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ABSTRACT
Cognitive load refers to the mental effort applied to perform cog-
nitive processes. In software engineering, developers are involved
in cognitive processes such as program comprehension and change
tasks. Measuring cognitive load would be a human-centered so-
lution, instead of using measurements based on artifacts which
have been shown to have no correlation with developers’ percep-
tion. Therefore, evaluate the cognitive load of the developer has
potential to leverage the identification of source code issues and
also improve the developers experience with their work environ-
ment. To determine a potential searcher to identify and organize
this article a research agenda in relation to the measure of cog-
nitive load of developers. This article also discusses the implica-
tions of using the cognitive load as a multipurpose indicator in
software engineering. Finally, this article provides for practitioners
and researchers a way to advance in the research about develop-
ers’ cognitive load in software engineering in realistic scenarios.

General Terms
Software engineering, Human-factor

Keywords
Cognitive Load, Program Comprehension, Source code, Research
Agenda

1. INTRODUCTION
The mental effort applied to resolve a task is refered to cognitive
load [22][19]. In software engineering, the developers’ cognitive
load would be a potential indicator with more predictive capabili-
ties of software quality or defects [21][5][7]. This because, the soft-
ware engineering tasks are of human nature [15] [17] [4], and tra-
ditional metrics, such as, cyclomatic complexity, and line of codes
can only point defects or indicate about some inconsistency in the
project only after the changes were effectively made [19][17]. Fur-
thermore, the cognitive load indicators have been used for many
purposes in research of software engineering. Igor Crk 2016 [6]
measured the cognitive load to classify and categorize the level of
program comprehension of software developers. Sebastian Muller
[19] used machine learning techniques that used cognitive load in-
dicators to point quality concerns in a source code. Developers’
cognitive load was used also to estimate the task difficulty. The
Cognitive load of developers could be an important indicator, be-

ing the human-centric measures that was missing in tasks that is
constantly affected by the human factors.
Therefore, indicators based on cognitive load have a emerging po-
tential to support several tasks in software engineering. For this,
researchers and practitioners are interested in the next steps to ad-
vance in the research and application of cognitive load in software
engineering. The further steps could be delineated in form of re-
search challenges, and possible implications of adopting this in-
dicator. The related literature investigated the cognitive load for
biometric recognition purposes, focused the analysis of shortcom-
ings, and advantages on their sensors [3], the cognitive biases on
software engineering [18], and investigated the cognitive workload
on personal health records [23]. Thus, the previous studies did not
focus on further research steps and implications of estimating the
cognitive load in software engineering.
This work aims to identify the challenges and implications of cog-
nitive load in software engineering, forming then, further directions
for this field of research. Academia will benefit from this work be-
cause researchers could use the challenges in this work to inspire
their research and advance in relation to open challenges. The prac-
titioners of industry may use this study to guide their commercial
interests, and reflect on the consequences of adopting such mea-
sures in their daily work. Furthermore, this work also listed the
possible implications on adopting this measure, among them, the
ethical and practical consequences.
For this, this study conducted a scoping review, based on well-
established guidelines in the literature [20]. In particular, this work
was based on procedures of systematic reviews because they pro-
vide search protocols. Therefore, the works that we extracted the
challenges and implications were selected based on criteria. Ini-
tially, 807 potential studies were retrieved from two widely-know
search engines, and 14 studies were selected after an insightful pro-
cess of selection. From these studies was identified further chal-
lenges and implications of cognitive load in software engineering.
The remaining of this paper consists on the following. Section 2
presents the basic concepts regarding cognitive load in software en-
gineering. Section 3 describes the methodology. Section 4 presents
the future challenges regarding cognitive load in software engineer-
ing. Section 5 presents the possible implications of adopting cog-
nitive load in software engineering. Section 6 relates this work to
the existing literature. Section 7 describes the final remarks of this
work.
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2. COGNITIVE LOAD
Figure 1 presents the ecosystem that comprises the measurement
of cognitive load in software engineering. In general, in software
engineering, this ecosystem comprises on a process with are com-
posed by four three main steps [19][15] [17]: (i) retrieve raw signals
from users from a device or a set of devices (s); (ii) the raw signals
from sensors are treated to remove noise, then, a cognitive load re-
lated metric or a set of metrics are applied on treated signals. The
goal of this step is to extract and define a valuable set of metrics or
features from the raw signals (f(r) → v); (iii) these set of features
or measures are analyzed on machine learning techniques aiming
to correlate or classify to an outcome measure, such as, the level
of productivity on a task, and the estimation of being stuck. There-
fore, the measures of cognitive load are usually associated with the
classification and prediction problems.
Biometric Devices: Several devices can be used to capture signals
related to cognitive load [19, 3]. Including the electroencephalo-
gram (EEG) which retrieve electrical signals from the brain, the
fNIRS which capture the blood flow from the brain, and eye track-
ing, device which tracks the eye movements. Another sensor that
could be used to collect cognitive load is a wristband that captures
information such as heart beating, and respiratory rate, informa-
tion’s which are related to cognitive load.
Cognitive load: The cognitive load is obtained through the reflec-
tion of the signals provided by the previously devices [6]. While
users are concentrated in a task, the devices captures the manifes-
tations of their body. For instance, during a task that demands high
effort, the heart rate and respiratory rate increases. Also the electri-
cal signals alters, including an evident desynchronization of brain
signals.
Applications: There are a lot of applications which researchers
in the software engineering research field are interested such as,
identifying the level of expertise of developers [6], measuring the
task difficulty according to developers’ perception [19, 14], and im-
proving the developers’ well-being [10]. However, there are many
shortcomings which academia and industry must overcome in order
to deploy the cognitive load indicator in realistic scenarios defini-
tively. This work is focused to address this problem.

