
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

39

A Novel Method to Increase Diffusion and Confusion in

AES Algorithm

Zakria Mahrousa
Dep Computer Engineering

Faculty of Electrical and Electronic
Engineering

University of Aleppo

Ahmad Bitar
Dep Computer Engineering

Faculty of Electrical and Electronic
Engineering

University of Aleppo

Yahia Fareed
Communications Engineering

Faculty of Electrical and Electronic
Engineering

University of Aleppo

ABSTRACT

The Advanced Encryption Standard (AES) is the most famous

amongst symmetric block cipher algorithms, and the most used

one in many different applications, because its encryption

strength and its resistance to many attacks. In this paper, a

novel approach will be introduced to remove some weakness

points in AES and increase its security. Unlike most previous

researches, this research will improve the most important and

powerful part of AES algorithm which is the MixColumns()

transformation. In the original AES, there only one function is

used, which it creates a fixed array that is used in

MixColumns() transformation, and this fixed array is known

by attackers. Alternatively, the expanded secret key will be

used to generate a different function at each round of AES.

These functions will create a variable dynamic arrays at each

round based on expanded secret key. The variable dynamic

arrays will increase confusion amongst bits of the encrypted

text. After that, the ShiftRow() transformation will be

complicated from ShiftRow() with fixed pattern to

ShiftRowColumn() with variable dynamic pattern according to

expanded secret key. The modified ShiftRowColumn() will

increase the diffusion amongst bytes of encrypted text, as will

be detailed in experimental results.

General Terms

Information Security, Block cipher, symmetric, asymmetric.

Keywords

AES, NIST, encryption, decryption, Galois Filed, secret key,

extended secret key, round, Mix Columns, Shift Rows

Columns, function, inverse, attack, cryptanalysis.

1. INTRODUCTION
In recent years, information security has become the most

important core in communication engineering, because of the

continuous increasing in using of digital data which are

transmitted over internet [1]. The transmission of sensitive

digital data through communication channels requires speed

and confidentiality for digital communication network to

achieve three security requirements. The requirements are

integrity, confidentiality and availability [2][3]. One of the

most significant forms of information protection technology is

encryption [4][5], which is a very important process to ensure

the confidentiality of data that are transmitted over the internet

[6] [7] [8]. Encryption algorithms consist of three types,

Symmetric encryption algorithms, Asymmetric encryption

algorithms and Hash functions. In Symmetric encryption, the

same key is used in encryption and decryption process. It is

called the secret key. That the message is encrypted by the

sender and decrypted by receiver using the same secret key.

Symmetric encryption includes many algorithms such as DES-

3DES-RCn-Blowfish-Towfish-AES [9]. These algorithms use

traditional encryption techniques that have some disadvantages

in the field of information security [6]. Therefore, in this paper

will be proposed an improved algorithm in the field of

symmetric encryption. AES algorithm is symmetric block

cipher algorithm which is the most common and used one in

many different applications [10]. AES contains MixColumns()

transformation that is heart and strength of AES and center of

confidentiality and confusion, as MixColumns()

transformation is responsible of diffusion and confusion
amongst bits of encrypted text [11].

In this paper, the security of the advanced encryption

algorithm AES will be Improved with keeping on low

execution time. The improved algorithm is more resistant to

attackers and cryptanalysis. Firstly, the static MixClomuns()

array will be removed which is known by attackers and

analysts by generating a different function for each round of

AES based on the extended secret key. This function at a

specified round generates a round array for MixColumns()

transformation. As a result, the weakness point of relying on a

single function and array in the encryption process will be

removed. Alternatively, we have a different function and a

different array for each round of AES. These functions and

arrays are variable according to the extended secret key at each

round. Therefore, they are unknown to attackers and

cryptanalysis and the confusion in bits of encrypted text will

be increased. Secondly, the ShiftRows() transformation that

shifts rows only and has a fixed pattern in all rounds of AES

will be complicated to become ShiftRowsColumns(i)

transformation that shifts rows and columns and has a dynamic

variable pattern with the expanded secret key at each round, as

each round of AES is provided with different horizontal and

vertical shift indexes from the other round. Consequently, will

be obtained a different shift pattern at each round. In all

previous modifications, this work carefully maintained on the

mathematical bases that laid down by the NIST (National

Institute standard and Technology) in original algorithm. this

paper is organized as follows: section 2 gives an overview of

related works to AES and reported enhancements in previous

researches. Section 3 overviews structure of AES. Section 4

shows proposed algorithm of generating dynamic

MixColumns() functions and arrays, while section 5 shows

proposed ShiftRowCloumns() transformation, in section 6

simulation and result will be shown. Finally, section 7 will be

for conclusion.

2. RELATED WORK
This section shows some previous researches that tried to

improve the performance and security of the AES algorithm.

