
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

14

Novel bit-level Adaptive and Asymmetric Data

Compression Technique

Shashwat Tiwari
School of Computer Science

UPES, Dehradun

Ayushi Lal
School of Computer Science

UPES, Dehradun

Shivani Agarwal
School of Computer Science

UPES, Dehradun

Ayush Kumar

School of Computer Science
UPES, Dehradun

Anupam Singh
School of Computer Science

UPES, Dehradun

Nitin Arora
Electronics & Computer

Discipline
IIT Roorkee

ABSTRACT
This paper works on a detailed and per-formative evaluation of

a bit-level, adaptive, and asymmetric data compression scheme

that is based on the adaptive character word length algorithm. It

can be used with statistical compression techniques to increase

efficiency. In this mathematical technique, the data word is

converted into codewords (Binary form) then the binary coded

file is compressed using 8 bits character word length. In this

new Algorithm, an optimum character word length b is

calculated where (b>8), so that a factor of (b/8) increases the

compression ratio. To validate this algorithm, it is used as a

complementary with Huffman code to compress a source text

file with randomly distributed characters of different

frequencies. This scheme is used to compress several text files

into smaller bit-level files and can be used to achieve higher

competitive skills more than state-of-art tools.

Keywords

Data compression; Coding; Huffman coding; Binary codes.

1. INTRODUCTION
In this modern era of technology, everything is comprised of

data. So, the problem in hand is to make the use of an adaptive

compression technique, which can improve the compression

ratio of existing compression techniques and could enhance the

storage capacity of various storage devices by compressing the

size of the original text file in a lossless manner. Data

Compression Algorithms [1] aim at minimizing the size of the

data so that it occupies less amount of disk space and even help

in reducing the network congestion since compressed data

would use less bandwidth while being transmitted over a data

communication channel. Text compression aims at substituting

the original symbol with a shorter symbol in the source code,

which contains the same information but with a smaller system.

It can also be handled at a bit level as each word has its own

specific binary representation. Text compression influences all

data structures in the secret code. Data compression can be

broadly divided into two different categories, namely lossless

and lossy. Lossless compression techniques can usually achieve

a 2:1 to 8:1 compression ratio. The lossy method provides

higher throughput but at the cost of loss in quality. Data

communication and data storage applications have benefited

greatly from data compression methodology. By reducing the

size of the transmitted data, the adequate bandwidth of the

communications channel can be increased. The apparent

advantage of data storage applications is that smaller data

require less storage space. Thus, the proper storage capacity of

any storage medium is increased if the data are compressed.

There are three significant types of compression techniques:

Substitution, Statistical, and Dictionary-based compression.

This paper aims at a statistical method, which involves the

generation of the shortest average code length based on an

estimated probability of the characters. In this paper, one of the

analytical data compression techniques known as the Huffman

coding is used. The data compression techniques convert 8 bit

of data from the original file to the compressed file. It is used as

an 8-bit adaptive character word length. In this paper, the

proposed algorithm, namely, which is a parallel algorithm for

the compression techniques. The compression ratio can be

increased by a factor of b/8, where b is the character word

length, and b>=8. The coding format yields a low entropy

binary sequence so that it grants a higher compression ratio.

2. RELATED WORK
Many researchers work in this area. This section contains the

word done by some of the researchers. The data compression

techniques can be broadly classified as lossy or lossless data

techniques [2] In the lossless data technique as the name

suggests the data remains in the compressed file as in the

original file [3]. It can be used in executable codes, word

processing, and files, etc. In lossy data compression [4], the

compressed file loses some of the data from the original file.

Especially the redundant data in the code are removed from the

compressed file to increase the compression ratio[5]. They are

mostly used with video and sound files. The data compression

can be of 3 types: Substitution, Statistical, and Dictionary

technique [6-7]. Substitution means swapping of repetitive

character by the smaller representation. Statistical involves the

generation of shorter average code length based on an estimated

probability of the characters. The dictionary technique involves

the substitution of sub-strings of indices or pointer code,

relative to a dictionary of the sub-strings. Huffman coding is a

lossless data compression technique. In this way, the characters

in a data file are converted to a binary code, where the most

popular characters in the file have the shortest binary code, and

the least common have the longest[8-10] The first step in

building a Huffman code is arranging the characters in the

ascending order of their frequencies. The second step is to

create a binary tree. The limitation of Huffman is that they are

not very good with the randomly distributed data as the

frequencies of different characters would be almost the same.