3. METHODOLOGY
This section defines the methodology used to retrieve the state-of-
art literature about the measures of cognitive load in software engi-
neering. From this selected literature, we derived the further chal-
lenges and implications of applying the cognitive load in software
engineering. The methodology of this work consists in a scoping re-
view, which we seek to systematically selected related works based
on criteria of selection. Section 3.1 presents the objective and re-
search questions of this work. Section 3.2 presents the strategy to
select the potential studies. Section 3.3 the process of studies selec-
tion.

3.1 Objective and Research Questions
This study has two main objectives: (1) to grasp a research agenda
in relation to the cognitive load measures in software engineer-
ing. (2) List which implications that industry suffers after industry
adopting cognitive load. For this, this study comprises in two re-
search questions: (1) What are the main challenges about the mea-
sures of cognitive load in software engineering? (2) What are the
implications on dealing of these measures?
To answer these questions, a scoping review was conducted to se-
lect systematically the related literature.

3.2 Search Strategy
This section presents the method for strategy used to search studies
in the literature. The strategy consisted on building a search string,
define the criteria for study selection, and define a main search en-
gine to conduct the search. This search strategy was built based on
well-defined guidelines in the literature [20].
Search String. The search string was built based following the PIO
method (Population, Intervention, and Outcome). The populations
group is in respect of sensors used to collect cognitive load (“Brain-
Computer Interfaces”). The intervention group means the measures
taken from the populations (“cognitive load”). The outcomes group
refer to the where contributions about the relation of population and
intervention referred (“Software engineering”). The keywords were
extracted from main references to this research field. The search
string bellow was formed after relating the strings of the different
categories with the Boolean AND. The result is the string bellow.

“Brain-Computer Interfaces” AND “cognitive load” AND
“Software engineering”

Selection Criteria. We defined criteria for inclusion and exclusion
of studies. These criteria are described bellow:
EC1- Grey literature: This criterion removed studies that fit into a
category “Grey literature”, which consists on patent registration, or
documents describing “call for papers”’;
EC2- Title and Abstract- This criterion removed studies by title and
abstract, which not presents any relation to the field of research of
this work;
EC3- Language: This criterion removed studies by analyzing their
native language. English language is the default language in this
study. Therefore, papers not written in English were removed;
EC4- Semantic: This criteria discard studies, which contain some
terms of the search string, but the study did not address issues of the
research field (cognitive load in software engineering) by analyzing
their title and abstract;
EC5- Duplicate: This criterion removed duplicate studies;
Search Engine. In this work, Google Scholar and Scopus was the
search engines used to conduct the selection process. These engines
were selected because they cover works published in main journals
and conferences related to computer science, which contain works
investigating cognitive load in software engineering.

