
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

22

Various Test Case Generation in Code Smell Detection

Tools and Testing Methods: Review

Deepika Tewatia
Research Scholar (CSE)
Baba Mastnath University

Rohtak, Haryana

Devender Kumar, PhD
Associate Professor (CSE)
Baba Mastnath University

Rohtak, Haryana

ABSTRACT

Test case generation in terms of code smell refers to the

features of the software that recognizes a code and design

issues which make software hard to realize, evolve and

preserve code. Generally, the maintenance and detection of

the software applications become more difficult due to the

presence of the smell. Programmers are unable to identify the

source code applications and face issues to understand the

source code of the project. Simultaneously, a code smell face

problem to refractors and developers for upgrading and

maintenance of the source code. Present, research is active in

the automated detection and testing of the bad code smell.

Without the knowledge of the code smell with diverse

refactoring, and efficient tool make the detection of the code

difficult. Particularly, the code smell in software is based on

the programming of the source code, that may lead to

difficulty in detection of bad code smell. This paper analysis

the detection tools, method of code smells and methods for

the detection of bad test code smell. The categories of

different test code smells are described which includes

applications, classes and different method-level code smells.

Moreover, detail definition of the bad smell in source code

and its types in source code is also elaborated. In addition to

that, bad code smell detection is described which includes

automated detection and machine learning methods for

identifying the bad code smell. Additionally, the automated

tools which are given as, a check style, décor, infusion,

deodorant and iplasma. The detection methods are decision

tree (DT), Learning group rules, Multilayer perceptron

(MLP), Naïve Bayes (NB), Support Vector Machine (SVM),

Radial basis system (RBS) network.

Keywords

Code smell, Test case generation, Machine learning, Bad

smell detection, Automated tools.

1. INTRODUCTION
Testing plays an essential role in the whole software

advancement effort. During the development of the software

scheme, test suites and repairing of the software requires

updating software. Software testing is measured in manual or

in an automated way [1] [2]. An automated test suite helps in

the maintenance of the activities like as code command and

regression testing [3]. A STCE (software test code

engineering) is referred as a systematic approach to develop,

verify and maintain high quality of the test code [4] [5]. If the

program has s/w evolution and maintenance issue, it is

referred as bad smell of test code. At present there are various

detection methods that helped in the evaluation of the bad

smell [6]. The various categories of code smell are given as,

application smell, class level smell and method level smell

[7][8].

i) Application smell: It provides duplicate information

which is similar to the actual data and Its

architecture is more complex.

ii) Class level smell: It contains a large number of

classes, variable with no literal and inappropriate

data.

iii) Method level smell: The different parameter is read at

the same time. The complex structure of coding is

created.

The numerical measure of the software is S/W metrics. The

below table 1 main focused on the metrics of the source code.

Table 1: Software Representations [18]

Representation Label Level

NOM It is a number of

methods

Class

LOC Lines of code Class

PAR Number of

parameters

Method

MLOC Method, lines of

code

Method

The developers resolve the issue of the complex design and

maintenance through refactoring method in an automated

way.

Fig .1: Schematic process of test case generation (Code

smell)[11]

It is also called as the reusability tests and can be done in an

automated way [9].The detection and testing of the bad smell

can be done through refactoring technique. An automated

approach can be done in three stages [10]. The threat logger

collects the interaction events from the real users. The high

Threat

Logger

Bad

smell

finder

Bad smell

reporter

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

23

level interaction events are determined through reusability

events. The bad smell is searched though the bad smell

finder. After that, it is stored in bad smell reporter [11].

Test code smell has a different group of smells that is related

to the test cases and interrelated to each other. The test classes

can be modified by the group of the test cases. The test code

can be categorised as[12][13],

1.1 Smell 1: Test Track War
This testing will run as long as one of the testing fails when

different programmers are running the code. The temporary

resources are allocated. It is difficult to identify the use of the

documentation when various test methods are selected [14].

1.2 Smell 2: Lazy Test
It happens when various test techniques select the same

method using similar variables. The tests are used when same

instance variables are combined to form a structure through

inline model approach [15].

1.3 Smell 3: Unintended Testing
The test class is made up to test the complement in the

creation of the code. The test class starts to smell when the

testing is performed on other objects [16]. The test class can

acheived through the extraction and move method. When

smell takes place there may be issue in hiding data during the

creation of the source code. Its testing process is not easy

because the object is segmented in to maximum level.

