International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

KanOCR: Conversion of Printed Kannada Document to
Editable form using Convolutional Neural Networks

Pradyumna Mukunda
PESIT, Bangalore

ABSTRACT

Optical Character Recognition (OCR) technology in
converting an image containing text to an editable text format
is of high sense in document image processing. Input to OCR
could be a scanned document, or a simple newspaper cut-out.
Supervised Learning using Neural Networks yield the output
with greater accuracy. Unlike English, Kannada Language has
a huge set of characters as it includes kaagunithas,
vattaksharas, etc. This makes recognition of the characters
much more complex. The paper mainly concentrates on OCR
for the Kannada Text which goes through a threshold as a first
step converting input image into binary image, making
segmentation easier. Characters can be extracted from the
documents using various Segmentation methods. The
vattaksharas are extracted/differentiated from the words by
using base-line technique. When the characters are
recognized, they are compared with Unicodes available on the
system and then printed. In the above method, CNN plays a
pivotal role in reading the character and comparing it with the
Unicode look up table values to print the output.

This system has been tested with varying fonts. A total
number of 37 sample documents are used for experimentation.
The system has been developed for only printed Kannada
Text.

General Terms
Optical Character Recognition, CNN.

Keywords
Base-line Identification, CNN, Kannada, Neural Network,
Optical Character Recognition, Pre-processing, Python,
Segmentation.

1. INTRODUCTION

Optical Character Recognition is basically an electronic or
mechanical conversion of image text into editable text format.
The image could be hand-written, a scanned document, a
photograph with some content, or any printed text. Digitizing
printed text is essential in editing and storing valuable
information on a software platform.

Demand for a stable regional language OCR system has
grown over the past few years. With the advance in
technology, a smartphone can now read any text on an image
captured.

Using OCR systems, end users now edit documents more
efficiently. Digital text data can be stored and saved without
much risk of loss, unlike a physical document. Applications
of OCR has a wide range one among is Digi-locker. In case of
a change in information, scanning and editing a document is
currently practiced in a lot of places. Scanning and editing a
file is another application.

Digitization and retaining information of the printed or
handwritten documents for the future usage on the storage

Niraj S. Prasad
PESIT, Bangalore

Mamatha H. R.
Professor, CS Dept, PESIT

device is of high demand, as the data could be used for further
processing. Usual method of storage is just to scan and store,
but cannot be reutilized for correction and processing and also
challenging to read or modify text or other information from
these image files. Therefore, a method to automatically
retrieve and store information, in the form of text, from image
files is needed. This is where Optical Character Recognition
comes into play.

The paper is organized as follows. Section Il is a background
study on OCR systems. Section 111 describes the methodology
and implementation of the project. Section IV shows the
results and analysis. Finally Section V is the conclusion and
references

2. BACKGROUND STUDY
Types of OCR Systems:

There are different types of OCR systems, such as:

- OCR which targets typed text one character at a
time.

- Optical Word Recognition (OWR) which focuses on
typed text one word at a time. This is possible only
for languages that use a word-divider or a space.

- Intelligent Character Recognition (ICR) that
involves Machine Learning, ICR targets one
sentence at a time.

- Intelligent Word Recognition (IWR) that involves
Machine Learning. IWR works for handwritten
print scripts really well. Cursive text and those
glyphs that are not separated in cursive works really
well with IWR.

Offline OCR analyses a static document where online
handwriting analysis can be used for hand-written text to
generate the output in real-time. This process is called
‘Dynamic Character Recognition’ or ‘ICR’, or ‘Real-time
character Recognition.’

Techniques used in OCR:
Pre-processing:

OCR implements preprocessing techniques on input image to
achieve accuracy in end system. To get a successful output,
the following techniques are considered —

1. De-Skew: The image might be tilted, or the text
image might not be aligned perfectly, some de-
skewing methods are applied before OCR

2. De-speckle: The system smoothens the image and
removes the negative and positive spots of the
picture. This ensures greater accuracy.

3. Binarization: In case the input is a color image,
binarization to convert the image to binary image

51

and then performs OCR.

4. Line and Word Detection: Separating line and word
helps in easy segmentation. As a preliminary step
identifying the baseline of words helps in line
segmentation.

