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ABSTRACT

Conventional approaches to breast cancer diagnosis are associated
with drawbacks that ultimately affect the quality of diagnosis and
subsequent treatment, pushing for the need for automatic and pre-
cise classification of breast cancer tumors. The advent of deep
learning methods has witnessed an increasing interest in their ap-
plications in many tasks. The specific case of using convolutional
neural networks with transfer learning has witnessed tremendous
successes in many classification tasks. Nonetheless, with transfer
learning, the sheer number of parameters associated with deep net-
works coupled with the distance disparity between source data and
target data leave networks prone to overfitting, particularly in the
case of limited data. Also, negative transfer may occur in the situa-
tion where the source and target domains are not related. This work
proposes a simple convolutional neural network model trained from
scratch for discriminating benign and malignant breast cancer tu-
mors in histopathological images. Four deep learning optimization
algorithms are leveraged and explored to ascertain how optimiz-
ers aid in finding good sets of parameters that help minimize loss
and increase overall classification accuracy. By adopting a polyno-
mial learning rate decay scheduling and implementing several data
augmentation techniques that regulate overfitting and improve the
generalization ability of the proposed model, accuracy, sensitivity,
specificity, and Area Under the Curve values of 89.92%, 94.02%,
86.42%, and 0.884 (88.4%), respectively are reported.
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1. INTRODUCTION

Breast cancer is one of major contributors of death caused by can-
cer in women within the ages of 29 to 59 years [1]]. A projection
by the World Health Organization (WHO) estimates that by 2025,
the number of breast cancer cases will shoot up to 19.3 million. [2].
Thus, making early diagnosis and treatment a vital step in prevent-
ing its spread and, subsequently, a reducing morbidity rates [3|].
Traditional manual diagnosis approaches include mammography,
ultrasound imaging, and biopsy. Though these methods are help-
ful in diagnosing and examining suspicious cancerous tissues, they
require pathologists with a high level of expertise, the absence of
which makes diagnosis error-prone, not to mention the associated
intense workload on pathologists. Moreover, the level of agreement
between specialists on diagnosis results is approximately 75% [4].
These factors necessitate the need for computer-aided diagnosis
(CAD) systems.

Recent advancements in deep learning in medical diagnosis have
demonstrated remarkable successes in many classification tasks,
and it is drawing growing interest among researchers [5,/6]. Con-
volutional Neural Networks (CNN), a deep learning method, has
achieved state-of-the-art performances in recognition tasks. The in-
herent nature of these deep models implies that they are capable of
learning rich and useful features or patterns on their own, with-
out requiring human intervention or the use of hand-engineered
features. Different layers in deep models learn different features,
which culminate in a specific classification or recognition task.
Nonetheless, deep models thrive on the availability of large, and
well annotated datasets, often due to the large number of parame-
ters associated with these models. Such vast datasets are virtually
nonexistent in the medical domain. Even in the case of datasets
with appreciable size, class imbalance poses another challenge in
classification. Class imbalance refers to the situation where there
are more images for a particular class (or classes) compared to the



other class(es). Consequently, a deep model gets exposed to more
images of a particular class during training, and as such, skews its
final classification output towards that particular class. In effect,
though the classification accuracy might be high, the output is still
highly weighted by the class with the most number of images. An-
other challenge is with the nature of the medical images. For a deep
model, distinguishing between natural images (say a cat and an air-
plane), is pretty simple owing to the availability of visual clues.
Breast cancer histopathological images do not possess image prop-
erties that present a lot of visual clues for a deep model during
training. The images demonstrate a lot of inter and intra-class simi-
larities that tend to hinder the generalization ability of a deep model
on medical imaging classification tasks.

Several works have reported on transfer learning for breast can-
cer classification. Transfer learning is a technique that adapts a
pre-trained deep model to a secondary tasks. A pre-trained model
has already been trained on a huge dataset (usually ImageNet) and
as such, possesses a rich features that can be transferred to a an-
other tasks in a similar domain, achieving excellent performance.
ImageNet possesses a collection of natural images and as such, a
deep model trained on ImageNet performs extremely well on a sec-
ondary classification task with dataset which comprises natural im-
ages. The same is usually not the case for breast cancer histopatho-
logical images. Adapting a pre-trained model to a breast cancer
classification task is not devoid of issues. The distance disparity be-
tween the source data (ImageNet) and the target data (breast cancer
histopathological images) is a huge one, which without further im-
age processing and augmentation techniques, impacts the ability of
deep models to generalize on breast cancer data. This is because,
the features a deep model learns when presented with a car as an in-
put image is totally different from features it learns when the input
image is a breast cancer image. The resulting problem is overfitting
and poor model classification performance.

