
International Journal of Computer Applications (0975 – 8887) 

Volume 177 – No. 35, February 2020 

22 

Various Test Case Generation in Code Smell Detection 

Tools and Testing Methods: Review 

Deepika Tewatia 
Research Scholar (CSE) 
Baba Mastnath University 

Rohtak, Haryana 

Devender Kumar, PhD 
Associate Professor (CSE) 
Baba Mastnath University  

Rohtak, Haryana 

 

 

ABSTRACT 

Test case generation in terms of code smell refers to the 

features of the software that recognizes a code and design 

issues which make software hard to realize, evolve and 

preserve code.  Generally, the maintenance and detection of 

the software applications become more difficult due to the 

presence of the smell. Programmers are unable to identify the 

source code applications and face issues to understand the 

source code of the project. Simultaneously, a code smell face 

problem to refractors and developers for upgrading and 

maintenance of the source code. Present, research is active in 

the automated detection and testing of the bad code smell.  

Without the knowledge of the code smell with diverse 

refactoring, and efficient tool make the detection of the code 

difficult.  Particularly, the code smell in software is based on 

the programming of the source code, that may lead to 

difficulty in detection of bad code smell. This paper analysis 

the detection tools, method of code smells and methods for 

the detection of bad test code smell. The categories of 

different test code smells are described which includes 

applications, classes and different method-level code smells. 

Moreover, detail definition of the bad smell in source code 

and its types in source code is also elaborated. In addition to 

that, bad code smell detection is described which includes 

automated detection and machine learning methods for 

identifying the bad code smell. Additionally, the automated 

tools which are given as, a check style, décor, infusion, 

deodorant and iplasma. The detection methods are decision 

tree (DT), Learning group rules, Multilayer perceptron 

(MLP), Naïve Bayes (NB), Support Vector Machine (SVM), 

Radial basis system (RBS) network. 

Keywords 

Code smell, Test case generation, Machine learning, Bad 

smell detection, Automated tools. 

1. INTRODUCTION 
Testing plays an essential role in the whole software 

advancement effort. During the development of the software 

scheme, test suites and repairing of the software requires 

updating software.   Software testing is measured in manual or 

in an automated way [1] [2]. An automated test suite helps in 

the maintenance of the activities like as code command and 

regression testing [3]. A STCE (software test code 

engineering) is referred as a systematic approach to develop, 

verify and maintain high quality of the test code [4] [5].  If the 

program has s/w evolution and maintenance issue, it is 

referred as bad smell of test code. At present there are various 

detection methods that helped in the evaluation of the bad 

smell [6]. The various categories of code smell are given as, 

application smell, class level smell and method level smell 

[7][8]. 

i) Application smell: It provides duplicate information 

which is similar to the actual data and Its 

architecture is more complex. 

ii) Class level smell: It contains a large number of 

classes, variable with no literal and inappropriate 

data. 

iii) Method level smell: The different parameter is read at 

the same time. The complex structure of coding is 

created. 

The numerical measure of the software is S/W metrics. The 

below table 1 main focused on the metrics of the source code. 

Table 1: Software Representations [18] 

Representation Label Level 

NOM  It is a number of 

methods 

Class  

LOC Lines of code Class 

PAR  Number of 

parameters 

Method 

MLOC Method, lines of 

code 

Method 

 

The developers resolve the issue of the complex design and 

maintenance through refactoring method in an automated 

way. 

 

Fig .1: Schematic process of test case generation (Code 

smell)[11] 

It is also called as the reusability tests and can be done in an 

automated way [9].The detection and testing of the bad smell 

can be done through refactoring technique. An automated 

approach can be done in three stages [10]. The threat logger 

collects the interaction events from the real users.  The high 
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level interaction events are determined through reusability 

events.  The bad smell is searched though the bad smell 

finder. After that, it is stored in bad smell reporter [11]. 