5. Script Recognition: Document might have different
scripts. The system must be able to realize script in
document.

6. Normalizing the scale and the aspect-ratio.

7. Character isolation and segmentation: this is useful
in Character OCR. Words are broken down into
many characters, hence making reading smooth and
accurate.

Character Recognition:

There are currently two types of the core OCR algorithm.
Matrix Matching is a technique wherein a stored glyph is
compared with the image. It is also called pattern recognition
and image correlation. This technique works best with
typewritten text. It does not work well when a different font is
encountered.

Feature Matching breaks down the glyphs into lines, lops,
line-intersections, and line directions. These features are
compared with the abstract vector-like representation of the
character. Feature detection in Computer Vision is applicable
to this type of OCR System. This method uses Machine
Learning and is the most modern OCR Software. In this
paper, an entirely different technique in the form of CNN has
been used.

Specific software such as Tesseract and Coneiform uses a two
pass approach to character recognition. This is useful when
the font is distorted, blurred, or faded.

Post Processing:

A dictionary can be added to check the accuracy of the word,
and it can be processed with maximum efficiency possible.
The output stream can be a plain text file of characters.
Sophisticated OCR systems also preserve the layout and font
perfectly. In order to further optimize results from an OCR
API in post-processing, the Levenshtein Distance algorithm
can be used.

Convolutional Neural Networks:

In a fully connected neural network, every neuron takes inputs
from each and every neuron in the previous layer and feeds
output to each and every neuron in the next layer. In other
words, every possible connection between two neurons in two
different layers is made. This architecture of neural network
does not scale well for images. Firstly, the images would
require a lot of manually engineered pre-processing to obtain
an accurate result. Secondly, the size of the input is very large.
The use of Convolutional Neural Networks for images
reduces the complexity of the problem because they are
constructed such that each neuron processes data from only a
restricted area of the image known as the neuron’s receptive
field, and not the entire image. Using CNNs also greatly
reduces the amount of manual pre-processing needed for the
image. CNNs are classified as deep learning networks having
number of hidden layers.

Unicode:

Unicode is defined by Wikipedia as “a computing industry
standard for the consistent encoding, representation, and

International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

handling of text expressed in most of the world's writing
systems.” Unicode was developed when 8-bit encoding
systems such as ASCII were still popular. Since ASCII can
hold only 256 characters, only Roman characters are
represented.

Unicode uses 16 bits (specifically UTF-16 uses 16 bits), and
can hold 65,536 characters, which is way more than enough to
represent characters in all of the world’s living languages, as
well as historic scripts such as Brahmi.

UTF-16 assigns each of its characters with a unique 16-bit
identification number known as a code point, and leaves the
rendering of the character to the software. The code points for
Kannada characters are in the range of 0x0C82 to 0xOCF2.
This range of code points is reserved exclusively for Kannada
characters.

Kannadal 2!
Official Unicode Consortium code chart | (PDF)

o [1] 2]3]4]s|6|7][8]a]a] B [c|[D]E
wcex | O | & | 00 I s g ey el in)
U+0C9 | 80 Wt B TN H |G F| g w | Ty
vck | 3 | B B |0 3 3|8 5 3 BB WP D
u#icex . T | e | © | ¢ B BB A D o S | o
u0cex | &€ | o) (el | oy | o 2183 @ | det o] A

U+0CDx :€ '8 W]
U+0CEx | 2 ' o 0|9 a|® # & []

U+0CFx

Figure 1: Unicode for Kannada characters (Source:
Wikipedia)

Applications of OCR:

- Data Entry for passports, invoices and other
business documents.

- Automatic Number Plate Recognition.

- Key information extraction from insurance

documents.

- Making electronic images of printed documents
searchable.

- Giving instructions to computers by writing.

- Assistive technology for the blind and visually
impaired users.

- Convert printed text-books into editable e-Books
easily.

2.1 LITERATURE SURVEY

A significant amount of research has been done on Kannada
Character Recognition:

A method of identifying Kannada characters by feature
extraction using Curvelet transform and standard deviation
followed by a KNN classifier is described in [1]. The system
works on offline handwritten Kannada character recognition.
Different methods of segmenting lines in a paragraph of
Kannada text, such as HPP based segmentation, Morphology
based segmentation and Bounding Box based segmentation,
are discussed in [2].