In this work, a simple deep CNN model for classifying breast can-
cer histopathological images (Invasive Ductal Carcinoma) as either
benign or malignant is proposed. The proposed model is trained
from scratch on a breast cancer histopathological dataset. Train-
ing the model from scratch on a relatively small dataset allows the
model to learn features by itself. Coupled with the drastic reduction
in the number of parameters associated with the proposed model,
overfitting is effectively minimized without trading off the model’s
performance. Also, the impact of learning rate when training a deep
model with random initialization is accessed, as the choice of a
learning rate determines the convergence of a model with mini-
mal loss. To this end, four deep learning optimization algorithms
are leveraged with two learning rate values (with a polynomial rate
decay scheduling) and the performance of the proposed model is
accessed, based on its ability to classify an image as either benign
or malignant. A combination of data augmentation techniques re-
sults in a great classification performance, with less parameters and
an effective check on overfitting.

2. RELATED WORK

CNNs have been consistently achieving impressive results in im-
age classification tasks. Over the years, trend is evident in the de-
velopment of several deep learning algorithms that seek to improve
accuracies and minimize loss [[7H10]. These models have achieved
excellent accuracy performances in classification tasks on natural
images datasets such as the CIFAR, MNIST and ImageNet. The
application of deep models to the task of classifying breast can-
cer histopathological images has also witnessed a surge in recent
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years. Commendable outcomes have been reported in the literature,
showing promising prospects in the application of deep models in
medical imaging classification tasks. That, notwithstanding, data
unavailability and imbalance in image classes still pose a challenge
to the task of accurately classifying breast cancer images. Nonethe-
less, the application of deep models for breast cancer classifica-
tion has superior performance compared to traditional classifica-
tion methods. The work done in [[11]] adopts an end to end approach
in training a convolutional neural network for accurately detecting
breast cancer on screening mammograms. Their approach makes
use of lesion annotations only during the initial training stage while
preceding stages make use of only image-level labels. This method
eliminates the need to rely on lesion annotations, which are hardly
available. On the Digital Database for Screening Mammography
(CBIS-DDSM), their approach obtains a per-image AUC of 0.88
for a single model and 0.91 AUC for averaging four models. On
the full-field digital mammography (FFDM) images from the IN-
breast database, they obtain a per-image AUC of 0.95 and 0.98 for
averaging four models.

In [[12f], authors employ a hybrid convolutional and recurrent deep
neural network for classifying breast cancer pathological images,
obtaining an accuracy of 91.3%. In [13]], the authors introduced a
hybrid CNN capable of utilizing the local and global features of an
image for accurate prediction. In this work, the authors also intro-
duced hierarchical voting and bagging techniques that help improve
the classifier?s performance. Their approach achieved a classifica-
tion accuracy of 87.5%. The authors in [[14] proposed a multiple
instance learning framework for a CNN by introducing a new pool-
ing layer. The pooling layer aided in accumulating features with
the most information from patches that make up a whole slide, and
reported an accuracy of 88%. The work done in [2] fine-tunes the
AlexNet model for binary classification of breast cancer tumors on
two datasets. Their approach involves replacing the classification
layer of the pre-trained AlexNet model with a fully connected layer
connected to a support vector machine classifier. They report an ac-
curacy of 87.2% with an AUC of 94%.

The authors in [[15] introduced a transition module that can cap-
ture filters at different scales, collapsing the filters via global aver-
age pooling. This ultimately reduces the size of the network from
convolutional to fully connected layers. Training on small dataset
yielded an accuracy of 91.9%. Spanhol et al. [16] extracted fea-
tures from a CNN and used these features as input to a traditional
classifier. Bayramoglu et al. [[17] distinguished between benign and
malignant classes of breast cancer histology images.