In [12] the researchers improved the structure of MixColumns

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

40

transformation, as this transformation was redesigned by

eliminating the excessive logical functions for the efficient and

speed implementation of the AES algorithm on FBGA

chipsets. In [13] several structures were applied to

MixColumns() using finite filed techniques and selecting the

best structure after applying certain tests on the different

structures. In [14] [15] MixColumns() transformation was

eliminated and replaced by a new technique based on chaotic

system by applying a random map of type (Henon chaotic

map), which provided a good diffusion and a reduced

execution time. In [16] researchers replaced the Mix Column

Transformation in AES by MDS Matrices which are based on

default MDS Matrix of AES and mbit additional key. Then,

they are implemented on DSP and FPGA where Both have

their own advantages in embedded systems. In [17] for more

confusion and until AES becomes more resistant to attackers,

the number of rounds in AES have been increased from 10

rounds to 16 rounds. as a result, more MixCloumns and

ShiftRow are applied in the improved algorithm, but this

improvement increase execution time approximately twice. In

[18] [19] in order to improve the performance of the algorithm,

the MixColumns transformation was replaced by a

permutation algorithm. The MixColumns transformation was

time-consuming, so the execution time is improved but the

security is decreased because the permutation algorithm didn’t

provide the diffusion and confusion as MixColumns()

transformation. In [20] the execution time of AES was reduced

by relying on new boxes and improving the key scheduling

process. The improvement of execution time was 35%. In [21]

the researchers used multiple Sbox in AES depending on two

techniques, the first technique was Rijndael's Sbox and the

second technique was constructing Sbox based on Xor

operation and affine transformation, then replacing the

Mixcolumns() with this Sboxes.

-There are few points overlooked by previous researches:

 They Did not maintain on the basic mathematical models

that set by NIST, as the MixColumns() transformation has

been replaced by other equivalents. Some of which have

no clear mathematical models and no clear proofs.

Moreover, they do not provide confusion and diffusion

that were provided by original MixColumns()

transformation.

 Some modifications improved the time and ignored the

security. This did not have a balance between time and

security.

 They do not find variable dynamic mechanism with the

secret key for the MixColumns transformation. this paper

will try to remedy these above points in the new

improvements.

3. AVANCED ENCRYPTIN STANDARD
The AES encryption algorithm contains three encryption

patterns based on the length of the secret key and number of

Nr (Number round) as shown in Table 1:

Table 1. AES algorithm patterns

Number round Key Size

10 128bit

12 192bit

14 256bit

The size of input block of plain text is always 128bit in the

previous three patterns. This input block is stored in two

dimensional array 4*4bytes. It is called State array which

contains 16 bytes or four words and each word contains of 4

bytes [22].

3.1 Structure of Round in AES Algorithm
The round in AES consist of four transformations as follow:

1. SubByte(): in this transformation, each byte of the State

array is replaced by another byte according to a fixed

matrix called “SBox []” its size is 16 * 16 bytes. This

transformation provides non-linearity and confusion by

inverse multiplication in finite field and Affine

Transformation.

2. ShiftRows(): This transformation provides the intra-

column diffusion of the State array as the last three rows

are cyclically shifted.

3. MixColumn(): provides diffusion in byte of State array,

as columns in the State array multiply by a fixed matrix,

and the multiplication is performed over Galois Field GF

(28) [11].

4. AddRoundKey(): This process provides confusion, as

XOR is performed at every byte of the key with the

corresponding byte of the State array [22][11].

Next figure 1 illustrates 128-bit encryption process, it begins

with the Addroundkey(), and it is followed by ten rounds, and

each round consists of the four transformations which are

SubBytes(), ShiftRows(), MixColums(), Addroundkey().

These transformations will take place sequentially, noting that

the last round will include only three transformations which

are SubBytes(), ShiftRows(), Addroundkey(). In the

decryption process, transformations SubByte(), Shift Row(),

and MixColumns() will be replaced by their inverse that are

InvSubBytes(), InvShiftRows(),InvMixColumns(), and they

take another arrangement [23].

Fig 1: detailed structure of the AES algorithm [24]

4. GENERATE VARIABLE FUNCTIONS

AND VARAIBLE ARRAYS
In this section, the mathematical basics of MixColumns()

transformation in AES will be demonstrated, that are based on

finite fields. Then, the proposed method for generating

variable functions and matrices for MixColumns(i) and

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

41

InvMixColumns(i) transformation will be explained.