Segmentation of overlapping text lines in Indian printed
scripts are discussed in [3]. The overlapping of lines of text
causes a lot of difficulty in implementing OCR. A method of
identifying characters by zoning, followed by feature

52

el g |

e g

extraction by dividing segments into tracks and sectors (like
in a compact disc), then an SVM classifier, is described in [4].
A number of methods for feature extraction for the purpose of
character recognition are discussed in [5].

The paper [6] discusses and compares different methods of
segmentation, feature extraction and classification with
respect to the accuracy of the OCR obtained. A method of
identifying Kannada characters by zoning, feature extraction
using Hu’s moments, HPP and VPP, followed by a PNN
classifier is described in [7].

Handwriting recognition system for the Kannada character by
extracting various features, namely-Hu's Invariant moments,
Zernike moments, Zonal features, Fourier-Wavelet
coefficients and the recognition process is carried out using
Back Propagation Neural Network in [8].

The two fold cross validation SVM classifier is applied for
classification of handwritten Kannada characters. These
features are served to SVM classifier for classification of
character images. The performance of the proposed algorithm
are tested with two fold cross validation. An average
recognition accuracy of 90.09% is obtained for Kannada
vowels and consonants respectively.[9]

Online Handwriting Recognition (HWR) of Kannada includes
methods like data-collection, feature-extraction normalization,
classification, training-sample creation and character
recognition. Online handwriting recognition of Kannada
characters by combining Direction based Stroke Density
principle (DSD) with K Neural Network (KNN). Kannada
Language with a sample of 20 different handwritings results
in an accuracy of 94.4%. [10]

In this paper, Kannada online handwritten character
recognizer which is viable for real time applications is
implemented. Proposed system is implemented on mobile
device using two different approaches namely Principal
Component Analysis (PCA) and Dynamic Time Wrapping
(DTW). Results of PCA approach is quite capable than DTW.
On an average, recognition accuracy up to 88% is achieved
for the PCA approach and up to 64% is achieved for DTW
approach. [11]

Based on the zonal features, recognition system for
handwritten and printed Kannada numerals and vowels are
proposed. The Kannada numerals and vowels are circular in
nature. Pixel density feature is potential features for
handwritten and printed Kannada numerals and vowels. SVM
classifier with fivefold cross validation test is applied on a
mixture of handwritten and printed Kannada numerals and
vowels respectively and an average percentage of recognition
accuracy of 97.40% and 95.90% is obtained. [12]

2.2 Existing OCR Systems for Kannada
Language:

There are only a few notable OCR systems for the Kannada
Language. KanScan is an app that converts a Kannada text
image into editable text format. It contains a lot of flaws and
gives a lot of errors when it runs. Another system is the
i20CR that offers an accuracy of around 60% with a run-time
of almost 1 whole minute for a 200-word article. The links for
the same are given below.

KanScan google play store link;

https://play.google.com/store/apps/details?id=com.kaleidosoft
ware.kanscan.free

International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

i20CR download link;
www.i2ocr.com/free-online-kannada-ocr

Hence, it can be seen that the need for a top-notch Kannada
OCR system is essential for the masses. Use of CNN gets us
the highest possible accuracy in this system.

3. METHODOLOGY AND

IMPLEMENTATION

A. System Architecture:

The sample image is the printed Kannada text given as the
input to the system. The Pre-Processing block helps with the
segmentation of words and characters. Size-based
classification too occurs. 4 CNN’s are trained with varied
input sizes of the image. The dataset consists of twenty fonts
overall. A UID table is then constructed to ensure the Unicode
is matched. The output is then compared by the system with
the UID table to get the editable text file.

B. Pre Processing
The pre-processing block consists of segmentation of
characters. The algorithm goes as follows:

1. First trim out the extra image pixels around the
word.

2. Next identify the position of the base line, which
will be used later on in the process.

3. Then perform thresholding to differentiate
foreground pixels and background pixels.

4. Next dilate the image just enough so that every
character becomes a single connected component

5. Then label each of the connected components from
left to right.

6. Using the labels as reference, crop out each
character individually.

7. ldentify each character as a regular character or
vattakshara character using the position of the base
line.