3. BACKGROUND
3.1 Deep Learning and Breast Cancer Classification

Deep learning methods are making remarkable progress and perfor-
mance in many computer vision tasks. Convolutional neural net-
works have become the popular deep learning method for wide
range of task like classification, recognition and detection. This
trend has seen deep models being implemented in histopatholog-
ical image classification [18]]. Nonetheless, the classification of
histopathological images is more challenging compared to the case
of natural image classification. This is because; 1) histopathological
images have high resolutions, 2) the feature space representation of
a pathological image patch is not adequately rich, and 3) number
of images of in a histopathological dataset is smaller compared to
natural image datasets. These factors make the task of classifying
histopathological images a challenging one. Even with these chal-
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Fig. 1. Proposed CNN architecture

lenges, CNN models do a rather good job in classitying histopatho-
logical images. A popular application of CNN models for classifi-
cation is implementing transfer learning, as this technique helps
curb the issue of lack of well labeled and annotated images for
histopathological classification.

Transfer learning is a technique that seeks to extract knowledge
from one or source task and applies the knowledge to a target
task [19]]. In such a scenario, the target task has less high quality
training data. A domain is represented as, D = {x, P(X)}, (where
X is a feature space, and P(X) is a marginal probability distribu-
tion) and a task, T" = {y, f(.)} (where y is a label space, and f(.) is
an objective prediction function). Hence, for a source domain Dg
and a task Tg, a target domain D and a task 77, the objective of
transfer learning to aid in improving the learning of the predictive
function fr(.) in Dy through the knowledge in Dg and T, given
that Dg ##Dr and Ts#Tr. Based on this definition, assumption
for transfer learning is that, the source and target domains are re-
lated to each other. However, in some cases when the source and
target domain are not related, brute-force transfer learning may be
unsuccessful and even in the worst case, degrade the performance
of learning in the target domain. Considering the disparity between
natural images and histopathological images,training a pre-trained
CNN model (trained on ImageNet) on histopathological images
hurts accuracy performance, even with state-of-the art CNN mod-
els.

For this reason, works on histopathological image classification im-
plemented CNN models trained from scratch with Gaussian distri-
bution [18]], [20]]. Training a CNN model from scratch on a rela-
tively smaller dataset allows the model to learn data patterns by
itself with a lesser number of parameters to learn from, which in-
creases the ability of the model to generalize well on target data.
When training CNN models, the learning rate is an important
hyper-parameter to consider and adjust in a bid to achieve a higher
accuracy with minimal loss. Choice of a learning rate determines
the rate at which a model adapts to a problem. It controls how the
weights of the networks are adjusted with respect to the loss gradi-
ent. Setting this hyper-parameter too small may cause the network
not to learn anything at all. Too high a value may also cause the
network overshoot in areas of low loss. Setting a scheduler that ad-
justs the learning rate appropriately is a vital step in training deep
models. In this work, polynomial learning rate scheduler is adopted
and four deep learning optimizers are leveraged in order to access
performance of the proposed model in obtaining the best accuracy
performance with minimal loss.The next section provides a brief
insight to deep learning optimization methods.

3.2 CNN Optimization Methods

Optimization is a vital aspect of machine learning and deep learn-
ing. Optimization methods enable neural networks to learn useful
patterns from data. These useful patterns enable CNN models to
accurately predict and assign labels to input data. Generally, for
classification tasks, we define a scoring function that maps input

data to output data class labels. A scoring function is defined in
terms of two parameters, a weight matrix W and a bias vector b, as
given in Equation 1.

flxy, W,b) = Wa; +b (D

A good shot at improving classification accuracy is to tune param-
eters of a weight matrix W or a bias vector b. Nonetheless, the
process of adjusting these parameters in improving classification
accuracy is not straightforward, and it is often classified as an opti-
mization problem.When training deep learning models, a common
assumption is to consider the objective function as a sum of a finite
number of functions, as shown in Equation 2.

flw) = % > fila) @

where f;(x) is a loss function on the training data instance indexed
by i. A loss function measures the agreement between predicted
class labels and ground truth labels, for a given data. The goal
of training deep learning models is to minimize the loss function,
thereby increasing accuracy. Optimization methods aid in finding a
set of parameters W and b that help to minimize the loss function
w.r.t the scoring function [21]. We briefly touch on four optimiza-
tion methods explored in our work. Interested readers are referred
to the great work by [21] for more information about CNN opti-
mizers.