4.1 Multiply of Two Polynomials Their

Coefficients Belong to Finite Field

GF(2
8
) and They are Over GF(2

4
)

Let's suppose that we have a polynomial a(x), which consists

of four terms, as follows:

a(x)=a3 x3+a2 x2+a1 x+ a0

its coefficients are [a3, a2, a1, a0] belong to Galois Field

GF(28), so each coefficient [a3, a2, a1, a0] size is 1byte, and

all mathematical operations of these coefficients perform on

modulo (x8+x4+x3+x+1) or (100011011). Let suppose a

polynomial a(x) is over field GF(24) according to the modulo

(x4+1) and Let's have a polynomial b(x) definition as same as

a(x) as follows:

b(x) = b3 x3+ b2 x2+ b1 x+ b0

 The multiplication process of two polynomials a(x) and b(x) is

accomplished in two stages. In the first stage The

multiplication process is expanded mathematically c (x) = a (x)

• b (x), therefore we can write the product c (x) as:

c(x) = c6 x6+ c5 x5+ c4 x4+ c3 x3+ c2 x2+ c1 x1+ c0

where:

c0= a0 ● b0 ;c1 = a1 ● b0 ⊕ a0 ● b1 ;

c2 = a2 ● b0 ⊕ a1 ● b1 ⊕ a0 ● b2 ;

c3 = a3 ● b0 ⊕ a2 ● b1 ⊕ a1 ● b2 ⊕ a0 ● b3 ;

c4 = a3 ● b1 ⊕ a2 ● b2 ⊕ a1 ● b1;

c5 = a3 ● b2 ⊕ a2 ● b3 ;

c6 = a3 ● b3;

Note that the polynomial c(x) has a sixth order (6), since the

polynomials are over field GF (24) according to modulo

(x4+1). Therefore in the second stage, the order of C (x) is

reduced according to modulo (x4+1) to become a third order.

Note the following equation (1):

after applying equation (1) to c(x) we obtain d(x) as follows:

d(x) = d3 x3+ d2 x2+ d1 x+ d0 where:
d0=(a0•b0)⊕(a3•b1) ⊕(a2•b2)⊕(a1•b3)
d1=(a1•b0)⊕(a0•b1)⊕(a3•b2)⊕(a2•b3)
d2=(a2•b0)⊕(a1•b1)⊕(a0•b2)⊕(a3•b3)
d3=(a3•b0)⊕(a2•b1)⊕(a1•b2)⊕(a0•b3)

therefore we can arrangement coefficients of a(x), b(x), and

d(x) as follows in equation (2) [25][11]:

We conclude that when we multiplying a constant function

a(x) = a3 x3 + a2 x2 + a1x1 + a0 its coefficients are over

GF(28) with modulo (x8 + x4 + x3 + x + 1). It is over GF(24)

with modulo (x4 + 1) by a variable polynomial b(x). Its

definition as same as a(x), the constant coefficients of a(x) can

be arranged by an array as in equation (2) and the coefficients

of variable polynomial b(x) is arranged by a column vector as

in equation (2). The coefficients of d (x) is in a resulting

column vector, noting that the multiplication process of

coefficients takes place according to the field GF(28) and

modulo (x8 + x4 + x3 + x + 1). In MixColumns() of AES

algorithm, the constant polynomial a(x)= {03}x3+ {01}x2+

{01}x+ {02} is multiplied by each column of the State array

that representing b(x) to get a new column which is the

transformation array column [24][26].

4.2 The Transformation MixColumns() and

InvMixColumns()
MixColumns() transformation is the center of cryptography

and confusion, and heart of AES algorithm. This

transformation is the most consuming of time amongst other

transformations. The input of MixColumns() is a 4 * 4bytes

State array. Each column of the State array is treated

separately and this column represent the polynomial b(x). The

constant polynomial a(x) = {03}x3+ {01}x2 + {01}x + {02} is

multiplied by the b(x), where a(x) and b(x) over GF(24)

according to the modulo (x4+1), and all mathematical

operations of their coefficients perform on over GF(28) with

modulo (x8+x4+x3+x+1). a(x) coefficients are represented by

the constant matrix as in equation (3) In the encryption process

[21] [13] [27] [2] [28]:

The function that is used in the decryption process as follows:

a-1(x)=b(x)={0b}x3+{0d}x2+{09}x+{0e}

a-1(x) is the invers a(x) according to modulo (1+x4)[24][11]:

(a-1(x)*a(x))mod(1+x4)=1

The general equation for InvMixColumns() transformation in

the decryption process is as follows in equation (4):

4.3 Proposed Algorithm for Generating a

Variable Functions and Arrays

The AES algorithm consists of ten rounds, as MixColumns()

exists in first nine rounds of encryption process,

InvMixColumns() exists in the first nine rounds of decryption

process, and each round has a specified extended secret key ki

(16bytes) see figure(1). Next figure(2) illustrates the proposed

method for generating variable functions and arrays according

to the secret key for MixColumns() and InvMixColumns()

transformation.

Fig 2: proposed algorithm for generating functions and

arrays

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

42

After observing Figure 2, we can arrange the mechanism of the

proposed algorithm as follows:

-the proposed algorithm inputs is the first nine expanded keys

whish are [k1, k2, k3, k4, k5, k6, k7, k8, k9].