8. Finally feed the character to the appropriate set of
CNNs for identification.

A demonstration of the segmentation is shown below:

D [—
BEOUG

Figure 2. Sample of Segmentation

C. Baseline Identification

Baseline is the imaginary horizontal line on which the non-
subscript text “rests” upon. To find the position of this line,
the following method is used:

53

1. First apply thresholding to the input image of the
word

2. This is followed by Sobel edge detection to get all
the lower edges in the image.

3. Then take the HPP (Horizontal Point Projection) of
the edge detection result.

4. When the HPP is plotted on a graph two maxima,
upper and lower, are obtained. The position of the
lower maxima is taken as the position of the base
line.

This method is demonstrated for the image below. The base
line has been identified to be at position 29 on the H (height)

=2

[20 40 60

60

Figure 3. Base-line detection

This line is used to differentiate between regular characters
and subscript characters.

D. Dataset
To create the dataset the first step is to list out all possible
Kannada glyphs in a Microsoft Word document.

International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

This is done for 10 Kannada fonts, in normal text and in bold
text for each font. The fonts used are given below:

Arial Unicode MS LohitKannada NudiUnicode 01

57, e oA
TN, B
', 3% 33,3
sa w Nirmala Ul NudiUnicode 05
e T3 Y
5,0 TS0 3ng
T E
scq\éid Noto Serif Kannada 53‘1:3
333
33

Figure 5. Kannada Characters depicting different fonts

A CNN takes a constant input size, however the sizes and
aspect ratios of the characters are variable. All characters must
be resized to the constant input size before being input to the
CNN. But using a single CNN for all the characters ignoring
the difference in aspect ratios would give very inaccurate
results. The solution is to divide the dataset into 4 classes
based on the aspect ratios, then use these datasets to train 4
CNNs of different input sizes. The sizes used are 15x20,
25x20, 30x20 and 40x20. In this way the original aspect ratio
of the characters is roughly preserved so they can be identified

properly.

Figure 4. List of Kannada glyphs

Figure 6. Characters with varying aspect ratios

E. Design and training of CNNs

Keras and TensorFlow were used for implementing the
CNNs, and OpenCV was used for all image processing
operations. The project was implemented in Python.

The CNN implemented is a Keras Sequential model beginning
with one convolutional layer of kernel size 5x5 with 64
channels, followed by a ReLU activation function layer,
followed by a 2x2 max-pooling layer. Next all values are
flattened into a single dimension. This becomes an input for a
fully connected layer of 1000 hidden neurons with ReLU

54

activation function and finally a fully connected output layer
of 340 neurons with softmax activation function.

Using TensorFlow backend.
x_train shape: (2188, 15, 28, 1)
2188 train samples

2188 test samples

Epoch 1/15

2018-04-27 16:15:36.723768: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_fez
2188/2188 [1 - 6s 3ms/step - loss: 4.6342 - acc: ©.1120
Epoch 2/15

2188/2188 [1 - 65 3ms/step - loss: 2.0110 - acc: 0.5603
Epoch 3/15

2188/2188 [] - 65 3ms/step - loss: 0.8301 - acc: 0.7797
Epoch 4/15

2188/2188 [] - 65 3ms/step - loss: 0.4604 - acc: ©.8853
Epoch 5/15

2188/2188 [] - 65 3ms/step - loss: ©.2770 - acc: 0.9250
Epoch 6/15

2188/2188 [1 - 65 3ms/step - loss: 0.1610 - acc: 0.9575
Epoch 7/15

2188/2188 [] - 65 3ms/step - loss: 0.1043 - acc: 0.9712
Epoch 8/15

2188/2188 [1 - 65 3ms/step - loss: ©.8722 - acc: ©.9799
Epoch 9/15

2188/2188 [] - 65 3ms/step - loss: 0.8698 - acc: 0.9803
Epoch 18/15

2188/2188 [] - 65 3ms/step - loss: 0.6586 - acc: ©.9858
Epoch 11/15

2188/2188 [] - 65 3ms/step - loss: 0.8769 - acc: ©.9831
Epoch 12/15

2188/2188 [] - 65 3ms/step - loss: ©.8480 - acc: ©.9909
Epoch 13/15

2188/2188 [] - 65 3ms/step - loss: 0.8300 - acc: ©.9936
Epoch 14/15

2188/2188 [] - 65 3ms/step - loss: 0.0256 - acc: ©.9922
Epoch 15/15

2188/2188 [] - 65 3ms/step - loss: ©.8432 - acc: 0.9913

Test loss: ©.01144877842569888
Test accuracy: ©.9990859232175503
33>

Figure 7. Demonstration of CNN training

The loss function used for training is categorical cross-entropy
and the optimization algorithm used is the Adam optimizer,
explained in detail in the paper Adam: A Method for
Stochastic Optimization. [12][13]