Test code smell has a different group of smells that is related 

to the test cases and interrelated to each other. The test classes 

can be modified by the group of the test cases. The test code 

can be categorised as[12][13], 

1.1 Smell 1: Test Track War 
This testing will run as long as one of the testing fails when 

different programmers are running the code. The temporary 

resources are allocated. It is difficult to identify the use of the 

documentation when various test methods are selected [14]. 

1.2 Smell 2: Lazy Test 
It happens when various test techniques select the same 

method using similar variables. The tests are used when same 

instance variables are combined to form a structure through 

inline model approach [15]. 

1.3 Smell 3: Unintended Testing  
The test class is made up to test the complement in the 

creation of the code. The test class starts to smell when the 

testing is performed on other objects [16]. The test class can 

acheived through the extraction and move method. When 

smell takes place there may be issue in hiding data during the 

creation of the source code. Its testing process is not easy 

because the object is segmented in to maximum level. 

1.4 Smell 4: For Testers: 
The test methods can be used for creating the class. Moreover, 

code can be produced through the functionality of the test 

methods [17] [18]. The extract class can be used to replace 

methods from one class to another class. The developer 

cannot test the class without adding methods to the class. 

1.5 Smell 5: Test Code Doubling: 
The undesirable doubling is required for the test code. 

Particularly, the part of the test code is required to set up the 

fixed data to resolve the issue of the doubling. The output is 

similar to the normal code doubling. Generally, the doubling 

of the test code in similar test class can be eliminated by 

extraction technique. 

2. LITERATURE SURVEY 
Liu, H et al., 2019 [19] proposed research on deep learning 

technique for the detection of the code smell. An automatic 

selection of the source code for the detection of code smell 

was done using deep neural network (DNN) and improved 

deep learning methods. Moreover, an automatic detection was 

built for complex mapping among such features and 

calculations. A major challenge was that deep learning needs 

maximum amount of labels trained information, whereas 

current database for code smell was small. However, they 

proposed an automated method for creating labelled trained 

information for neural network based classifiers that may not 

require any social intervention. In proposed work, they 

applied for common and recognized code smells such as 

feature envy, long technique, maximum class and 

inappropriate class. The simulation results determined that the 

open source presentations recommend that planned method 

was essentially improved the proposed state of art.   

Hasanain, W et al., 2018 [20]  performed an industrialized 

case study that aimed at providing an appropriate 

understanding like as duplicate test segments  which was 

called as a clone. In this research, the whole test clones were 

up to 49 % of the LOC. The proposed output includes clone 

frequencies, kinds, segments and size disseminations and 

amount of line differences in clone test cases. It was 

challenging to store the reliable and eliminate un-required 

clones at the time of the whole testing method of large 

commercial software. The clone similarity was studied to 

perform another analysis. They detected that the type -3 

reliable and type -3 blind clone segments store the maximum 

resemblance between 70 to 75%.   The amount of the segment 

existences reduces where similarity of whole type -3 

increased.  It was analyzed that the differences in the 

similarity index were 30% that occurred when compared 

versions of code segments.  Tahmid, A et al.,2016[21] aimed 

to identify the development of the code smell in S/W by 

observing the behavior of the clusters like as size, quantity 

and connectivity. The clusters and its features were examined. 

The detection of code smell clusters was done in three stages , 

identification of code smells through detection equipment, 

elimination of relation by observing the source code structure, 

creating graphs from recognised smells and its relations  and 

then discloses the clusters. The observation was computed on 

JUnit as a case study and behaviour of four clusters was 

described in this research. The amount of the interrelated code 

smell clusters in code smell increases gradually with the time. 

In the case study, the average improvement in cluster count 

was 3.78 clusters per release. The mega clusters achieved 

69.49% of smelly nodes as an average. The simulation results 

of this research provide appropriate code smell develop in 

software. Guggulothu, T et al.,2019 [22]  studied multilevel 

classification model to identify if the given code component 

was influenced with multiple code smell or not.  They had 

measured two code smell database and transformed them into 

a multilevel database. In this research, the two multilevel 

classification techniques include CC and LC. It was observed 

that CC technique provides better outcomes  as compared to 

LC method. The proposed method provides better output as 

compared to current research.  The experimental provides 

accuracy up 91%, whereas it was 73% in current research. 