3.3 Study Selection
Figure 2 shows that the process for selection of studies. In the first
step, the defined search string was applied on the Google Scholar
and Scopus search engines. A total of 807 works were found in the
search engines. In Google Scholar were obtained 755 works, and
52 studies were returned by Scopus’ search engine. Next, the ar-
ticles that registered repeated records were filtered. A total of 97
articles were removed because they were in duplicate (Applying
EC5 criteria), and thus resulting in 710 articles to analyze. After, it
was verified whether within this 710 articles sample contained grey
literature, and which among these articles were inside the research
scope of this work. Thus, 87 works were removed because they
were not elaborated in English (EC3) or consisted in grey literature
materials (EC1). Moreover, 559 studies were removed after analyz-
ing their title and abstract. These works were removed because they
were not within the research scope based on information in their ti-
tle and abstract (EC2). For the next step, remained a total of 64
articles, which were fully analyzed. After a full-text checking, 50
works were discarded in the final list. These works were removed
because they were short papers, or definitely were not aligned to the
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purposes of this article. Finally, 14 works composed the final list of
representative works in Appendix A. These works were assigned
with identifiers that varies from W01 until W14 representing the se-
lected 14 works in the filtering process respectively. The challenges
list that we identified are related to these identifiers respectively.
This final list of selected articles was used to answer our defined
research questions of this work: (1) delineate the future challenges
and (2) future implications of measuring cognitive load in software
engineering.

4. RESEARCH AGENDA AND CHALLENGES
(1) An approach to estimate the developers’ cognitive workload
level [W01] [W02] [W10]. Some studies found that the increasing
cognitive load impacts on developers’ performance during the cog-
nitive process, such as, comprehending source code[6, 19]. In the
case of certain level of cognitive workload jeopardize the devel-
opers’ comprehension, then the software project probably will be
compromised too [14]. The cognitive workload level also is an in-
formation that can be used to a wide range of purposes such as, for
indicating the level of learning, to promote task recommendations
based on their cognitive work load.
However, some challenges must be overcome in order to estimate
the cognitive workload of developers precisely. For instance, it’s al-
ready known that various physiological manifestations are related
to cognitive workload, such as, brain waves, pupil size, and respira-
tory rate. Therefore, the role of researchers is to investigate which
from these biometric features are really effective in estimating the
cognitive workload in software engineering context. Finally, an-
other fact about cognitive load, is that it is affected by the level
of experience, and besides that, it can vary across individuals. For
instance, Lee 2017 [14] controlled the cognitive load in relation to
two experience levels (experienced and no experienced), while in
[6] analyzed the cognitive load in relation to 5 categories of ex-
perience (from sophomore to seniors one). Therefore, the question
is, which are the appropriated categories to analyze the cognitive
workload?
(2) Combining EEG and Eye tracking [W01] [W14]. Capturing
biometric data through a single sensor enabled a limited analysis
of cognitive load during coding tasks. While the electrical signals
captured by the electroencephalogram help in exploring cognitive
processes such as code comprehension from the brainwaves per-
spective, the eye tracker data can help to locate which part of the
software artifact the developer was focused on. Eye Tracking can
also provides support to developers on detecting the strategy the
programmer uses to manipulate the artifact. Therefore, the combi-
nation of these two sensors would make it possible to cross cog-
nitive process data, as well as, where in the artifact, the developer
dedicates their cognitive load. This would enable systematic anal-
ysis and conclusions of how the developer understands software
artifacts.
Despite these advantages, there are some open questions to turn the
combination of EEG and Eye Tracking working effectively. For in-
stance, in order to conduct a coherent cognitive load analysis, the
data transmission of the sensors must be synchronized. Synchro-
nizing these data are a challenging task as both devices have char-
acteristics regarding temporal accuracy. Time accuracy is the fre-
quency with which data is captured over a period of time. Another
challenge is how to report EEG and Eye tracking data to the devel-
opers. These devices have different characteristics and report data
in different way. The way data are presented is crucial to under-
standing what happens during the software tasks. Another question
is regarding data processing. Data processing consists of obtaining