Table 1. Lookup Table

Kannada UID Hex0 Hex1 Char0 Charl
co 0 C82 0 3202 0
oe 1CD5 0 3285 0
s 2 CBO cco 3248 3277
9 3 C85 0 3205 0
& 4 C86 0 3206 0
a 5 C87 0 3207 0
= 6 C88 0 3208 0
& 7 C89 0 3209 0
S 8 CBA 0 3210 0
o 9 C8B 0 3211 0
& 10 C8E 0 3214 0
& 11 C8F 0 3215 0
12 C90 0 3216 0
% 13 €92 0 3218 0
% 14 C93 0 3219 0
& 15 C94 0 3220 0
g 16 €95 0 3221 0
» 17 €95 CBE 3221 3262
2 18 C95 CBF 3221 3263
£ 19 €95 cc1 3221 3265
e 20 C95 ccz 3221 3266
2 21 €95 CC6 3221 3270
e 22 C95 CCA 3221 3274
2 23 C95 ccc 3221 3276
= 24 C95 ccD 3221 3277
- 25 C96 0 3222 0
= 26 C96 CBE 3222 3262
2 27 C96 CBF 3222 3263

International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

After using the CNN to identify the character and obtaining its
UID the UID is queried into a Lookup Table as above to
obtain the Unicode encoding of the respective character for
printing.

F. Vattakshara characters

The vattakshara i.e. subscript characters are excluded from the
main dataset, because most of them look very similar to their
regular character counterparts and therefore did not want to
confuse the CNNs and hence reduce the accuracy of the
system

(@

C
o
3

Ll

Figure 8. Vattakshara characters in Kannada

Instead a separate set of CNNs and a separate Unicode lookup
table is used just for the identification of vattakshara
characters. The entire process of creating the dataset, training
the CNNs and constructing the lookup table is repeated. In
this case, only 3 CNNs is used, with input sizes 15x15, 20x15
and 30x15. A character is identified as a regular character or
vattakshara character based on the position of the character
with respect to the base line.

4. RESULTS AND ANALYSIS

A sample image containing Kannada text was taken from an
e-paper for checking the accuracy of the system.

YRTEE $Z08 KOWT I, FIELBE TIWR, YWIRINE
3T, DTEST DTSR, LRTIT ‘205" IS, TToUT
TB0D [NoNYY. 2.0...

-Wori€ath MTIIRTNRTOR 803 WILD &0, et
oTTPE MWAAT YW WERY BMNT, TPTO YWOINT Lot
DHRORINCE 0D Banemende s hed [’ AR,
50PN ATDI TORTONB). TBRL, 0RATHTL, SRR
LA, WAL WoNHeOs e Beay FITD. LW DY
ERENETT, DY, FETHIT, DY RANS JTTN BRCoW.
SRR JFENIR ol BBO0D WeETm Boondews 5&%
Wonsteds =oedd mcga’nee}oa'a PRTIS ey Bonseds Hhed
.Dw:c@:ma e e0ne SwordEing. oa%m%w oaRyse
TToD wreBerbnen Wondedd LS Torebotismends.
Ta%Be0D A, LIIND, §em 303, @c@m%@oﬁa BonxLned
Q0T AQTER, WonKeD FFOINT. EEHRE 0 WISIN,
TRT® N, TRI® -Woneeds 68 &y TOWAEI.

20908 FAIOHS Woneeth LRTSE L=, [T BrH3e,

TTOUS Q) 3087 WHSENoD Togheer TTFS Woneeds
ETHIT. TWNENIQYT, 330NV, 5SFNeT, AOFF NTRE
SO, 20F LVF0DH 0 FNS RN 0T BRSEVEND
BeYBRBNTT.

DB, Worted MTINRR0B NAD S[IENY @R0ITH
S8R ‘B torieiety’ agiodode . HONTD LoTHes
Boridath Tord W3 Ok tonsed INT TWes Weahde,

Figure 9. Sample image for test in Kannada

The sample image was tested with KanOCR. The Editable
Output Text is as shown below. The errors have been
highlighted manually.