When used along with other data compression techniques, they

propose a better compression ratio and thus more efficiency.

Complexity of the algorithm, computational CPU time, the

compression ratio, the amount of the memory required, and

error control techniques, the compressional style are the

different criteria for comparing. [11-12]

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

15

3. PROPOSED ALGORITHM
The proposed algorithm, along with the pseudocode and flow

chart for the compression and decompression of the file is

discussed in this section.

Proposed Algorithm for the compression of the file is:

Algorithm for file compression

1. Take character file (.txt) as input and read all characters

2. Store individual characters and their frequency in a

dynamic array.

3. Create a leaf node for each unique character and build a

min-heap of all leaf nodes.

4. Extract two nodes with the minimum frequency from the

min-heap.

5. Create a new internal node with a frequency equal to the

sum of the two nodes frequencies. Make the first extracted

node as its left child and another removed node as its right

child. Add node to the min-heap.

6. Repeat Step 5 and Step 6 until the heap contains only one

node. The remaining node is the root node, and the tree is

complete.

7. Store the binary codes in the “huff.txt” file.

8. Open the “huff.txt” file in reading mode and shift the file

pointer to the end.

9. Calculate the decimal equivalent of the current binary digit

and check if it is less than 127.

10. Add 33 to the decimal value and store it into a new

compressed file.

11. Repeat 9 and 10 till the first character of the file is reached.

12. End

Pseudocode for the compression of the file is:

Pseudocode (compression)

1. INPUT character file (.txt)

2. f=open(“.txt”,r)

3. while ch!=NULL

a. Store character-> char array

b. Store Frequency -> frequency array

4. end while

5. set char array in increasing order

6. merge two smallest frequency nodes

7. set 0-> smaller node

8. set1-> higher node

9. if nodes left

a. REPEAT 8,9,10

10. end if

11. else

a. Traverse tree (root to char)

12. end else

13. STORE binary code –> huff.txt

14. F1=open(“huff.txt”,r)

15. Calculate decimal value

16. if decimal val<127

a. Then add 33+decimal value

b. Store decimal value -> comp.txt

17. end if

18. repeat19 till the first character

19. end

Proposed Algorithm for the Decompression of file is:

Algorithm for Decompression

1. Open compressed file in reading mode.

2. Read a character from the file.

3. Convert character to its decimal equivalent and subtract

33.

4. Write equivalent binary digits to “intermediate.txt.”

5. Repeat steps 2, 3, 4 till the end of the file is reached.

6. Open “Intermediate.txt” in reading mode and move the file

pointer to the end.

7. Read a bit.

8. If it matches any Huffman code write the character to the

uncompressed file.

9. If it doesn’t match, then include more bit.

10. Repeat step 6,7,8 till no more bits are left.

11. Close the uncompressed file and delete all intermediate

files.

12. End

Pseudo code for the Decompression of file is:

Pseudo code (decompression)

1. START

2. f=open(“comp.txt”,r)

3. f.read()

4. int a=ch

5. c=a-33

6. f1=open(“intermediate.txt”,’w’)

7. f1.write(c)

8. if more characters

a. return step3

9. end if

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

16

10. else

a. f2=open(“intermediate.txt”,’r’)

b. move pointer eof

11. end else

12. Read bits

13. if bit matches Huffman code

a. F3=open(“fileorg.txt,” ’w’)

b. F3.write(c)

c. if more characters

i. RETURN step 15

d. end if

e. else

i. f3.close()

f. end else

14. end if

15. else

a. RETURN step 15

16. end else

17. Delete intermediate files

18. END

4. RESULTS AND DISCUSSION
The proposed algorithm is achieving a coding rate of (2.94×8)/b

or a compression ratio of b/2.94, where b is the optimum

character word length. Thus, for 9 and 10 character word

lengths, for example, the coding rates are 2.16 (C =3.06) and

2.35 (C =3.40), respectively.

The optimum value of b depends on several factors:

 The size and the type of the data file

 The characters frequencies within the data file

 The distribution of characters within the file

 The equivalent binary code used for each character.