the data that is actually related to the event of interest. For exam-
ple, various types of noise may reflect electroencephalogram data,
such as involuntary muscle movements. These information must be
filtered and removed in the processing step. The characteristics of
noise types differ from sensor to sensor. Thus, specific processing
for each sensor should be applied. Therefore, methods for process-
ing data from these devices synchronously must be defined.
(3) Improve spatial resolution of data collected through the
electroencephalogram [W06]. The EEG spatial resolution is an
important factor in analyzes of brainwaves signals covering the
maximum as possible the scalp area. An higher spatial resolution
would benefit researchers to analyze precisely the source of cogni-
tive effort on software engineering tasks. Thus, the quality of reso-
lution depends on the number of channels the EEG device contains.
These channels are those deployed on the users’ scalp. More spa-
tial resolution is obtained when more channels are deployed on the
scalp, thus resulting on a higher coverage of the space of the scalp,
therefore, improving the spatial resolution.
However, obtaining high resolution data is a challenging task due
to the limitations on research project income: acquiring such equip-
ments are very expensive. The consequence is that research usually
adopts EEG devices with low resolution, i.e., devices with one or
14 channels such as Neurosky [12] and Emotiv [8] respectively. To
overcome this problem, software engineering labs must establish
partnership with specialized neuroscience labs. It’s also desirable
that the industry resolves this problem on producing cheaper wear-
able and off-the-shelf devices with an increased spatial resolution
in relation to the current state-of-art devices.
(4) Define a method to filter the EEG data [W09]. Another chal-
lenge is filtering the noise of sensors’ signals. Filtering the EEG
data is an important step to maintain the quality of EEG data. EEG
data are noisy due to power-line interferences, and muscle move-
ments such as, eyes’ movements, which constitute of artifacts that
affect the analysis of the study purposes. This is because the main
aim of the software engineering studies is to analyze the cogni-
tive process of developers, such as task difficulty. Removing noisy
signal is essential to analyze the data that really are related to the
object of interest to the research analysis. Thus, researchers and
practitioners must isolate the data that are really related to the anal-
ysis. For this, a number of techniques for filtering data exists, such
as high-pass filter, low-pass filter, band-pass filter, RC offsets, etc
[16]. However, each one serves to a different purpose, and can be
suitable for specific situations. For example, low-pass filtering is in-
dicated for attenuating eye movements’ artifacts. Moreover, users
can define specific cut-offs for each filter, i.e., the bounds which
EEG signals are filtered.
Despite the existence of well-established techniques for filtering
and clean the EEG Data, its not clear yet for practitioners and sci-
entists what specific filter must be applied. For this, an important
research track is to develop a framework for filtering the EEG data
according to the purpose of experiment. A framework would be
used by researchers as a guide to apply the appropriate filter method
according to the experiment or aims of their research analysis. In
other words, scientists and practitioners must be aware of what kind
of filter they must use for their analysis. For this, the challenging
task is to define clear guidelines for what steps and which filter
to apply. Another challenge is to develop an approach for apply
automatically the ideal filtering according to the behavior of EEG
signal.
(5) Investigate the relation of developers’ cognitive load level
and Bad Smells [W03][W04]. Bad smells is a well-know list of
patterns that describes source code problems [9]. Specifically, these
code problems jeopardize the maintainability, and understanding of
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the system. At first, it is assumed that with a low level of cognitive
load, the developer is prone to inserting Bad Smells in the source
code. This is because it is hypothesized that the programmer is ap-
plying mental effort to develop a more sophisticated solution in the
source code. And with that, the developer can insert a range of code
problems, among them, the best known are code duplication, when
there are similar codes in the same line of code, a “long” class,
when a class has an big size and concentrates a lot of variables and
methods, and a long list of parameters in the method.
It is well-known in the literature that the presence of bad smells
impairs system maintenance as well as developer understanding
[13][9]. For this, a future challenge is to analyze whether certain
cognitive load levels are correlated with specific bad smells. Thus,
it would enable the deduction of such cognitive load level indicates
a possible specific bad smell emerging in a source code. In addition,
another more difficult problem would be to identify which level of
cognitive load would lead to turn developers prone to insert bad
smells. With these information, it would be possible to inform the
developer what kind of bad smell he would be putting in the source
code online. In case of it be proven, they would help developers
maintain the system avoiding inserting such code smells.
(6) Analysis of the relation between developers’ cognitive load
and their expertise [W02] [W05] [W07] . The level of exper-
tise influences the developers’ performance on programming tasks.
Studies have been relating the cognitive load level with developers’
expertise level [6][14]. Studies already pointed a relation between
cognitive load and their expertise level, and they concluded that
expert developers apply less effort to resolve a task. Identifying the
expertise of developers is a relevant information for many purposes,
for instance, for identifying the level of education of the software
developer. Moreover, it would support the identification of the ex-
pertise of developers in specific languages and kind of tasks. Thus,
this information would be important in a realistic scenario, to rec-
ommend tasks for developers improving their skills, or to allocate
them in a task which is coherent to their expertise level.
The first problem is to replicate the already existent studies, to rein-
force the validation of expertise level and cognitive load level. For
example, Igor Crk [6] used the EEG to measure the cognitive load
of software developers, which pointed a low predictive power for
developers’ expertise using alpha band in tasks’ correctness. Thus,
other tests must be concentrated on other bands such as gamma,
beta or theta for the purposed of investigating the real relation of
the specific brain frequency bands and expertise level. A second
challenge, among several paradigms already used to measure the
developers’ expertise, such as, fMRI, and EEG, further studies must
evaluate the trade-offs of using these devices to analyze the devel-
opers’ expertise, and how their information can be integrated in
order to improve the accuracy of developers’ expertise.
(7) Prediction of code quality concerns based on developers’
cognitive load. [W06] Quality concerns are usually detected by tra-
ditional metrics such as cyclomatic complexity, and modular level.
What that metrics has in common is that both are based on soft-
ware artefacts. Thus, these metrics only can be analyzed only right
after the code was modified [19]. Furthermore, literature already
evidenced that artifact-based metrics are not related to the predic-
tion of program comprehension. One of the reasons is that they are
not sensitive to the developers’ sensing. A metric based on devel-
opers’ perspective, using their cognitive load, would be important
to point the propensity of the generation of quality concerns or er-
rors in the source code. Despite some studies already pointed that
the usage of cognitive load outperformed the usual metrics, some
challenges must be resolved to advance in this direction.