55

ol

KanOCR Result:

239030 935038 RIOTWT INT , TR EITTI T2,
NWASNY SNT, DTYOIT ITYO IO, PBIT
PRADT, SNT, TJRBOWE Ty SNTNYES),
2,0T.

JonLedHd B 0ITINI OO 93,03
BXYOD JNT. BRTD TORKMPB ADAT RT3
WBVY Woo,NG, TeBD WTNT QOTN
QBOPINTET WTRT) BRNAPTINSE JW3 083
B, , 3oNIY,. TOIPRBIN ATDS A3,
N0ONTY, BNADT), RVyARRTY WO,
QONLRT) WonLeDI =3 BFW),, TOITIOL.
O NQ, W30NWT, OV, FNERRT, D),
20ANT Sndeen BRLANID. 20F,0
BREALTR 208 BBAOD LB BTONLLS
TR, WONERDS 3 DT eN003Re 33T
T, WONFRDS 203 2T 0TI 9T YO
VO TDR TR DT o) Tz
esThB RN YonLedd 3D
BOoned0&@WeooNE Tozdtod ReDLPSNSD, B)tcse
302308, 0ITTALOD FHoNnIPNSY 0T
RO TTR, BONFRT) A ONG STIDT F003T
BFBRN, BRCEET N5, &BysRBO® -230NLRDI
TG T3y, TIODAES

900 9008 YRIONE), WBoneed P33T
93z30D; SNT BMH3TW, VROTW D), I003T
BIDBROD IOZeer BIFS BonwedIE),
SM3W TNTRPD I, TEONLD I, ToeKke PO,
ADF NTBRLN FSNPD T, T00YT 0,30 BT,
afe) Y3 DOT BRTHBIENS)
DY 3TBNTT

B3P0, VOoNLRD) ABINWLOTB B3I,
[VRENY 9J03Tge FORTPRS VBRI
WONERB, Y3030 BB AONRD 00r3nte3
SONYPTI O WFOANIK e LBongedy SN
R3S BLohdey,

Same sample image was tested with i20CR. Result is listed
below:

i20CR Result:

90030 ©93;03 RWOWE INT, TOTH
(opYArINE NDO;RNY SN, 039,030
DTV AP, 33T "ADTD* INT, RBVOWIT
3300 INTNF). 2,0T0...

=30n¥R3 F,BIOINVOTBOR 93,03
23H,0D INT. SRT FORICMPT o, DA T
WBY Boo,NB, D ©ORTINT Q0T
LBONSNTE 9B BeNPwenedes 333 shesel
"R NI, FOIBesPRB AN ST
POAWOONB). FNTIBONT), aVRAFNT), R RTI
2.BOHT), ONLRT) VOIS Dese3 "9,
TOBTR. T AdOVIR, W30NET, Q)
FRNETRT, D), LOANT SINCeen BeEICNDI).
BNTR, B IRENPNR OB BB WBITe
BoonFews Ty, Wonehdds HDeses

International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

VB Des03e 3318 Ty, WONFIDI
SDesel VT O30 3D. 9T 90nRe
BWOIBDT. ToR,,eHET eI T,z

esthHharDorhHndn Infelat=lote) i)
CONeH 0T NG,
Doz ADDAYSNYD, Yo 3038,

903000, BOD 3,0NFPNF D DOTWI DO TR,
Bone'oddd FI0oIoNE. SIT 03T
BLBRR, BT BED, — PodRe’
=230NLRDT TT &y, BOCNA.

9090 YRDONE), "WONLRTY 2J0T3T €980
SNT SMH3W, BBDWE), Fo©3F 3F3BrioD
BOPIFIF TIrS BORFHOID, 33,
FNTNLOET, FTRONPOT, ToS¥nLOn,
ADeR, wBRIYR IINdoym, Z0037F
MNI3,80D XBNT INC YWedZB0 O
BRTTIENS)

Be3F3PTBNTT.

90333033, Bonwed) o RBIRA0B 3350,30
RN oJ0I0PZe TOIPRS "BRS
Bondesd g o030des YOI JYONRD
woRdRes3 BonKkedd OB VYOI oF:
LoneHd) INT BT B3P .