3.2.1 Stochastic Gradient Descent (SGD). SGD differs from the
standard vanilla gradient descent algorithm in that, it computes the
gradient of the objective function and performs parameter updates
on small batches of training data, rather than the entire training
data. The vanilla gradient descent algorithm computes the gradient
of the objective function and performs parameter updates for the
entire training data, mathematically expressed in Equation 3.

0=0—n.VeJ(0) 3)

where Jy is the objective function for parameters ?, and ? is the
learning rate. This kind of implementation is very slow and in-
tractable for large datasets. SGD rather performs parameter up-
date for every epoch, given some training example, z* and label
y®. Mathematically, this is expressed in Equation 4 as [23];

0=0-nVeJ(0;2"y") )
This kind of parameter update is faster, resulting in faster conver-
gence. Nonetheless, the main idea behind the different gradient de-
scent algorithm remains the same. We first evaluate parameters in
an iterative manner, compute the loss, and then take a small step in
the direction of minimal loss. The learning rate controls the size of
the step, making it a significant parameter during the optimization
process. Small step size results in the network learning virtually
nothing. Large step size may render the network overshooting ar-
eas of lower loss, which even lead to overfitting.



3.2.2 Adagrad. Adagrad is an adaptive learning rate algorithm
in that, it adapts the learning rate to the network parameters [22]).
It performs smaller updates on parameters that change frequently,
while larger updates are performed on parameters that have infre-
quent features. This implies that for every parameter 6; at every
time 7 uses a different learning rate. Denoting the gradient at time
step ¢ as g, the objective function is defined in Equation 5 as [20]

gt,i = VQJ(et,i) 5)

The learning rate is modified for every parameter 07 at time step
t based on gradients already computed for 6;. The update rule is
given in Equation 6.

9t+1,1 = 9t,1 - \/ﬁ»gt,i

R, € R% is a diagonal matrix, and € is a smoothing term. Us-
ing Adagrad eradicates the need for manually updating the learning
rate. However, the squared gradients in the denominator in Equa-
tion 6 keep accumulating. This causes the learning to shrink, and
with time, the learning rate becomes too small for the network to
learn anything.

3.2.3 Adaptive Moment Estimation (Adam). The Adaptive Mo-
ment Estimation (Adam) algorithm also computes adaptive learn-
ing rates for each parameter [23]. It stores an exponentially decay-
ing average of past squared gradients (just as RMSprop [24]) as
well as an exponentially decaying average of previous gradients.
These two averages are expressed in Equations 7 and 8, respec-
tively.

(6)

ng = Gime + (1 —F1)ge @)

Uy = Botig—1 + (1 — B2)gs (8)

where n; and u,; are the mean (first momentum) and the variance
(second momentum), respectively. g, is the gradient at time step 7.
The update step is expressed in Equation 9.

n .
Oi41=0— ——.10 9
1 Jit e (C)]
where u} and n; are the estimates of the first and second moments,
depicted in Equations 10 and 11, respectively.
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3.2.4  Rectified Adam (RAdam). Introduced by Liu et al. [25], the
Rectified Adam (or RAdam), as a variant of the Adam optimizer
that seeks to resolve the issue of large variance in the early stage of
training which results in poor generalization when implementing
adaptive learning rates. The authors attribute the large variance to
the lack of training samples during the early stage. They introduce a
learning rate warm-up heuristic, as a variance reduction technique,
that helps stabilize training and improve generalization. The au-
thors argue that, rather than setting the learning rate as a constant
or decreasing it over time, the learning rate warm sets the learning
rate as some small value in the first few steps. They introduced a
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Fig. 2. Sample images from benign and malignant classes

rectification term and applied it to the Adam optimizer, yielding the
RAdam optimizer. The rectification term is expressed in Equation

12.
_ (s =4 (ot — 4)poo
T“‘¢@m—®@m—mm 2

where p is the degree of freedom. The authors realized that, for an
approximated simple moving average (SMA), when its length is
less than or equal to four, the variance of the adaptive learning rate
is intractable, and the learning rate is inactivated [24]).