First, current studies are limited to relate the mental effort to a few
sets of quality concerns, such as, bad comments, and bugs [19].
Further studies could discover the relation of cognitive load to im-
prove the granularity of quality concerns. Second, they evaluated
the quality concerns predictability based on classifier such as Sup-
port Vector Machines, Naı̈ve Bayes, and Random Forrest. Conse-
quently, they reached a good, but improvable, 40% of accuracy for
classifying quality concerns. Thus, other techniques machine learn-
ing techniques could be evaluated. Third, studies predicted quality
concerns based on electrodermal activity, respiratory rate, and heart
beating sensors. Thus, the previous investigations neglected the us-
age of others widely used sensors in this kind of research such as,
EEG, fMRI, and fNIRS. Using these sensors could improve the
predictability power of quality concerns.
(8) Effects of emotions on developers’ programming perfor-
mance [W13] [W11]. During software development, the emotions
of software developers vary from negative to positive emotions.
Negative emotions are related to frustration, or sadness, while pos-
itive one is related to satisfaction, and happiness. Furthermore,
many factors can influence the emotions of software developers,
such as, time pressure, sense of progress, and the work environ-
ment. These factors influences the emotions of software develop-
ers, and consequently, their progress at work. The researchers as-
sume that negative emotions have a negative impact on developers
sense of progress, and consequently, a negative impact on their per-
formance. In previous works, biometric data were correlated to a
certain range of emotions, which they pointed that negative emo-
tions are related to lack of progress. This data is important, because
based on the developers’ emotions would enable to make sugges-
tions to the developers take a break, or execute an easier task.
However, some improvements are required to definitively related
the emotions with programming performance. First, studies did not
investigate the relation of cognitive load level with the wide-range
of possible emotions of the developers. An investigation like this
would relate whether developers experience low or high cognitive
load during negative emotions. Second, future studies should im-
prove the identification of negative and positive emotions based on
biometric data. Despite previous work [W11][W12] classified suc-
cessfully negative and positive emotions with high accuracy (70%)
it could be improved using brain-centric data, instead of applying
the respiratory rate, and electrodermal activity.