-step1: 36 constants are calculated [c1, c2,. ,c36],where size

each of them is (1byte). The first four constants [c1, c2, c3, c4]

are calculated from the first extended secret key k1 and are

assigned to the first round (round (1)) in the encryption

process for MixColumns(1). The second four constants [c5, c6,

c7, c8] are calculated from k2 and are assigned to the second

round (round2) in the encryption process for MixColumns(2),

and so on until the last four constants [c33, c34, c35, c36] are

calculated from k9 and are assigned to the round(9) in

encryption process for MixColumns(9). The following

equation(5) illustrates the calculation of four constants from

expanded key Ki that are assigned to round(i) where 1≤ i ≤ 9

and ⊕ is xor operation:

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕
 ⊕ ⊕ ⊕

where the size of each extended key ki is (16bytes), and it is

stored in linear array ki [0]….ki [15], and also calculated

constants are stored in a linear array C [1 * 36bytes].

-step2: Nine functions [a1(x), a2(x), a3(x), a4(x), a5(x), a6(x),

a7(x), a8(x), a9(x)] are created, where a1(x) is used for

MixColumns(1) transformation in Round(1), and a2(x) is used

for MixColumns(1) in Round(2), so on a9(x) is used for

MixColumns(9) in Round(9). The following equation(6)

illustrates formation of nine functions ai(x) from calculated

constants C where 1 ≤ i ≤ 9 :

ai(x)=C(i*4) X3+ C(i*4-1) X2+ C(i*4-2) X+ C(i*4-3) (6)

where coefficients of each function ai(x) over finite field

GF(28) with modulo (x8+x4+x3+x+1) and ai(x) over GF(24)

with modulo (x4+1).

-step3: Nine arrays [m1, m2, m3, m4, m5, m6, m7, m8, m9]

are generated from the nine preceding functions[a1(x)…

a9(x)], as each ai(x) function generates a MixColumns(i)

transformation array which is mi that assigns to round (i) at

encryption process. Next figures(3) illustrates the method of

forming the mi array from ai(x) function for 1≤ i ≤ 9 :

Fig 3: Formation of MixColumns(i) array mi from the

function ai(x) that belong to round (i)

Notice: the order of ai(x) coefficients in the fourth row of mi

array is not changed, but in the third, second, and first row,

coefficients are circularly shifted to left. Next Figure 4

illustrates distribution of [m1, ………, m9] arrays and their

assignment to rounds at the encryption process. The general

equation for the MixColums(i) transformation in round(i) at

encryption process as follows for 0 ≤k≤ 3 and 1 ≤ i ≤ 9:

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

Fig 4: forming arrays and assigning them to

MixColumns(i) in rounds of the encryption process

-step4: for the InvMixColumns(i) transformation in the

decryption process inverse of nine arrays [m1, m2, m3, m4,

m5, m6, m7, m8, m9] they are found to become [(m1)-1, (m2)-

1, (m3)-1, (m4)-1, (m5)-1, (m6)-1, (m7)-1, (m8)-1, (m9)-1], where

they are InvMixColumns(i) arrays in decryption process. The

inverse of each matrix m(i) is calculated using the

mathematical algorithm to find the inverse of a square matrix,

noting that multiplication, division, and addition during

finding the inverse of matrix are done over the finite field

GF(28) with modulo (x8+x4+x3+x+1). Firstly, inverse of matrix

m1 is found to become (m1)-1 for InvMixColumns(9) in round

(9) of the decryption process, and so on for rest of eight arrays.

Next figure (5) below shows the arrangement of inverted

arrays (mi)-1 and their distribution to InvMixColumns(i)

transformation where it is existed in first nine rounds in the

decryption process:

Fig 5: arrangement of inverse arrays (mi)-1 and assigning

them to InvMixColumns(i) in round(i)

-step5: [(m1)-1, (m2)-1, (m3)-1, (m4)-1, (m5)-1, (m6)-1, (m7)-1,

(m8)-1, (m9)-1] arrays are used to conclude polynomials [b1(x),

b2(x) …..., b9(x)] for InvMixColumns() in Decryption

process, where (bi(x) * ai(x) mod (x4 + 1) = 1) for 1≤ i ≤ 9, so

bi(x) is invers of ai(x) according to the modulo (x4 + 1).

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

43

Fig 6: concluding polynomial bi(x) from array (mi) -1

5. VARIBLE SHIFTROWSCOLUMNS(i)

WITH EXTENDED SECRET KEY

5.1 ShiftRow() Transformation in AES
In encryption process, the input of ShiftRow() transformation

is the State array (4 * 4bytes). The last three rows of the State

array are circularly shifted to left, where in the first row there

is no offset, but in the second row there is a rotatory offset to

left by one, and in the third row there is a rotatory offset to left

by two, finally in the fourth row there is a rotatory offset to left

by three [11]. The following figure(7) illustrates the

ShiftRow() transformation:

Fig 7: ShiftRow() in the original AES [11]

In the decryption process, InvShiftRow() is similar to the

ShiftRow () transformation with one difference that the rotary

shift is from left to right.