3.3 Materials

The breast cancer histopathology image dataset was developed
by [26\[27] for classifying Invasive Ductal Carcinoma (IDC). IDC
is the most prevalent sub type of all breast cancers. The original
dataset consists of 162 whole mount slide images of breast cancer
specimens scanned at 40x. The spatial dimensions of slide images
mean these images are naturally huge. Therefore, in making the
dataset somehow less cumbersome to work with, a total of 277,524
patches, each 50x50 pixels were extracted. Out of this, 198,738
are negative samples (samples without breast cancer), and 78,786
are positive samples (samples with breast cancer). This class distri-
bution clearly indicates a huge class imbalance. Coupled with the
high resolution characteristics of histopathological images, the task
of accurately classifying histopathological images becomes chal-
lenging. Every image in the dataset has a specific file format. For
instance, an image 10253-idx5-x1351-y1101-classO.png can be in-
terpreted as follows ? 10253-idx5 is the patient ID, x1351 is the
x-coordinate of the crop, y/101 is the y-coordinate of the crop and
class0 is the class label (0 means benign, 1 means malignant). Fig-
ure 2 shows sample benign and malignant images from the dataset.

4. METHODOLOGY
4.1 CNN Architecture

Convolutional neural networks are feed-forward neural networks.
However, unlike traditional neural networks, where each neuron in
the input layer is connected to all output neurons in the subsequent
layer, in CNNs, neurons in the next layer are connected to only a
small region of the preceding layer. This concept is known as local
connectivity, and it drastically reduces the number of parameters in
anetwork. The basic layers of a CNN are; convolutional layer, acti-
vation layer, pooling layer, dropout layer, and fully connected layer.
Each layer applies different sets of learnable filters, and by stack-
ing these layers together, a CNN model can learn filters capable of
detecting different features useful for a specific task.



The CNN architecture proposed in this work consists of six convo-
lutional layers, detailed as;

—First convolutional layer learns 32 filters, each of size 3 x 3
—Second convolutional layer learns 64 filters, each of size 3 x 3
—Third convolutional layer learns 64 filters, each of size 3 x 3
—Fourth convolutional layer learns 128 filters, each of size 3 x 3
—Fifth convolutional layer learns 128 filters, each of size 3 x 3
—Sixth convolutional layer learns 128 filters, each of size 3 x 3

The proposed network is detailed in Figure 1. RELU activation
is applied to every convolutional and fully connected layer. The
RELU layer enhances faster convergence and also ensures that all
negative activations are converted to zero. A batch normalization
layer is then applied [28]] after each RELU activation layer. Batch
normalization layers help normalize the activations of an input vol-
ume before passing activations to the next layer. Batch normal-
ization layers are effective in reducing the number of epochs re-
quired to train a network, stabilizing the network, and also allow
for a number of learning rate and regularization strengths. A pool-
ing layer is applied after the batch normalization layer for the first,
third and sixth convolutional layers. Pooling layers reduce the spa-
tial size of the input volume, allowing for a reduction in the num-
ber of parameters. In the proposed architecture, max-pooling layers
have a size of 2 x 2. Dropout with keep probability of 0.25 is ap-
plied after the third and sixth convolutional layers. A flatten layer,
two fully connected layers and a dropout layer with a probability
of 0.5 are added after the second fully connected layer.

The network’s weight are initialized using Gaussian distribution.
For each optimizer used, experiments are performed with two
learning rate values, 0.01 and 0.001, respectively with a polyno-
mial decay scheduling, expressed in Equation 13. The polynomial
learning rate scheduling allows the learning rate to decay over a
fixed number of epochs. The two learning rate values are a popular
choice in many works. Input image patches to the CNN model are
resized to 48 x 48.

epoch

o = initLR % (1 — )P (13)

epochs
initLR is the base learning rate, T.pochs is the total number of
epochs, p is the exponential power, which is set to 1. For the SGD
optimizer, the momentum is set to 0.9. The momentum factor aids
the loss function in arriving at a global minimum. For the Adam
optimizer, 5 value is set to 0.9 and (s is set to 0.99. The model is
trained with a batch size of 64, for a total of 40 epochs. All exper-
iments are carried out using Keras (version 2.2.4) [29|] with Ten-
sorflow backend (version 1.12) [30] and CUDA 9.0. The hardware
platform is an RTX 2080 graphic card with 8GB memory and a
32GB RAM. 80% of the dataset is used as training data and 20% as
testing data. 10% of the training data is reserved as validation data.