 (1)

The compression ratio is calculated using eq. 1. Table 1 shows

the size of the file using the proposed algorithm and Huffman

algorithm using different test cases with different original file

size. The graphical representation of the compressed file size is

shown in figure 1.

Table1: Original file size and compressed file size using the

Huffman Algorithm and proposed algorithm

Test case

No.

Original

file size

(Bytes)

File size after

compression in

Bytes

(Huffman

Algorithm)

File size after

compression

in Bytes

(Proposed

Algorithm)

Test case 1 73 41 37

Test case 2 94 51 49

Test case 3 159 95 83

Test case 4 243 146 130

Test case 5 315 190 170

Test case 6 436 262 236

Fig. 1: Compressed file size using the Huffman algorithm and the proposed algorithm

Test Case

1

Test Case

2

Test Case

3

Test Case

4

Test Case

5

Test Case

6

Original File Size 73 94 159 243 315 436

File Size After using Huffman

Coding
41 51 95 146 190 262

File Size after using Proposed

Method
37 49 83 130 170 236

37 49 83
130

170
236

41 51
95

146
190

262

73
94

159

243

315

436

C
o

m
p

re
ss

ed
 F

il
e

COMPRESSED FILE SIZE USING HUFFMAN ALGORITHM AND PROPOSED

ALGORITHM

500
450
400
350
300
250
200

150
100
50

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 35, February 2020

17

Results show that the proposed algorithm is having a better

compression ratio of the Huffman algorithm.

5. CONCLUSION AND FUTURE SCOPE
In this paper, the text file is being converted into a compressed

file and the compressed file is converted back to the original

file. The proposed algorithm is a lossless compression

algorithm and having a better compression ratio than the

Huffman algorithm. In the future, more algorithms can be

designed with a better compression ratio. The proposed

algorithm can be used for reducing network traffic, and it can

also be used to enhance the storage capacity of various storage

devices.

6. REFERENCES
[1] M.K. Pandya, Data compression: efficiency of varied

compression techniques, Formal Report, Brunel

University, 2000

[2] www.vectorsite.net/ttdcmp1.html

[3] www.data-compression.com/lossless.shtml

[4] Hussein Al-Bahadilia, Shakir M. Hussainb, An adaptive

character wordlength algorithm for data compression,

Computers and Mathematics with Applications 55 (2008)

1250–1256

[5] Hussein Al-Bahadili1 Shakir M. Hussain2, A Bit-level

Text Compression Scheme Based on the ACW Algorithm,

International Journal of Automation and Computing, 7(1),

February 2010, 123-131 DOI: 10.1007/s11633-010-0123-6

[6] H. Plantinga. An asymmetric, semi-adaptive text

compression algorithm. In Proceedings of IEEE Data

Compression Conference, 1994.

[7] J. Adiego, P. de la Feunte. On the use of words as source

alphabet symbols in PPM. In Proceedings of Data

Compression Conference, IEEE, pp. 435, 2006.

[8] S. Nofal. Bit-level text compression. In Proceedings of the

1st International Conference on Digital Communications

and Computer Applications, Irbid, Jordan, pp. 486–488,

2007.

[9] Arora, N., Tamta, V., and Kumar S., 2012. A Novel

Sorting Algorithm and Comparison with Bubble Sort and

Selection Sort. International Journal of Computer

Applications. Vol 45. No 1. 31-32

[10] Arora, Nitin &Kumar Tamta, Vivek & Kumar, Suresh.

(2012). Modified non-recursive algorithm for

reconstructing a binary tree. International Journal of

Computer Applications. 43. 25-28. 10.5120/6141-

8386.

[11] Arora, N., Kaushik, P.K., Kumar, S.: Iterative method

for recreating a binary Tree from its traversals.

International Journal of Computer Applications 57(11), 6–

13 (2012).

[12] Garima Pandey, Nitin Arora, Mamta Martolia. “A Novel

String Matching Algorithm and Comparison with KMP

Algorithm” in International Journal of Computer

Applications (0975 – 8887) Volume 179 – No.3,

December 2017.

IJCATM : www.ijcaonline.org

http://www.data-compression.com/lossless.shtml
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.736.1627&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.736.1627&rep=rep1&type=pdf