5.2 Proposed Method the Transformation

ShiftRowColumns(i)

ShiftRow() is exists in all rounds of the encryption process,

note the figure (1). it will be replaced with the proposed

ShiftRowCloumns(i) transformation, that has a greater

complexity (rows and columns) than ShiftRow()(rows only),

and also has a dynamic variable pattern of rotatory offset

according to extended secret key ki at each round(i) of AES in

contrast to ShiftRow() that is static pattern in all rounds. This

dynamic offset with the secret key, more complexity of shift

(rows shift and columns shift) , and different pattern at each

round(i) gives more confusion and diffusion to the encrypted

text, a greater difficulty for cryptanalysis, and attacks and a

higher security. The input of this transformation is the state

array (4 * 4bytes). Initially, based on the extended secret key

(ki) that dedicated to each Round (i), eight constants are

calculated for each round(i). [ShiftColumn(i,1),

ShiftColumn(i,2), ShiftColumn (i,3), ShiftColumn(i,4)] are

four constants responsible of a rotatory offsetting of columns

in State array in round(i), as the first parameter of these

previous four constants indicates to the round number that

belong to, and the second parameter indicates to the column

number of State array that will be vertically shifted,

ShiftColumn(Round Number, Column Number). While,

[ShiftRow (i, 1), ShiftRow (i, 2), ShiftRow (i,3), ShiftRow (i,

4)] are the second four constants responsible for a rotatory

offsetting of rows in the State matrix in round(i)

ShiftRow(Round Number, Row Number), and each of the

preceding eight constants take a value in rang [0 3]. We will

calculate 88 constants for 10 rounds, which are the same in the

encryption and decryption stages. Noting that each extended

key ki (16bytes) is stored in a one-dimensional matrix Ki [1 *

16bytes], we can write the equation that represent compute of

eight constants for each round(i) where 1≤ i ≤ 10 as follows:

ShiftColumn(i,1)=(ki[0]Xorki[1])mod4

ShiftColumn(i,2)=(ki[2]Xorki[3])mod4

ShiftColumn(i,3)=(ki[4]Xorki[5])mod4

ShiftColumn(i,4)=(ki[6]Xorki[7])mod4

ShiftRow(i,1)=(ki[8]Xorki[9])mod4

ShiftRow(i,2)=(ki[10]Xorki[11])mod4

ShiftRow(i,3)=(ki[12]Xorki[13])mod4

ShiftRow(i,4)=(ki[14]Xorki[15])mod4

Figure 8: shows the distribution of the row and column shift

constants in the encryption process over the AES rounds:

Fig 8: shift constants distribution on encryption rounds

After calculating shift constants, the ShiftRowCloumns(i)

transformation in roud(i) operates as follow:

1. Firstly, it shifts State array vertically from top to down

according to value of column shift constants that are

assigned to round(i). The ShiftRowCloumns(i) circularly

shifts the first column of State array in round(i) from top

to down by ShiftCloumn(i,1) value, offsets the second

column of State array in round(i) from top to down by

ShiftCloumn(i,2) value, offsets the third column of State

array in round(i) from top to down by ShiftCloumn (i,3)

value, and offsets the fourth column of State array in

round(i) from top to down by ShiftCloumn (i, 4) value.

2. Secondly, it shifts State array horizontally from right to

left according to value of row shift constants that assigned

to round(i). The ShiftRowCloumns(i) circularly shifts

first row of State array in round(i) from right to left by

ShiftRow(i,1) value, rotates second row of State array in

round(i) from right to left by ShiftRow (i,2) value, rotates

third row of State array in round(i) from right to left by

ShiftRow(i, 3) value, and rotates fourth row of State

array in round(i) from right to left by ShiftRow (i, 4)

value.

Figure 9 below illustrates the method of calculating row and

column shift constants in the round(i) from extended key Ki,

and how ShiftRowCloumns(i) operates in encryption stage:

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

44

Fig 9: ShiftRowColumn() transformation in round(i)

5.3 InvShiftRowCloumns(i)
for decryption process, InvShiftRowColumn(i) works as

similar as ShiftRowCloumns(i) with a difference that firstly,

rows are cyclically shifted from left to right, and secondly the

columns are cyclically shifted from down to top.

6. SIMULATION AND RESULTS

this section shows arrays that are generated by proposed

algorithm with specified prime secret key. For a prime secret

key 597c70a424a6e4ce12ae8496550a6e2b. Table (2) below

illustrates generated arrays for MixColumn() and

InvMixColumn() at each round(i) of AES in hexadecimal

presentation:

