 0 0 0 15 50 -15 80 

8 0.00

834 

3.2

5 

0 0 0 10 35 -15 60 

11 0.02
5 

3 0 0 0 10 30 -10 50 

13 0.02

5 

3 0 0 0 12 40 -15 60 

 

6. THE SIMULUTION RESULTS 
The proposed PSO-based algorithm for solving OPF problem 

has been applied to the IEEE 30-bus in this section the 

numerical results are represented. Loads were modelled as 

constant powers in the test systems. The results obtained by 

the proposed approach are compared with the results found by 

other heuristic methods reported in the literature recently that 

was on normal condition. After a line outage, generator 

outage take place in the test system the results of line outage, 

Generator outage have been compared with the result of the 

test system under normal condition All the simulations were 

performed on a personal computer with 3 GHz Intel Processor 

and 2 GB of RAM running MATLAB 7.6. Power flow 

calculations by Newton–Raphson method were performed 

using the software package MATPOWER. 

6.1 IEEE 30-Bus Test System (normal 

condition) 
IEEE 30 bus standard test system is shown in Fig 2. The bus 

and line data of IEEE 30-bus system can be found in [23]  

while lower and upper limits of the control variables are taken 

from [24]. The IEEE-30 bus system has six generators at 

buses1, 2, 5, 8, 11 and 13, and four transformers with off 

nominal tap ratios at lines 6–9, 6–10, 4–12 and 28–27. In 

addition, buses 10, 12, 15, 17, 20, 21, 23, 24 and 29 were 

selected as shunt VAR compensation buses for reactive power 

control as in [10]. The total system demand was 2.834 p.u. for 

the active power, and 1.262 p.u. for the reactive power at 100 

MVA base. Bus 1 was taken as the slack bus. The generator-

bus voltage magnitude limits were assumed 0.95 p.u. and 1.1 

p.u., respectively; and the minimum and maximum voltage 

magnitudes of other buses were considered 0.95 and 1.05 in 

p.u., respectively. Furthermore, tap settings of the regulating 

transformers and VAR injections of the shunt capacitors are 

considered as discrete variables. 

The transformer-tap settings were assumed to vary in the 

range [0.9, 1.1] p.u., with step size of 0.0125 p.u [13].The 

VAR injections of the shunt capacitors 

were assumed to vary in the range [0,0.05] p.u., with step size 

of 0.01 p.u. Fuel cost and emission cost coefficients were 

taken from [25] [26], respectively. This system has a total of 

24 control variables including five generators active power 

outputs, six generator-bus voltages magnitudes, four 

transformer-tap settings, and nine shunts VAR injections. Bus 

test system is shown in figure 2. The solution of OPF problem 

with PSO on IEEE 30bus standard test system. The detailed 

results of objective functions, active and reactive power 

outputs of generator units, transmission losses of the IEEE 30 

bus test system are gathered, explained and compared in 

TABLE II.  Fig3 show the comparison of  the conducted study 

with similar studies in literature. As a consequence of OPF 

solutions in the literature with GA, LP, objective functions are 

found as 804.969, 803.89 $/h, respectively. Although the 

objective function values with PSO in the literature are found 

as 801.843$/h. transmission losses obtained by GA and LP 

methods in the literature are 10.29and 4.11 MW. Moreover, 

the transmission losses with PSO 9.3811MW.fig 4 show the 

convergence curve for the minimum total fuel cost result from 

the PSO approach  

 

Fig 2. IEEE 30-bus standard test system 

It is obvious that the proposed PSO algorithm for this study 

provide better results than those reported in the literature in 

terms of total generation cost of the generator units. 