1.4 Smell 4: For Testers:
The test methods can be used for creating the class. Moreover,

code can be produced through the functionality of the test

methods [17] [18]. The extract class can be used to replace

methods from one class to another class. The developer

cannot test the class without adding methods to the class.

1.5 Smell 5: Test Code Doubling:
The undesirable doubling is required for the test code.

Particularly, the part of the test code is required to set up the

fixed data to resolve the issue of the doubling. The output is

similar to the normal code doubling. Generally, the doubling

of the test code in similar test class can be eliminated by

extraction technique.

2. LITERATURE SURVEY
Liu, H et al., 2019 [19] proposed research on deep learning

technique for the detection of the code smell. An automatic

selection of the source code for the detection of code smell

was done using deep neural network (DNN) and improved

deep learning methods. Moreover, an automatic detection was

built for complex mapping among such features and

calculations. A major challenge was that deep learning needs

maximum amount of labels trained information, whereas

current database for code smell was small. However, they

proposed an automated method for creating labelled trained

information for neural network based classifiers that may not

require any social intervention. In proposed work, they

applied for common and recognized code smells such as

feature envy, long technique, maximum class and

inappropriate class. The simulation results determined that the

open source presentations recommend that planned method

was essentially improved the proposed state of art.

Hasanain, W et al., 2018 [20] performed an industrialized

case study that aimed at providing an appropriate

understanding like as duplicate test segments which was

called as a clone. In this research, the whole test clones were

up to 49 % of the LOC. The proposed output includes clone

frequencies, kinds, segments and size disseminations and

amount of line differences in clone test cases. It was

challenging to store the reliable and eliminate un-required

clones at the time of the whole testing method of large

commercial software. The clone similarity was studied to

perform another analysis. They detected that the type -3

reliable and type -3 blind clone segments store the maximum

resemblance between 70 to 75%. The amount of the segment

existences reduces where similarity of whole type -3

increased. It was analyzed that the differences in the

similarity index were 30% that occurred when compared

versions of code segments. Tahmid, A et al.,2016[21] aimed

to identify the development of the code smell in S/W by

observing the behavior of the clusters like as size, quantity

and connectivity. The clusters and its features were examined.

The detection of code smell clusters was done in three stages ,

identification of code smells through detection equipment,

elimination of relation by observing the source code structure,

creating graphs from recognised smells and its relations and

then discloses the clusters. The observation was computed on

JUnit as a case study and behaviour of four clusters was

described in this research. The amount of the interrelated code

smell clusters in code smell increases gradually with the time.

In the case study, the average improvement in cluster count

was 3.78 clusters per release. The mega clusters achieved

69.49% of smelly nodes as an average. The simulation results

of this research provide appropriate code smell develop in

software. Guggulothu, T et al.,2019 [22] studied multilevel

classification model to identify if the given code component

was influenced with multiple code smell or not. They had

measured two code smell database and transformed them into

a multilevel database. In this research, the two multilevel

classification techniques include CC and LC. It was observed

that CC technique provides better outcomes as compared to

LC method. The proposed method provides better output as

compared to current research. The experimental provides

accuracy up 91%, whereas it was 73% in current research.

Rubin, J et al.,2019 [23] presented FAKIE , an automated

tool based method to create android code smell detection

regulations for performing static analysis of the android

applications. The proposed method was a supplement to

current code smell detection code. The main objective of the

research was the definition of the detection equipment. They

used FP –GROWTH connection regulation algorithm to

analyse the information created by static analysis. They

validated the 48 open source applications from F-Droid. The

planned method was automatic identification rules with an

average of F-measure of 0.95. Moreover, the empirical study

of the 2993 applications of the android applications was done

after downloading from Androzoo. The outcome of this

research demonstrates the ability to eliminate the data from

database of code smell. Sae-Lim et al., 2017 [24] examined

by expert developers to identify the aspects they used for

selecting and arranging the code smells. In this research,

they showed an experiment to identify an expert developer to

select and organize code smells. The comparative analysis

was done in which experts provide maximum priority to code

smell linked to specific background. Firstly, task applicability

was the major approach considered during code smell

selection, followed by Smell severity, and both were

measured at the time of the selection method. The other, the

essential approach was the main factor in code smell

arrangement process, followed by task application. In

addition, other aspects like as task application price and

collocated smell were measured in both the methods. In this

research, the expert developers used code smell filtration and

prioritization identification. Di Nucci, D. et al., 2018[25]

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

24

proposed research on machine learning methods for the

detection of code smell , probably resolving the problem of

equipment subjectivity giving to learner the capability to

distinguish among smelly and non-source code components.