In a bid to increase the ability of the proposed model to general-
ize well on training data and minimize overfitting, data augmenta-
tion techniques are implemented. Data augmentation involves tech-
niques aimed at purposely perturbing data before feeding them into
a network for training. As a result, the network sees new data that
are slightly modified versions of the input data, allowing the net-
work to learn robust features. Table [I]shows the data augmentation
techniques employed in this work. To account for the skew in data,
the class weight for the training data are also computed. Comput-
ing the class weight tells the model to pay attention to the class with
lesser data samples.
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Table 1. Data
augmentation techniques

and values
Parameter Value
Rescale 1/255
Rotation range 0.2
Zoom range 0.05
Shear range 0.05

Width shift range 0.1
Height shift range 0.1
Horizontal flip True
Vertical flip True
4.2 Performance Metrics

The model’s performance is accessed in terms of accuracy, sensitiv-
ity, specificity, precision, recall, and F1-score. These parameters are
related to the true positive (TP), true negative (TN), false positive
(FP), and false false-negative (FN) rates, respectively. True positive
measures how correctly a classifier predicts the positive class.

True negative measures how correctly a classifier predicts the nega-
tive class. False positive measures how, incorrectly, a classifier pre-
dicts the positive class. False negative measures how, incorrectly,
a classifier predicts the negative class. These metrics are expressed
mathematically in Equations 14 to 19.

Accuracy = TP+ TN (14)
TP+FP+ FN+TN

Sensitivity = 7TP7;—PFN (15)

Specificity = % (16)

Precision = TPT+7PFP (17)

Recall = TP;A:—iPFN (18)

F1— score = 2( precision x recall ) (19)

precision + recall

5. RESULTS

This section presents experimental outcomes. Table [2]and Table [3]
show accuracy, sensitivity, specificity and AUC values for the four
optimizers with learning rates le-3 and andle-2. In terms of accu-
racy, the RAdam optimizer records the best value of 89.92%, with
a learning rate of le-3. RAdam also yields the best sensitivity value
94.02% with the same learning rate. In terms of individual optimiz-
ers, the highest accuracy obtained by the SGD optimizer is 88.94%,
with a learning rate of le-3; Adagrad yields its highest accuracy of
87.15% with a learning rate of 1e-2, with Adam optimizer yielding
its highest accuracy of 89.71% with a learning rate of le-3 .

With the exception of the Adagrad optimizer, the remaining opti-
mizers show an accuracy edge when the learning is set to 1e-3 com-
pared to le-2. Accuracy and loss plots are shown in Figure 3 and



International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.37, February 2020

Table 2. Accuracy, Sensitivity, Specificity and AUC values outcomes
when learning rate = 1e-3. Best results are indicated in bold

Optimizer  Accuracy (%) Sensitivity (%) Specificity (%) AUC
SGD 88.94 91.97 81.21 0.859
Adagrad 85.53 88.62 77.64 0.831
Adam 89.80 93.34 80.76 0.878
RAdam 89.92 94.02 79.47 0.853

Table 3. Accuracy, Sensitivity, Specificity and AUC values outcomes
when learning rate = 1e-2. Best results are indicated in bold

Optimizer  Accuracy (%) Sensitivity (%) Specificity (%) AUC
SGD 88.35 89.11 86.42 0.865
Adagrad 87.15 92.09 74.54 0.860
Adam 89.71 91.44 85.27 0.884
RAdam 88.84 91.13 83.00 0.871
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Fig.3. Accuracy and loss plots for Adagrad and SGD optimizers. A1 is
accuracy plot for Adagrad optimizer, and A2 is its corresponding loss
plot. B1 is an accuracy plot for SGD and B2 is its corresponding loss
plot. The respective plots indicate that overfitting is effectively mini-
mized.