Table 2. OPF results for IEEE 30 bus test system 

IEEE 30-Bus LP GA PSO 

  (MW) 76.02 185.6120 176.6907    

  (MW) 80.00 51.3431 48.8354    

  (MW) 43.77 20.8862 21.4639    

  (MW) 35.00 14.6157 21.7001    

   (MW) 27.23 6.8617 12.0831    

   (MW) 25.50   14.3373 12.0000 

     (MW) 4.114 10.296 9.3733 

Cost ($/h) 803.89 804.969 801.8436 
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Fig3. Active power generation with normal condition 

 

Fig4.The convergence curve for the minimum total fuel 

cost result from the PSO approach 

6.2 IEEE 30-bus test system (line outage ) 
IEEE 30 bus standard test system when a line outage occurred 

in the system is shown in Fig 5. A line outage occurred in line 

6-10,14-15 lead to increase the cost function  in the studies 

case in literature LP,GA and PSO to 804.02, 805.37, 827.3716 

$/hr respectively. The detailed results of objective functions, 

active and reactive power outputs of generator units, 

transmission losses of the IEEE 30 bus test system are 

gathered, explained and compared in TABLE III. 

 

Fig5. IEEE 30 bus standard test system with a line outage 

in lines 6-10, 14-15 

Fig 6 show the convergence curve for the minimum total fuel 

cost result from the PSO approach when line outage occurred 

in the system.  

Table 3. OPF results for IEEE 30 bus test system ( line 

outage) 

IEEE 30-Bus LP GA PSO 

  (MW) 75.96 165.8632    157.1444    

  (MW) 80.00 40.0859    41.3853    

  (MW) 43.74 22.8390    19.4483    

  (MW) 35.00 35.0000    10.0000    

   (MW) 27.53 15.0489    28.6438    

   (MW) 25.31 12.7957 34.9316 

     (MW) 4.114 8.2328 8.1535 

Cost ($/h) 804.02 805.8088 827.4516 

 

 

Fig6.The convergence curve for the minimum total fuel 

cost result from the PSO approach when line outage 

occurred 

 

Fig7. Active power generation with line outage 
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6.3 30-bus IEEE test system when it over 

loaded by (10%,20% and 30%) 
Table IV show the results of load flow OPF by using (LP,  

and PSO) when the system is over loaded by 10%,20% and 

30% 

Table 4. OPF results for IEEE 30 bus test system (with 

over load) 

LP PSO 

10% 20% 30% 10% 20% 30% 

88.51 108.12 142.79 191.14 201.75 223.02 

80.00 80.00 80.00 50.85 54.95 61.41 

48.51 50.00 50.00 22.49 24.05 25.68 

35.00 35.00 35.00 29.98 33.30 35.00 

30.00 30.00 30.00 14.89 16 20.56 

36.08 40.00 40.00 13.72 16.15 17.68 

5.19 6.54 9.37 11.0595 13.2779 15.8972 

918.03 1017.38 1173.68 907.9789 992.176 1.1300e+03 

 

Figure 9 show the over load that occurred in 30-bus IEEE test 

system by using PSO  algorithm which about 10% which 

cause to increase the cost function and transmission losses in 

the test system. And figure 10 show the over load that 

occurred in 30-bus IEEE test system by using PSO algorithm 

which about 20% which cause to increase the cost function 

and transmission losses in the test system. 

While figure 11 show the over load that occurred in 30-bus 

IEEE test system by using PSO algorithm which about 30% 

which cause to increase the cost function and transmission 

losses in the test system   

 

Fig 9. The convergence curve for the  minimum total   

fuel cost result from the PSO Approach with 10% over 

load 

 

Fig 10. The convergence curve for the minimum total 

fuel cost result from the PSO Approach with 20% over 

load 

 

Fig 11. The convergence curve for the minimum total 

fuel cost result from the PSO Approach with 30% over 

load 

7. CONCLUSIONS 
The proposed PSO method developed particularly for this 

study was displayed a better performance than the OPF 

methods solved by LP, GA in the literature. The other 

methods except PSO used in the literature to solve the OPF 

problem provided more costly objective function values than 

the PSO method. By using PSO the cost function, 

transmission losses would be decreased rather than that when 

LP and GA is used. Even when a contingency takes place in 

the system it can be noticed that the cost function and 

transmission losses can be decreased by using PSO algorithm 

also if the system is loaded (over load) from obtained results  

in the literature  the objective function, losses would be 

decreased when PSO applied . 
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