The proposed work provided a new opportunity for code

smell detection, the single kind of the smell was contained in

every database to train and test the machine learners. In this

research, they replicate the study with various database

configurations which contained the examples of more than

kind of the smell.

Table 2, gives the comparative analysis of the various

methods, advantages and problems that have been

investigated after the survey of different papers.

Table 2: Comparative analysis of methods, merits and

issues of various surveyed code smell testing and detection

papers

Author Methods Advantages Issues

Liu, H et al.,

2019 [19]

Deep

learning

method

Detecting

small code

In detection

of misplace

class.

Hasanain,

W et al.,

2018 [20]

Clone

analysis

method

Analyse

industrial

test code

Clone

fragments

Tahmid, A

et

al.,2016[21]

Smelly

cluster and

type

checking

method

Identify

code smell

clusters.

Complex

structure

Guggulothu,

T et al.,2019

[22]

Multilevel

classification

method

Differentiate

smelly and

non-smelly

code

elements.

Identification

and

maintenance

of code smell

are difficult.

Rubin, J et

al.,2019 [23]

Rule mining

based

method.

Identify

code smell

applications

Over using

of H/W

resources.

Sae-Lim et

al., 2017 [24]

Code smell

prioritization

method

Filter code

smell

High

evaluation

costs

Di Nucci, D.

et al.,

2018[25]

Machine

learning

Detecting

small smell

Different

code

elements

In Table 3 , analysed different parameters after the survey of

various papers.

Table 3: Comparative analysis of different parameters

analysed from various surveyed papers

Authors/Para

meters

Accur

acy

Precis

ion

Rec

all

F-

meas

ure

sensiti

vity

Liu, H et al.,

2019 [19]

x    x

Hasanain, W

et al., 2018

[20]

 x x x x

Tahmid, A et

al.,2016[21]

x x x x 

Guggulothu,

T et al.,2019

[22]

 x x  x

Rubin, J et

a.,2019 [23]

   x x

Sae-Lim et

al., 2017 [24]

 x x x 

Di Nucci, D.

et al.,

2018[25]

 x x  x

3. BAD SMELL AND ITS TYPES
Bad smell is also termed as the code smell that is related to

the problem in the software design and development of source

code [26]. Bad code smell is the poor structure and

arrangement during the implementation of the code. The code

smell detection tools have been implemented to detect the

problems of the program code. The types of the bad smell

include;

3.1 Data Class
The complex methods are not present in the data class. The

attributes may be public or unprotected through assessor

techniques.

3.2 God Class
 It is capable to access different attributes from different

classes. The attributes present in one class can be used for

another class. It contains complicated class methods and large

number of the access attributes.

3.3 Feature Envy
 It accesses external attributes, the attributes that is present in

another class. The feature envy method access large number

of the external attributes as compared to local attributes. The

less number of the external class is used by the largest number

of the attributes.

3.4 Long Method
These are more complex methods that contain a large number

of attributes declared in class. The largest of variables used by

the attributes are accessed by the accessory. It contains

numerous lines of the source code with different number of

parameters.

In table 4, the different types of the bad smells are defined

such as double code, long method, large class and feature

envy, etc. In table 5, some categories of the detectors of the

code smell are given.

Table 4: Types of bad smell and its descriptions [31]

Bad smell types Explanation

Double code Double display of the code structure

Long method Complex method

Large class It contains variable, instance and

methods

Large list of the A complex list of parameters in

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

25

parameters function

Feature envy Closely coupled class

Clumps of

information

Information exist together

Lazy class The class which may not perform and

need elimination

Conflicting variation Variation in different classes

Artificial design Complex design

Complicated

conditions

Selects unrelated circumstances.

Switch statement Run time classes are used.