5. IMPLICATIONS ON REALISTIC SCENARIOS
(1) Promote the welfare in the software development scenario.
As the cognitive load is a data that are owned by the developer,
we believe these data should be used for the benefit of developers.
Therefore, the best possible use of this data would imply improving
the developer’s welfare. Thus, indicators of cognitive load, along
with indicators of emotions, should be used to identify stress, anxi-
ety, and based on this information recommend activities outside the
scope of work such as exercise, meditation, or reducing the working
time. Moreover, decreasing working time has been shown to be ef-
fective in increasing productivity. Therefore, promoting developer
welfare would be a promising implication because there is evidence
that welfare provides a better work environment.
(2) Improved quality of software systems . With the use of cog-
nitive load the quality of software systems is expected to improve,
and software system customers will enjoy a system with fewer bugs
and execution problems consequently. This is because current met-
rics only capture issues after changes have been made. With the
use of cognitive load, it is expected to detect stress points of the
developer who may lead to loss of system quality. That way, the
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programmer may receive feedback from the system for him ask-
ing support from another team member or to indicate to the devel-
oper that something might go wrong with the task if he continues
the activity. Therefore, preventing code quality from being com-
promised before code is sent to the system repository is one of the
expected implications of using cognitive loading in software engi-
neering [19].
(3) An improved estimator for indicating the presence of qual-
ity concerns. There are many software design metrics being used
by analysts to demonstrate the presence of code quality concerns.
Metrics such as the number of lines, number of methods, number
of parameters, number of global attributes, among others, may in-
dicate source code problems. These problems could be an architec-
tural standard that were not followed by developers, such as deny-
ing following modular specifications of features. However, the no-
tion of size is not accurate in software engineering. The number
of methods, or lines considered to be large, or small, is not accu-
rate and may vary across existing projects, turning the identification
of code problems inaccurate. Thus, cognitive load may imply in a
developer-based indicator that indicates code problems according
to developers perception. This would imply in an improved estima-
tor that may be more accurate for indicating the presence of quality
concerns.
(4) An Integrated Development Environment (IDE) responsive
to the developers’ cognitive load level. Another implication that
is still expected by the existing literature is an IDE that is aware
in relation of the developers’ perception. In addition, it is believed
that if a better effectiveness of cognitive load as an indicator of soft-
ware quality is proven, it may signal the developer’s perception of
the current activity. Based on this indicator, the IDE could indicate
which tasks the developer might perform. Based on the cognitive
load the IDE could adjust the screen layout such as source code
size or colors that should be presented to the user. However, before
that, a range of experiments is expected to correlate which tasks
should be recommended to developers. It is at least estimated that
for each developer, a unique configuration should be established
between recommendation types.
(5) Ethical and privacy aspects. Data related to cognitive load,
obtained through biometric sensors such as heart rate, electroen-
cephalogram, and eye tracker, are private data from the developers.
Therefore, companies should be concerned about maintaining the
confidentiality of information. It would be a very unethical action
to use contract clauses to enable the sale of the biometric data of its
employees. Therefore, companies should behave ethically and keep
data confidential. For instance, a company should not maintain pro-
prietary rights to such data. In addition, the literature also points out
that using this data to evaluate, promote or recruit staff would be un-
professional. Qualifying a person for the quality of their physical
attributes is a serious ethical problem [6].

6. RELATED WORKS
Gui et al. 2019 [11] conducted a survey about brain biometrics, i.e.,
aspects of the brain for identification of users in general. Author ar-
gues that the electrical brain signals provide a potential and impor-
tant aspect to identify users because they are unique and exclusive
to each user. Thus, according to authors EEG is a signal that pro-
vides confidentiality. The authors also argue that multimodal recog-
nition system would be a great future challenge is a solution to ver-
ify the identity by various sources of signals (eye, heart) strength-
ening the identification of users. The authors also pointed keeping
the stability of EEG signal is a challenging task, because it can be
easily affected by user emotions.