Rubin, J et al.,2019 [23] presented FAKIE , an automated 

tool based method to create android code smell detection 

regulations  for performing static analysis of the android 

applications. The proposed method was a supplement to 

current code smell detection code. The main objective of the 

research was the definition of the detection equipment. They 

used FP –GROWTH connection regulation algorithm to 

analyse the information created by static analysis. They 

validated the 48 open source applications from F-Droid. The 

planned method was automatic identification rules with an 

average of F-measure of 0.95.   Moreover, the empirical study 

of the 2993 applications of the android applications was done 

after downloading from Androzoo. The outcome of this 

research demonstrates the ability to eliminate the data from 

database of code smell. Sae-Lim et al., 2017 [24] examined 

by expert developers to identify the aspects they used for 

selecting and arranging the code smells.   In this research, 

they showed an experiment to identify an expert developer to 

select and organize code smells. The comparative analysis 

was done in which experts provide maximum priority to code 

smell linked to specific background. Firstly, task applicability 

was the major approach considered during code smell 

selection, followed by Smell severity, and both were 

measured at the time of the selection method.  The other, the 

essential approach was the main factor in code smell 

arrangement process, followed by task application. In 

addition, other aspects like as task application price and 

collocated smell were measured in both the methods. In this 

research, the expert developers used code smell filtration and 

prioritization identification. Di Nucci, D. et al., 2018[25] 
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proposed research on machine learning methods for the 

detection of code smell , probably resolving the problem of 

equipment subjectivity giving  to learner the capability to 

distinguish among smelly and non-source code components. 

The proposed work provided a new opportunity for code 

smell detection, the single kind of the smell was contained in 

every database to train and test the machine learners. In this 

research, they replicate the study with various database 

configurations which contained the examples of more than 

kind of the smell.   

Table 2, gives the comparative analysis of the various 

methods, advantages and  problems  that have been 

investigated after the survey of different papers.  

Table 2: Comparative analysis of methods, merits and 

issues of various surveyed code smell testing and detection 

papers 

Author Methods Advantages Issues  

Liu, H et al., 

2019 [19] 

Deep 

learning 

method 

Detecting 

small code 

In detection 

of misplace 

class. 

Hasanain, 

W et al., 

2018 [20]   

Clone 

analysis 

method 

Analyse 

industrial 

test code 

Clone 

fragments 

Tahmid, A 

et 

al.,2016[21] 

Smelly 

cluster and 

type 

checking 

method 

Identify 

code smell 

clusters. 

Complex 

structure 

Guggulothu, 

T et al.,2019 

[22] 

Multilevel 

classification 

method  

Differentiate 

smelly and 

non-smelly 

code 

elements. 

Identification 

and 

maintenance 

of code smell 

are difficult. 

Rubin, J et 

al.,2019 [23] 

Rule mining 

based 

method. 

Identify 

code smell 

applications 

Over using 

of H/W 

resources. 

Sae-Lim et 

al., 2017 [24] 

Code smell 

prioritization 

method 

Filter code 

smell 

High 

evaluation 

costs 

Di Nucci, D. 

et al., 

2018[25] 

Machine 

learning  

Detecting 

small smell 

Different 

code 

elements 

 

In Table 3 , analysed different parameters after the survey of 

various papers. 