Temporary fields Variables used rarely

Primitive class Primitive classes are used

Table 5: Detector related to code smell [27]

A code smell Detectors

God class iplasma, PMD

Data class iplasma,fluid tool

Feature envy iplasma,fluid tool

Long method iplasma,fluid tool

4. CODE SMELL DETECTION
Smells are the definite structure of the code that determines

the destruction of the fundamental design codes and its

quality. A code smells are inaccurate design at the time of the

development and maintenance of the program but it does not

contain bugs. However, the problem in design structure

increases the chance of the bugs in lines of the code [28]. Bad

smell generally takes place during the generation of code

instead of testing code. The refactoring process before the

testing escapes the code from bad smells. The testing code is

essential when complicated refactoring is done. Code

refactoring is the method of reconstructing the computer code

that alters the factoring without modifying the exterior

behavior. The re-factoring method decreases the complexity

and improves the readability of code. An automated unit

testing should be arranged before the process of refactoring.

The detection, unit testing and refactoring plays an essential

role during maintenance and arrangement of the source code.

The detection of bad smell is related to sign of problem during

the execution of the source code, maintenance and evolution

of software. Code smell detection is challenging approach for

developers and designing of code smell detection tools and

equipment.

4.1 Programmed/Automated Tools of Bad

Smell Test Case Generation
Different tools has been established to enhance the quality of

the code at the time of the software development and other

tools maintains industrialized and maintenance actions. Major

tools are refactored in an automated way, but recent IDE is

capable of performing the refactoring in an automated way.

Some of the tools are categorized as[29],

4.1.1 Check style

It had been established to help programmers, for writing the

code of JAVA. It is capable to identify the maximum number

of classes, longer methods in class, parameters and double

code list.

4.1.2Décor
It is defined as the method which permits the identification

and automated recognition of the code and the design of the

bad code smell. The custom language automatically creates

the detection algorithms through templates, precision and

recall. The whole process is done in a Décor platform for

analysis of the s/w design.

4.1.3 Infusion
It is the advanced version of the iplasma infusion which is

capable to identify more than twenty a design and code smells

such a double code, segmented sub-class and god class

methods.

4.1.4 iplasma
This tool combines a framework for quality assessment of

object oriented classifications which includes provision for

essential stages of s/w analysis. This tool is capable to detect

the code disagreements, which worked as code smell, feature

envy, god class method.

4.1.5 Jdeodorant
It automatically detects the feature envy, god class, long

method and type checking in source code of JAVA. It

contributes the operator in recognising a suitable series of the

refactoring applications that resolve the detected issues,

arranges according to structure and relating to the one selected

y programmer.

4.2 Machine Learning Detection Methods of

Bad Smell
Machine learning techniques can be categorized in to

supervised and unsupervised learning. Supervised techniques

are used for the detection of the code smell. Some of the

methods are [30],

4.2.1 Decision Tree
It is used for the classification of the feature sets. Every node

in the decision tree demonstrates the feature in classification

and representation of the node. The classified root node is

based on the feature values.

4.2.2 Learning Group on Rules
Decision tree may be interpreted into group of rules by

generating a separate rule for every path from root to leaf in

the tree. Hence, rules can be encouraged from the training

information using a variety of rule based algorithm.

4.2.3 One layer Perceptron
The linear separation can be classified through single layer

perceptron.

4.2.4 Multilayered Perceptron
The non-linear classification issues may not be resolved by

one layer. In addition, more than neuron is associated to form

a combined pattern.

4.2.5 Radial Basis Function (RBF) Network
 It is three layer network, where every hidden component

develops a radial function and every output component

developed weigh sum of hidden components.

4.2.6 Naïve Bayes

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

26

The Bayesian network contains graphs with one unnoticed

node and sequence of identifying as a node with the notion of

state free between root and child node. It depends on guessing

unidentified node that depends on identified nodes.

4.2.7 Support Vector Machine
It depends on the perception of boundary on either side of

hyper plane distinguishing two features. Its goal is to develop

the boundary and generate maximum distance between the

features in hyper plane. The amount of the features is not

affected by the complexity structures.

5. CONCLUSION AND FUTURE SCOPE
In conclusion, surveyed on different aspects of testing and

detection of the bad smell in various test case generation

process. Test case generation for bad smells are mainly

referred as the poor designed tests and its main impact on the

generation of the source code and quality of the test suites.