Bablani et al. 2019 [1] conducted a survey about techniques that
can make an interface between brain and machines. This study is
not focused on software engineering, and refers to brain-centric de-
vices in a general way. The authors also highlighted the methods
to enable to transform the brain waves signal in a readable infor-
mation to machines. For this, they highlighted methods such as
the Convolutional Neural Network (CNN) that extracts informa-
tion from brain autonomously. These methods are also important in
a software engineering context, because these devices are deployed
inside an environment which measures the cognitive load of devel-
opers based on their biometric indicators.
Wilbanks and McMullan 2018 [23] reviewed the literature about
the application of cognitive workload of Electronic Health Records
(EHR) users. Electronic Health Records provides a decentralized
manner to clinicians to access the patients’ record, and historical
information about their deceases. Authors argued that high cogni-
tive workload can be interpreted as erroneously interpreted infor-
mation’s of clinicians from EHR’s. The bad design and inadequate
usage of EHR leverage the changes of them make mistakes imply-
ing the increasing of death rates. This work is important for soft-
ware engineering, because it highlights the importance which cog-
nitive load can play in the design and project of users’ interfaces,
such as, in IDE’s.
Lotte 2007 [16] presents and describes the machine learning tech-
niques for classifying data obtained from the electroencephalo-
gram. Authors focused on challenges of extracting classes from
brain-centric data as well as choose the appropriated machine learn-
ing technique for specific cases. Lotte also proposed a guideline to
schematize which technique developers must adopt. This work is
very important because it points which technique is best suited for
classifying brainwaves data. Authors pointed that the support vec-
tor machine is the most appropriated one. Authors also highlighted
that the performance of the algorithms must be improved.
Mohanani et al. 2018 [18] systematically listed the cognitive biases
of developers during software-development tasks. The authors ar-
gue that cognitive biases such as developers’ overconfidence, and
cognitive bias on decisions could jeopardize the software quality. It
was also highlighted the need for producing techniques to manage
and avoid cognitive biases during software development. It would
avoid that personal biases of collaborators on affecting the software
purpose. The authors highlighted the sense of cognitive bias could
be incorporated in learning environments. Authors also highlighted
that the human-factor influences in software quality significantly
rather than measures from software artifacts.
Bateson et al. [2] developed a scheme to categorize the brain-
computer interfaces. In particular, they classified that electroen-
cephalogram off-the-shelf, and that vendors usually pointed as
“mobile” and “versatile” devices. However, the authors verified
these devices in detail and found limitations in these sensors. For
instance, they did not provide much mobility as argued by vendors
and for this, they categorized these devices according to their real
characteristics. This work makes evident that the devices are one of
the parts of the problem that must be overcome in order to enable
the definitive adoption of these devices in real environments.

7. CONCLUSION
Cognitive load has the potential to indicate the welfare of develop-
ers and to improve the quality of work of developers. Whereas, the
literature has already demonstrated the effectiveness of this metric
to indicate developers’ level of expertise, as well as to demonstrate
the level of difficulty perceived by developers. Therefore, it is in
the interest of academia and industry to have a research direction
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to explore the benefits of adopting developers’ cognitive load in
software-development tasks. Therefore, the objective of this work
was to complement the existing literature and provide future di-
rections to researchers and practitioners about the application of
cognitive load of software developers.
Overall, the challenges shows that cognitive load has important
steps to advance toward a effective indicator to be adopted in soft-
ware engineering. The challenges also reinforced what was found
in the literature, i.e., that the cognitive load is a kind of measure
that can used for many purposes, such as, measuring the quality of
source code, until for the identification of developers expertise. In
fact, the cognitive load of developers based on biometric measure-
ments has potential to be an indicator for effectively integrating the
human-factor in software development environment. Moreover, the
implications of the adoption of cognitive load in realistic scenarios
shows that the industry and academics would benefit mainly from
an integrated IDE that adapts to the cognitive demands of software
developers. On other hand, the usage of cognitive load implies on
development respecting privacy and ethical aspects regarding the
data obtained from developers.
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Fig. 1. General view of the ecosystem involving the measurement of developers mental effort.

Fig. 2. Process for selection of studies.
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