Table 3: Comparative analysis of different parameters 

analysed from various surveyed papers 

Authors/Para

meters 

 

Accur

acy 

Precis

ion 

Rec

all 

F-

meas

ure 

sensiti

vity 

Liu, H et al., 

2019 [19] 

x       x 

Hasanain, W 

et al., 2018 

[20] 

  x x x x 

Tahmid, A et 

al.,2016[21] 

x x x x   

Guggulothu, 

T et al.,2019 

[22] 

  x x   x 

Rubin, J et 

a.,2019 [23] 

 

      x x 

Sae-Lim et 

al., 2017 [24] 

  x x x   

Di Nucci, D. 

et al., 

2018[25] 

  x x   x 

 

3. BAD SMELL AND ITS TYPES  
Bad smell is also termed as the code smell that is related to 

the problem in the software design and development of source 

code [26]. Bad code smell is the poor structure and 

arrangement during the implementation of the code.  The code 

smell detection tools have been implemented to detect the 

problems of the program code. The types of the bad smell 

include; 

3.1 Data Class 
The complex methods are not present in the data class. The 

attributes may be public or unprotected through assessor 

techniques. 

3.2 God Class 
 It is capable to access different attributes from different 

classes. The attributes present in one class can be used for 

another class. It contains complicated class methods and large 

number of the access attributes. 

3.3 Feature Envy 
 It accesses external attributes, the attributes that is present in 

another class. The feature envy method access large number 

of the external attributes as compared to local attributes. The 

less number of the external class is used by the largest number 

of the attributes. 

3.4 Long Method 
These are more complex methods that contain a large number 

of attributes declared in class. The largest of variables used by 

the attributes are accessed by the accessory. It contains 

numerous lines of the source code with different number of 

parameters. 

In table 4, the different types of the bad smells are defined 

such as double code, long method, large class and feature 

envy, etc. In table 5, some categories of the detectors of the 

code smell are given. 

Table 4: Types of bad smell and its descriptions [31] 

Bad smell types Explanation 

Double code Double display of the code structure 

Long method Complex method 

Large class It contains variable, instance and 

methods 

Large list of the A complex list of parameters in 
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parameters function 

Feature envy Closely coupled class 

Clumps of 

information 

Information exist together 

Lazy class The class which may not perform and 

need elimination 

Conflicting variation Variation in different classes 

Artificial design Complex design 

Complicated 

conditions 

Selects unrelated circumstances. 

Switch statement Run time classes are used. 

Temporary fields Variables used rarely 

Primitive class Primitive classes are used 

 

Table 5: Detector related to code smell [27] 

A code smell Detectors 

God class  iplasma, PMD 

Data class iplasma,fluid tool 

Feature envy iplasma,fluid tool 

Long method iplasma,fluid tool 

 

4. CODE SMELL DETECTION 
Smells are the definite structure of the code that determines 

the destruction of the fundamental design codes and its 

quality. A code smells are inaccurate design at the time of the 

development and maintenance of the program but it does not 

contain bugs. However, the problem in design structure 

increases the chance of the bugs in lines of the code [28]. Bad 

smell generally takes place during the generation of code 

instead of testing code. The refactoring process before the 

testing escapes the code from bad smells. The testing code is 

essential when complicated refactoring is done. Code 

refactoring  is the method of reconstructing the computer code 

that alters the factoring without modifying the exterior 

behavior. The re-factoring method decreases the complexity 

and improves the readability of code. An automated unit 

testing should be arranged before the process of refactoring. 

The detection, unit testing and refactoring plays an essential 

role during maintenance and arrangement of the source code.  

The detection of bad smell is related to sign of problem during 

the execution of the source code, maintenance and evolution 

of software. Code smell detection is challenging approach for 

developers and designing of code smell detection tools and 

equipment. 

4.1 Programmed/Automated Tools of Bad 

Smell Test Case Generation 
Different tools has been established to enhance the quality of 

the code at the time of the software development and other 

tools maintains industrialized and maintenance actions. Major 

tools are refactored in an automated way, but recent IDE is 

capable of performing the refactoring in an  automated way. 

Some of the tools are categorized as[29], 

4.1.1 Check style 

It had been established to help programmers, for writing the 

code of JAVA.  It is capable to identify the maximum number 

of classes, longer methods in class, parameters and double 

code list. 

4.1.2Décor 
It is defined as the method which permits the identification 

and automated recognition of the code and the design of the 

bad code smell. The custom language automatically creates 

the detection algorithms through templates, precision and 

recall. The whole process is done in a Décor platform for 

analysis of the s/w design. 