Figure 4, respectively. A similar pattern is observed with the sen-
sitivity values, with SGD, Adam, and RAdam, all yielding higher
sensitivity values with a learning rate of le-3 compared to le-2.
Adagrad still throws an exception, with higher accuracy and sensi-
tivity values obtained when the learning is set to 1e-2. This outcome
conforms with the assertion in [20] that, for the Adagrad optimizer,
a good rule of thumb is to set the learning rate to le-2, as this is
mostly used in many applications. However, for specificity values,
areverse trend is observed.

SGD yields the best value of 86.42% when the learning rate is set to
le-2. Adam and RAdam also demonstrate a competitive edge w.r.¢
sensitivity when the learning rate is set to le-2 compared to le-
3. For Adagrad, however, setting the learning rate to le-3 yields
77.64% specificity compared to 74.54% with a learning rate of
le-2. This work adopts a polynomial learning rate decay schedul-
ing, rather than a fixed learning rate decay. Hence, for purposes
of comparative analysis, the performance of the proposed model is
accessed in terms of accuracy when a fixed learning rate is used.
For a learning of le-3, SGD records 85.54%, Adagrad records
86.39%, Adam records 87.77%, and RAdam records 85.99%, re-
spectively. For a learning rate of le-2, SGD records 88.59%, Ada-
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Fig. 4. Accuracy and loss plots for Adam and RAdam optimizers. C1
is the accuracy plot for Adam optimizer, and C2 is its corresponding
loss plot. D1 is the accuracy plot for RAdam and D2 is its correspond-
ing loss plot. The respective plots indicate that overfitting is effectively
minimized

grad records 86.94%, Adam records 87.55%, and RAdam records
87.43%. Higher accuracies are obtained when the polynomial de-
cay is used compared to those obtained when a fixed learning rate
is used for both learning rate values.

For a binary classification, the Area Under The Curve (AUC) Re-
ceiving Operating Characteristic curve (ROC curve) shows the ca-
pability of a model in distinguishing between classes by provid-
ing a summary of the trade-off between the true positive rate and
the false-positive rate for a predictive model. AUC ROC curves are
shown in Figure 5. For the AUC values, Adam records the best
AUC value of 0.884 with a learning rate of 1e-2. It is observed that
individual optimizers record higher AUC values when the learning
rate is set to le-2 compared to when the learning rate is 1e-3.

However, for a dataset that exhibits such a huge class imbalance,
the AUC ROC does not always give an accurate measure of the
performance of model in distinguishing classes. The precision and
recall values give a better indication of a model?s performance. A
summary of precision, recall and F1-score values for the individual
classes is provided in Table []and Table [5]respectively. The numer-
ical advantage of the benign class (class 0) in terms of the number
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Table 4. Precision, Recall and F1-score values when learning rate =
1e-3. The per-class values obtained by the benign class outweigh
that of the malignant class because the benign class has more data

samples
Optimizer IDC Class Precision (%) Recall (%) F1-Score (%)

SGD benign 93 92 92
malignant 80 81 81

Adagrad benign 93 84 88
malignant 68 83 75

Adam benign 93 92 93
malignant 81 84 82

RAdam benign 93 92 93
malignant 80 82 81

Table 5. Precision, Recall and F1-score values when learning rate =
le-2. The per-class values obtained by the benign class outweigh
that of the malignant class because the benign class has more data
samples

Optimizer IDC Class

Precision (%)

Recall (%) F1-Score (%)

SGD benign
malignant
benign
malignant
benign
malignant
benign
malignant

Adagrad
Adam

RAdam

94
76
90
79
94
80
93
84

89 92
86 81
92 91
75 71
91 93
85 82
91 93
83 82
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Fig. 5. AUC ROC curves for all four optimizers. A is SGD, B ? Ada-
grad, C ? Adam, D - RAdam. The best AUC value (0.884) is recorded
with the Adam optimizer when the learning rate is set to le-2

of images is evident in the precision, recall and F1-score values.
The highest precision value for benign class is 94%, compared to
84% for the malignant class. Recall values show the highest value
of 92% for benign and 85% for malignant, with the highest F1-
score values of 93% for benign class and 82% for malignant class.
Nonetheless, the precision, recall and Fl-score values indicate a
good performance by the model.