Table 2. Generated Arrays at specified Secret Key

Prime Secret Key = 597c70a424a6e4ce12ae8496550a6e2b

N
R

 Extended key MixColumn Array InvMixColumn

Array

R
o

u
n
d

 1

k1=

597c70a424a6

e4ce12ae8496

550a6e2b

 1 1
 1

 e
1

 e

 e
1 e

 1

1
 1

 1

 9
1

 9

 9
1 9

1

R
o

u
n
d

 2

k2=

3fe381581b45

659609ebe100

5ce18f2b

 19

19

19

19

 e

e

e

e

R
o

u
n
d

 3

k3=

c5907012ded5

1584d73ef484

8bdf7baf

9

99

9
99

99 9
 99

9

e
9 e

9

 9

e
9

e

R
o

u
n
d

 4

k4=

5fb1092f8164

1cab565ae82f

dd859380

 b

 b
 b

 b

 b
 b b

 b

19
e 19

e

 e

19
e

19

R
o

u
n
d

 5

k5=

c06dc4ee4109

d8451753306

acad6a3ea

1e

1e

1e
 1e

 e
 e

e1

e1

e1
 e1

 e

 e

R
o

u
n
d

 6

k6=

2667439a676e

9bdf703dabb5

baeb085f

9
 9

9

9

 9 b
 9 9

9
 b

 9
9

9 9
 b 9

 9
 9

 b
 9

R
o

u
n
d

 7

k7=

ef578c6e8839

17b1f804bc04

42efb45b

1

1

 1

1

R
o

u
n
d

 8

k8=

70dab542f8e3

a2f300e71ef7

4208aaac

 e

 e

 e
 e

 1
 1

 1

 1

R
o

u
n
d

 9
 k9 =

c076246e3895

869d3872986

a7a7a32c6

b

b

b
b

b b
 b

b

9 e
 9

9
 e

9

9
 e 9

9

 e
9

R
o

u
n
d

1
0
 k10 =

015590b439c

0162901b28e

437bc8bc85

 e

 e

 e
 e

 9

 e
9

 e

 e
9 e

9

Note that multiply MixColumn array by InvMixcolumn array

over GF(28) results identity matrix() (the n × n square matrix

with ones on the main diagonal and zeros elsewhere). Next

table 3 demonstrates the output of ShiftRowColumn(1) in

round(1) and shift constants (rows and columns) that are

assigned to round(1) in encryption stage, and for expanded

round key k1= c076246e3895869d3872986a7a7a32c5 :

Table 3. output ShiftRowColumn()

Round 1 Input array
Extended

K1

proposed State Array

 e
 e

 b

9 1

1

k
1

=
 c

0
7

6
2

4
6

e3
8
9

5
8

6
9

d
3

8
7

2
9

8
6

a7
a7

a3
2

c5

After Columns Shift

ShiftColumn(1,1)=02

ShiftColumn(1,2)=02

ShiftColumn(1,3)=01

ShiftColumn(1,4)=03

9 1

1

 e
 e

 b

After Rows Shift

ShiftRow(1,1)=02

ShiftRow(1,1)=02

ShiftRow(1,1)=00

ShiftRow(1,1)=03

1

9

 1

 e

 b
 e

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

45

6.1 Basic Statistical Tests

After modifying the original AES, the statistical characteristics

of the cipher text will be tested which is output of

enhancement AES, through using the four basic statistical tests

that developed by the National Institute of Standards and

Technology (NIST) which are Frequency Test, Run Test,

Serial Test, and Frequency Test within a Block. Cipher text

passes the test if p-value is greater than 0.01 [29].

Table 4. Statistical tests for the improved algorithm

Plain

Text
Secret

Key

output of

improved

AES

Test
name

p-value

111111

111111

111111

111111

111111

11

1bb3a4

0129df

93c5dc

0a1c89

860cec

a8

e16316

a1940b

f7d371

bff25f

0c0528

e9

Frequency

Test

0.86
pass

Run Test 0.38 pass

Serial Test 0.03 pass

Frequency

Test within

a Block

0.22

pass

1095cb

c4d956

8b2cd1

faf9f2

9bb79e

aa

8bc157

783196

9a89dd

39e168

c8518d

38

355a9c

37c2a9

78f443

44f65e

6a8499

30

Frequency

Test

0.59
pass

Run Test 0.98 pass

Serial Test 0.03 pass

Frequency

Test within

a Block

0.10

pass

b1481e

ea2918

b4891a

76d42a

9ddf4f

54

597c70

a424a6

e4ce12

ae8496

550a6e

2b

c44622

d4bdca

952100

3031f3

13098a

d7

Frequency

Test

0.05
pass

Run Test 0.98 pass

Serial Test 0.03 pass

Frequency

Test within

a Block

0.31

pass

7d3bfb

0d6106

cf94dd

faf9db

d991e0

c3

9c75d2

084382

26acfb

585051

48fbe7

51

f12eb8

a6a146

78c5b3

7d8e35

ee1c98

13

Frequency

Test

0.86
pass

Run Test 0.48 pass

Serial Test 0.03 pass

Frequency

Test within

a Block

0.53

pass

after noting previous table 4, we conclude that the cipher text

(out of enhancement AES) passed all test for four random

different of plain text and secret key.