4.1.3 Infusion 
It is the advanced version of the iplasma infusion which is 

capable to identify more than twenty a design and code smells 

such a double code, segmented sub-class and god class 

methods. 

4.1.4 iplasma 
This tool combines a framework for quality assessment of 

object oriented classifications which includes provision for 

essential stages of s/w analysis.   This tool is capable to detect 

the code disagreements, which worked as code smell, feature 

envy, god class method. 

4.1.5 Jdeodorant 
It automatically detects the feature envy, god class, long 

method and type checking in source code of JAVA.  It 

contributes the operator in recognising a suitable series of the 

refactoring applications that resolve the detected issues, 

arranges according to structure and relating to the one selected 

y programmer. 

4.2 Machine Learning Detection Methods of 

Bad Smell 
Machine learning techniques can be categorized in to 

supervised and unsupervised learning. Supervised techniques 

are used for the detection of the code smell. Some of the 

methods are [30], 

4.2.1 Decision Tree 
It is used for the classification of the feature sets. Every node 

in the decision tree demonstrates the feature in classification 

and representation of the node. The classified root node is 

based on the feature values. 

4.2.2 Learning Group on Rules 
Decision tree may be interpreted into group of rules by 

generating a separate rule for every path from root to leaf in 

the tree. Hence, rules can be encouraged from the training 

information using a variety of rule based algorithm. 

4.2.3 One layer Perceptron 
The linear separation can be classified through single layer 

perceptron. 

4.2.4 Multilayered Perceptron 
The non-linear classification issues may not be resolved by 

one layer. In addition, more than neuron is associated to form 

a combined pattern. 

4.2.5 Radial Basis Function (RBF) Network 
 It is three layer network, where every hidden component 

develops a radial function and every output component 

developed weigh sum of hidden components. 

4.2.6 Naïve Bayes 
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The Bayesian network contains graphs with one unnoticed 

node and sequence of identifying as a node with the notion of 

state free between root and child node. It depends on guessing 

unidentified node that depends on identified nodes. 

4.2.7 Support Vector Machine 
It depends on the perception of boundary on either side of 

hyper plane distinguishing two features. Its goal is to develop 

the boundary and generate maximum distance between the 

features in hyper plane. The amount of the features is not 

affected by the complexity structures. 

5. CONCLUSION AND FUTURE SCOPE 
In conclusion, surveyed on different aspects of testing and 

detection of the bad smell in various test case generation 

process. Test case generation for bad smells are mainly 

referred as the poor designed tests and its main impact on the 

generation of the source code and quality of the test suites. 

Test code smell is the main area of the considerations, among 

the researchers in smell detection, and prevention.  The 

software representations can be used to recognize the bad 

smell in the code which may lead to regular failures of the 

code. In case the bad smell is unidentified, it may consume 

maximum resources in term of management costs, testing and 

so forth.  Code smell is related to the complex issue in 

designing of the source code which   lead to problem in 

maintenance and evolution of the software. This paper 

proposes a study on the detection of the bad smell in the 

software that is also called as code smell.  The object oriented 

software representations have been used to identify the bad 

smell in source code. The identified categories of the bad 

smell are large class,long method, lazy class, switch 

statement, parameter list, and primitive fields.   Generally, bad 

code smell detection is challenging approach for researchers 

and programmers. However, this paper explained detection 

tools and methods along with comparison tables. Some of the 

detection tools are given as Infusion, deodorant, check style 

and Décor. Moreover, a comparison table of the detectors and 

types of the bad code smell is also given. Besides, some of the 

detection methods of machine learning methods are explained. 

In Future Scope, the programmers must be focused on the 

modifications of the classes and concerned about the errors in 

program code. However, various detection methods for 

detecting bad code smell has been recommended by various 

researchers. Despite, there has not been developing automated 

tools  for testing and detection of the bad code smell. Hence,  

there must be work done on testing and detection framework 

of test code smell. 
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