Test code smell is the main area of the considerations, among

the researchers in smell detection, and prevention. The

software representations can be used to recognize the bad

smell in the code which may lead to regular failures of the

code. In case the bad smell is unidentified, it may consume

maximum resources in term of management costs, testing and

so forth. Code smell is related to the complex issue in

designing of the source code which lead to problem in

maintenance and evolution of the software. This paper

proposes a study on the detection of the bad smell in the

software that is also called as code smell. The object oriented

software representations have been used to identify the bad

smell in source code. The identified categories of the bad

smell are large class,long method, lazy class, switch

statement, parameter list, and primitive fields. Generally, bad

code smell detection is challenging approach for researchers

and programmers. However, this paper explained detection

tools and methods along with comparison tables. Some of the

detection tools are given as Infusion, deodorant, check style

and Décor. Moreover, a comparison table of the detectors and

types of the bad code smell is also given. Besides, some of the

detection methods of machine learning methods are explained.

In Future Scope, the programmers must be focused on the

modifications of the classes and concerned about the errors in

program code. However, various detection methods for

detecting bad code smell has been recommended by various

researchers. Despite, there has not been developing automated

tools for testing and detection of the bad code smell. Hence,

there must be work done on testing and detection framework

of test code smell.

6. REFERENCES
[1] Sharma, P and Kaur, E. A , “Design of testing

framework for code smell detection (OOPS) using BFO

algorithm,” International Journal of Engineering &

Technology, vol 7(2.27), pp 161-166, 2018.

[2] Garousi, V and Küçük, B , “Smells in software test

code: A survey of knowledge in industry and

academia,” Journal of systems and software, 138, pp 52-

81, 2018.

[3] Tufano, M., Palomba, F., Bavota, G., Di Penta, M.,

Oliveto, R., De Lucia, A and Poshyvanyk, D, “ Towards

Automated Tools for Detecting Test Smells: An

Empirical Investigation into the Nature of Test Smells,”.

[4] Khomh, F., Di Penta, M. and Gueheneuc, Y. G , “An

exploratory study of the impact of code smells on

software change-proneness,” In 2009 16th Working

Conference on Reverse Engineering (pp. 75-84), IEEE,

2009.

[5] Neukirchen, H and Bisanz, M. , “Utilising code smells

to detect quality problems in TTCN-3 test suites,”

In Testing of Software and Communicating Systems ,pp.

228-243, Springer, Berlin, Heidelberg, 2007.

[6] Danphitsanuphan, P and Suwantada, T , “Code smell

detecting tool and code smell-structure bug relationship,”

In 2012 Spring Congress on Engineering and

Technology (pp. 1-5). IEEE, 2012.

[7] Chatzigeorgiou, A.and Manakos, A. , “Investigating the

evolution of bad smells in object-oriented code,” In 2010

Seventh International Conference on the Quality of

Information and Communications Technology (pp. 106-

115), IEEE, 2010.

[8] Chatzigeorgiou, A and Manakos, A , “Investigating the

evolution of code smells in object-oriented systems,”

 Innovations in Systems and Software

Engineering, 10(1), 3-18, 2014.

[9] Grigera, J., Garrido, A and Rivero, J. M. , “A tool for

detecting bad usability smells in an automatic way,”

In International Conference on Web Engineering (pp.

490-493). Springer, Cham, 2014.

[10] Van Rompaey, B., Du Bois, B., Demeyer, S and Rieger,

M , “On the detection of test smells: A metrics-based

approach for general fixture and eager test,” IEEE

Transactions on Software Engineering, 33(12), 800-817,

2007.

[11] Usha, K., Poonguzhali, N and Kavitha, E , “A

quantitative approach for evaluating the effectiveness of

refactoring in software development process,” In 2009

Proceeding of International Conference on Methods and

Models in Computer Science (ICM2CS) (pp. 1-7). IEEE,

2009.

[12] Van Deursen, A., Moonen, L., Van Den Bergh, A and

Kok, G , “ Refactoring test code,” In Proceedings of the

2nd international conference on extreme programming

and flexible processes in software engineering

(XP2001) ,pp. 92-95, 2001.

[13] Guerra, E. M. and Fernandes, C. T , “Refactoring test

code safely,” In International Conference on Software

Engineering Advances (ICSEA 2007) (pp. 44-44), IEEE,

2007.