6.2 Avalanche Test [30]
Avalanche effect is very important in cryptographic

algorithms. This means a single bit change in the secret key or

in plain text it should give a significant change in cipher text at

least half of the output. This criterion has the following

formula:

 he e
 ber ibe e i i her e

 ber bi i i her e

Table 5. Avalanche effect comparison between original

AES and improved AES after changing in secret key

Plain text Secret key

avalanche effect

Improved
AES

Original

AES

7d3bfb0d6106

cf94ddfaf9db

d991e0c3

649c68ed14fb5dbb

ea37ce114993996f
0.63 0.54

649c68ed14fb5dbb

eb37ce114993996f

3b641a6b2f83

5db6913a0af1

2a47424e

597c70a424a6e4ce

12ae8496550a6e2b
0.589 0.539

797c70a424a6e4ce

12ae8496550a6e2b

25eb122e82e6

dc4de0779f8d

d5ee6e21

Cd6f6e4ae3531e7f

c0aa4fc33b356674
0.563 0.476

dd6f6e4ae3531e7f

c0aa4fc33b356674

565556789876

78909878d5f5

5fda4567

Cd6f6e4ae3531e7fc0

aa4fc33b356674
0.54 0.45

dd6f6e4ae3531e7fc0

aa4fc33b356674

264d23be0b98

f55ec414deee

a436b76b

5628d8c8d8c8a88f77

e7fa5f3687caf2
0.52 0.4453

5628d8c8d8c8a88f77

f7fa5f3687caf2

649a82dc93ca

06827d4e93ea

cd9361fa

649c68ed14fb5dbb

ea37ce114993996f
0.5 0.5

649c68ed14fb5dbb

eb37ce114993996f

649a82dc93ca

06827d4e93ea

cd9361fa

c4442cc89162b813

bdd98c245ae9e17e
0.60 0.51

c4442cc89162b813

bdd98c245ae9e17f

565556789876

78909878d5f5

5fda4567

1bb3a40129df93c5

dc0a1c89860ceca8
0.524 0.50

1bb3a40129df93c5

dc0a1c89860ceca9

3b641a6b2f83

5db6913a0af1

2a47424e

c4442cc89162b813

bdd98c245ae9e17e
0.555 0.476

c4442cc89162b813

bdd98c245ae9e17f

565556789876 8bc1577831969a89 0.532 0.523

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

46

78909878d5f5

5fda4567

dd39e168c8518d38

8bd1577831969a89

dd39e168c8518d38

565556789876

78909878d5f5

5fda4567

1bb3a40129df93c5

dc0a1c89860ceca8
0.524 0.50

1bb3a40129df93c5

dc0a1c89860ceca9

Previous table 5 shows a comparison between AES and

Improved AES after changing a single bit of secret key, and

next finger10 demonstrate a comparison in table5:

Fig 10: Avalanche effect comparison

6.3 Cryptanalytic Attack
This attack depends on nature and behavior of the encryption

algorithm, and attempts to use characteristics of encryption

algorithm to extract the plain text or the secret key from the

cipher text [19]. this paper focused on developing the most

important transformation in the AES algorithm which is

MixColumn() transformation. This transformation is heart of

the AES algorithm and confusion and diffusion center. After

previous improvements, the static matrix of MixColumn() was

removed which is known by attackers and analysts, and

replaced by variable dynamic matrices with the secret key that

are unknown to attackers and analysts. Also, more complexity

to ShiftRows() transformation was added to become

ShiftRowColumn(), that increased the diffusion on the bytes of

cipher text. Moreover, the fixed pattern of cyclical shift was

eliminated which is known to attackers, and replaced by

variable dynamic pattern with secret key that is unknown to

attackers and analysts. Therefore after these improvements,

this work increased the diffusion inside the byte of the cipher

text, the diffusion between the bytes of the cipher text, and the

confusion by suggesting the proposed dynamic pattern with

the secret key.

6.4 Execution Time
After adding previous enhancements to the AES 128-bit

algorithm, we attempted to reduce the time of the optimized

algorithm as much as possible by calculating MixColumn()

and InvMixColumn() matrices, and shift constants in the

initialization stage and isolating this stage from the functions

that are used in the encryption and decryption process. The

following table 6 show a comparison between the execution

time of the original 128-bit algorithm and the improved 128-

bit algorithm, as the execution time is calculated at specified

data volume.

Table 6. Execution time comparison between original AES

and improved AES

Improved AES Original AES Data size

3.72ms 3.5ms 1Kbyte

7.72ms 7.16ms 2Kbyte

11.86ms 11ms 3Kbyte

20.59ms 17ms 5Kbyte

102.86ms 75ms 25Kbyte

205ms 148ms 50Kbyte

434ms 298ms 100Kbyte

860ms 594ms 200kbyte

1270ms 940ms 300kbyte

Fig 11: execution time comparison

7. CONCLUSION
This paper assumes a novel approach to improve the security

of AES by increasing confusion and diffusion within

encrypted text bytes (bits) and amongst encrypted text bytes of

AES algorithm. It will be done by modifying the most

important transformation in the AES algorithm which is

MixColumn(), and increasing the complexity of ShitRow

transformation. This work also increased the confusion process

by suggesting an unknown dynamic pattern of the

MixColumn(i) and ShiftRowColumn(i) transformations, this

pattern changes with the secret key. Then, the basic statistical

tests were applied on output of improved algorithm (cipher

text), and tested the avalanche property, and then compared the

additional time cost of this improvement with the original AES

algorithm.