6. DISCUSSION

In this work, a CNN model is trained from scratch, for discrimi-
nating breast cancer histopathological images as either benign or
malignant. The proposed model consists of six convolutional lay-
ers, with an RELU layer and a batch normalization layer, after each
convolutional layer. A filter size of 3 x 3 is used in order to capture
relevant features in the images. The images in the dataset used in
this work were scanned at 40x magnification factor, at a size of 50
x 50 pixels. The dataset exhibits a huge class variation with images
belonging to the benign class being almost twice the number of im-
ages belonging to the malignant class. Of particular concern when
training CNN models from scratch is the issue of overfitting, since
the weights of the model are initialized randomly. The accuracy
plots in Figure 3 and Figure 4 indicate that overfitting is effectively
checked. This is attributed to the addition of batch normalization
layers in the model’s architecture as well as implementing data aug-
mentation.

For training the model, four CNN optimization algorithms are ex-
plored with a polynomial learning rate decay scheduling, rather
than a fixed learning rate, to evaluate the impact of such schedul-
ing on the overall performance of our model. Overall best results
obtained are: an accuracy of 8§9.92%, sensitivity of 94.02%, speci-
ficity of 86.42% and AUC value of 0.884.

This work also explored four deep learning optimizers with two
learning rate values. Results indicate that, training the model with
a learning of rate of 1e-3 yielded better results compared to training
with a value of le-2, except for the Adagrad optimizer. A learning
rate value of le-2 is a little high for training the model, especially
when the model’s weight are randomly initialized and it ultimately
impacts the final accuracy of the model. Training with a slightly
lower value of le-3 allows the network to learn useful patterns rel-
evant to the overall classification task. The exception with the Ada-
grad optimizer is in line with the fact that, for most applications,



Table 6. Accuracy
performance with other works
using the same IDC dataset.
Best results are indicated in

bold
Work Accuracy (%)
26] 84.23
127] 84.68
This work 89.92

the Adagrad optimizer performs well when the learning rate is set
to le-2. Again, it is observed that, for both learning rate values,
training with a fixed learning rate led to accuracy reduction for all
optimizers, and this validates the choice of the adopted polynomial
decay scheduling over a fixed decay scheduling.

That said, the inter-class precision, recall and F1-score values indi-
cate that, results are heavily weighted by the benign class, even af-
ter applying data augmentation and computing class weights. The
reason for this could be that, the augmented data still had a con-
siderable number of samples for the benign class, hence affecting
the overall output performance. That notwithstanding, the overall
accuracy, sensitivity, specificity and AUC values obtained by the
proposed model are impressive for a such dataset with a huge class
imbalance.

6.1 Performance Comparison With Related Works

This work focuses on discriminating breast cancer histopathologi-
cal images in to benign and malignant classes. As mentioned, im-
ages in the dataset used in this work were scanned at a magnifi-
cation factor of 40X. For this reason, the comparison is based on
works that used the same IDC dataset used in our work, as shown
in Table @ In [26]], the authors used a 3 layer CNN architecture,
consisting of two convolutional and pooling layers, and one fully
connected layer. The convolutional layers learn 16 and 32 filters,
each of size 8 x 8, and the fully connected layer learns 128 filters,
of size, 8 x 8. The network accepts input patches of size 50 x 50.
An accuracy of 84.23% was reported. In [27]], authors adopt the
AlexNet model for classifying benign and malignant classes. They
adopt three patch selection techniques. First, they first resize 50 x
50 patches to 32 x 32, then cropped each 50 x 50 image to 32 x 32
and finally applied cropping and additional rotations, achieving an
accuracy of 84.68%.

7. CONCLUSION

The focus of this work is to classify breast cancer images into be-
nign and malignant by training a CNN model from scratch, rather
than relying on transfer learning. A polynomial learning rate decay
scheduling was adopted, that allows the learning rate to decay over
a fixed number of epochs, and four deep learning optimization al-
gorithms were explored. By applying data augmentation techniques
on the highly unbalanced and complex dataset of histopathologi-
cal images, the proposed CNN model achieves an overall accuracy
of 89.92% and effectively minimizes overfitting. This outcome is
an indication that, convolutional neural networks have a tremen-
dous capability of solving tasks, even when models are trained from
scratch. Future work will aim at discriminating multiple breast can-
cer classes.
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