[14] Atkins, F. J and Coe, P. J , “An ARDL bounds test of

the long-run Fisher effect in the United States and

Canada,” Journal of Macroeconomics, 24(2), 255-266,

2002.

[15] Chen, W. K. and Wang, J. C , “Bad smells and

refactoring methods for gui test scripts,” In 2012 13th

ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking and

Parallel/Distributed Computing , pp. 289-294, IEEE, .

2012.

[16] Palomba, F., Di Nucci, D., Panichella, A., Oliveto, R and

De Lucia, A , “On the diffusion of test smells in

automatically generated test code: An empirical study,”

In Proceedings of the 9th international workshop on

search-based software testing (pp. 5-14),ACM, 2016.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

27

[17] Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A and

Zanoni, M , “Antipattern and code smell false positives:

Preliminary conceptualization and classification,”

In 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER) ,Vol.

1, pp. 609-613, IEEE, 2016.

[18] Danphitsanuphan, P and Suwantada, T., “Code smell

detecting tool and code smell-structure bug relationship,”

In 2012 Spring Congress on Engineering and

Technology ,pp. 1-5, IEEE, 2012.

[19] Liu, H., Jin, J., Xu, Z., Bu, Y., Zou, Y and Zhang, L ,

“Deep learning based code smell detection,” IEEE

Transactions on Software Engineering, 2019.

[20] Hasanain, W., Labiche, Y and Eldh, S, “An analysis of

complex industrial test code using clone analysis,”

In 2018 IEEE International Conference on Software

Quality, Reliability and Security (QRS) (pp. 482-489).

IEEE, 2018.

[21] Tahmid, A., Nahar, N and Sakib, K, “Understanding the

evolution of code smells by observing code smell

clusters,” In 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering

(SANER) ,Vol. 4, pp. 8-11,IEEE, 2016.

[22] Guggulothu, T , “Code Smell Detection using Multilabel

Classification Approach,” arXiv preprint

arXiv:1902.03222, 2019.

[23] Rubin, J., Henniche, A. N., Moha, N., Bouguessa, M.

and Bousbia, N , “ Sniffing Android Code Smells: An

Association Rules Mining-Based Approach,” In 2019

IEEE/ACM 6th International Conference on Mobile

Software Engineering and Systems (MOBILESoft), pp.

123-127,IEEE, 2019.

[24] Sae-Lim, N., Hayashi, S and Saeki, M , “How do

developers select and prioritize code smells? a

preliminary study,” In 2017 IEEE International

Conference on Software Maintenance and Evolution

(ICSME) ,pp. 484-488), IEEE, 2017.

[25] Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik,

A and De Lucia, A , “Detecting code smells using

machine learning techniques: are we there yet?,” In 2018

IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER) ,pp.

612-621, IEEE, 2018.

[26] Fernandes, E., Oliveira, J., Vale, G., Paiva, T and

Figueiredo, E, “A review-based comparative study of

bad smell detection tool,”. In Proceedings of the 20th

International Conference on Evaluation and Assessment

in Software Engineering (p. 18). ACM, 2016.

[27] Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik,

A. and De Lucia, A , “Detecting code smells using

machine learning techniques: are we there yet?,” In 2018

IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER) , pp.

612-621, IEEE, 2018.

[28] Fontana, F. A., Braione, P and Zanoni, M , “ Automatic

detection of bad smells in code: An experimental

assessment,” Journal of Object Technology, 11(2), 5-1,

2012.

[29] Mathur, N and Reddy, Y. R , “Correctness of Semantic

Code Smell Detection Tools,”

In QuASoQ/WAWSE/CMCE@ APSEC (pp. 17-22), 2015.

[30] Caram, F. L., Rodrigues, B. R. D. O., Campanelli, A. S

and Parreiras, F. S , “Machine Learning Techniques for

Code Smells Detection: A Systematic Mapping Study,”

International Journal of Software Engineering and

Knowledge Engineering, 29(02), 285-316, 2019.

[31] Umesh, I. M and Srinivasan,” G. N , “A study on bad

code smell,” International Journal of Latest Technology

in Engineering, Management & Applied Science,vol

4(5), 2015.

IJCATM : www.ijcaonline.org