8. REFERENCES
[1] Hameed, E.M., Ibrahim, M. M., and Manap, A.N., 2018.

Review on Improvement of Advanced Encryption

Standard (AES) Algorithm based on Time Execution,

Differential Cryptanalysis and Level of Security.

[2] Dewangan, P.C., Agrawal, S.,2012. A Novel Approach to

Improve Avalanche Effect of AES Algorithm.

[3] Karthigaikumar, P., and Rasheed, S., 2011. Simulation of

Image Encryption using AES Algorithm.

[4] Maolood, T.A.,and Yasser A. Y., 2017. Modifying

Advanced Encryption Standard (AES) Algorithm.

[5] Jothy, A.K., Sivakumar, K., and Delsey, J. M., 2017.

Efficient Cloud Computing with Secure Data Storage

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 36, February 2020

47

Using AES and PGP Algorithm.

[6] Choudhury, P. K., and Kakoty S.,2017. Comparative

Analysis of Different Modified Advanced Encryption

Standard Algorithms over Conventional Advanced

Encryption Standard Algorithm.

[7] Shekhar, S., Singh, P.,and Jaiswal,M., 2016. An

Enhanced AES Algorithm Based on Variable Sbox and

200 Bit Data Block.

[8] Pahal, R., and kumar, V., 2013. Efficient Implementation

of AES.

[9] Gul, F., Amin, A., and Ashraf, S., 2017. Enhancement of

Cloud Computing Security with Secure Data Storage

using AES.

[10] Yan, J.,and Chen,F., 2016.An Improved AES Key

Expansion Algorithm". International Conference on

Electrical.

[11] Federal Information Processing Standards Publication

197,2001. Announcing the ADVANCED ENCRYPTION

STANDARD.

[12] Vaidehi, M., and Rabi, J. B., 2015. Enhanced MixColumn

Design for AES Encryption.

[13] Arrag, S., Hamdoun, A., Tragha, A., and Khamlich,

E.S.,2013. Design and Implementation a Different

Architectures of Mixcolumn in FPGA.

[14] Abdulgader, A., Ismail, M., Zainal, N., and Idbeaa, T.,

2015. Enhancement of AES algorithm based on chaotic

maps and shift operation for image encryption.

[15] Abaas, and A. S.,and Shibeeb. K. A., 2015. A New

Approach for Video Encryption Based on Modified AES

Algorithm.

[16] Murtaza, G., Khan, A. A., Alam, W. S., and Farooqi,

A.,2010. Fortification of AES with Dynamic Mix-

Column Transformation.

[17] Kumar, P., and Rana, B. S., 2016. Development of

modified AES algorithm for data security.

[18] Hameed, S., Riaz, F., Moghal, R., Akhtar, G., Ahmed, A.,

and Dar G. A., 2011. Modified Advanced Encryption

Standard for Text and Images.

[19] Kawle, P., Hiwase, A., Bagde, G., Tekam, E., and

Kalbande, R., 2014. Modified Advanced Encryption

Standard.

[20] Wadi, M. S.,and Zainal, N., 2014. High Definition Image

Encryption Algorithm Based on AES Modification.

[21] Wenceslao, V. F, 2018.Enhancing the Performance of the

Advanced Encryption (AES) Algorithm Using Multiple

Substitution Boxes. Standard.

[22] Hernandez, J. O., etc. al, 2008. A Low Cost Advanced

Encryption Standard (AES) Co-Processor

Implementation.

[23] Kohli, R., etc. al, 2012. S-Box Design Analysis and

Parameter Variation in AES Algorithm.

[24] Stallings, W.,2011 FIFTH EDITION,

CRYPTOGRAPHY AND NETWORK SECURITY.

[25] Benvenuto, J. C., 2012.Galois Field in Cryptography.

[26] Leith, V., 2010.The Rijndael Block Cipher.

[27] Anand, K., Sekar, A. C., Nagappan, G.,2017. Enhanced

AES Algorithm using 512 Bit Key Implementation.

[28] Kak A., 2019. Finite Fields of the Form GF(2^n)

Theoretical Underpinnings of Modern Cryptography

Lecture Notes on “Computer and Network Security”.

[29] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., and Barker,

E., 2012." A Statistical Test Suite for Random

andPseudorandom Number Generators for Cryptographic

Applications".

[30] Mandal, K. A., and Tiwari, A., 2012. Analysis of

Avalanche Effect in Plaintext of DES using Binary

Codes.

IJCATM : www.ijcaonline.org