The words were classified as Easy, Medium, and Hard. Easy
words are simple words consisting of only aksharas, without
kaagunithas or vattaksharas (like SN3G). Medium words
include kaagunithas but not vattaksharas. (like To2s530).
The hard words consisted of everything - aksharas, kagunithas
and vattaksharas (like e)Z9,03%0a3)

The accuracy was then calculated for each category, and then
as a whole:

Table 2. Accuracy for each category of words

Category | No. of Words | Incorrect | Accuracy
Easy 17 1 94.11%
Medium 64 2 96.87%
Hard 44 6 86.36%
- - Overall 92.45%

The same sample was used to check the accuracy of some
existing systems. The results and comparison are as shown
below:

Table 3. Comparison of accuracy of different systems

System Accuracy

Mobile App — KanScan
Website — i20CR
KanOCR 92.45%

- no clear output -

60% approx.

Three other random samples from the internet were used to
further compare the accuracy of the system. The results are
provided below:

56

Table 4. Comparison of accuracy of different systems for
different samples

Sample No. of Words i20CR KanOCR
No. Accuracy | Accuracy
1 23 60.9% 100%
2 38 47.36% 97.36%
3 55 63.63% 96.36%
- Overall Accuracy 57.3% 97.9%

There is an increase in accuracy of around 40 percent from the
already existing popular OCR system to our Kannada OCR
System.

Accuracy for 33 other samples was carried out. The samples
were taken from the internet and they had different sizes and
fonts. The accuracy for all the samples was found out to be
82.01 percent.

Table 5: Accuracy calculation for each sample

Sample # | Word Count | Accuracy
1 14/18 77.78
2 17/19 89.47
3 18/19 94.74
4 20/22 90.91
5 17/31 54.84
6 210/250 84.00
7 257/304 84.54
8 248/296 83.78
9 274/326 84.05
10 175/236 74.15
11 78/92 84.78
12 218/236 92.37
13 288/316 91.14
14 270/312 86.54
15 30/38 78.95
16 197/248 79.44
17 226/279 81.00
18 212/251 84.46
19 267/306 87.25
20 133/173 76.88
21 214/271 78.97
22 112/144 77.78
23 198/240 82.50
24 246/270 91.11
25 177/215 82.33
26 213/266 80.08

International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

27 199/275 72.36
28 134/172 77.91
29 64/77 83.12
30 58/70 82.86
31 119/154 77.27
32 188/229 82.10
33 102/130 78.46

5. CONCLUSION AND FUTURE WORK

Using Convolutional Neural Networks in OCR systems is
found to be a very reliable method of converting an image to a
text document. OCR system for the Kannada language with an
accuracy of over 80 % has been constructed. The runtime for
an article of a minimum of 100 words was found to be less
than two seconds, which is majorly lesser than the existing
systems available in the market.

However the system has the following drawbacks:

1. It is designed to work with printed documents, it
cannot identify handwritten characters.

2. The characters must be crisp and at least 20 pixels
in height otherwise the system does not work

properly.

3. The system can be calibrated for only one Kannada
font and size at a time, it does not work properly
when there are multiple fonts and sizes in the same
sample.

4. It has a lot of trouble recognizing punctuation.

5. Certain characters such as double vattaksharas have
been excluded from the dataset entirely because of
difficulties.

6. The accuracy can be improved by reworking
algorithms or using a dictionary to constrain the
output of the system

All of these challenges can be addressed in future work.

6. REFERENCES

[1] HR Mamatha, S Sucharitha, Srikanta Murthy, “Multi-
font and Multi-size Kannada Character Recognition
based on the Curvelets and Standard Deviation”,
International Journal of Computer Applications,
Foundation of Computer Science, New York, USA,
2011.

[2] R Prajna, VR Ramya, HR Mamatha “A study of different
text line extraction techniques for multi-font and multi-
size printed kannada documents”, International Journal
of Computer Applications, Foundation of Computer
Science, 2015.

[3] M.KJindal, R. K. Sharma & G.S. Lehal, "Segmentation
of Horizontally Overlapping Lines in Printed Indian
Scripts”, International Journal of Computational
Intelligence Research. ISSN 0973-1873 Vol.3, No.4
(2007), pp. 277-286

[4] Ashwin T.V and P.S Sastry, “A font and size
independent OCR system for printed Kannada using
SVM”, Sadhana, vol. 27, Part 1, February 2002, pp. 35—

57

58.

[5] Anil K. Jain, “Feature Extraction methods for Character
Recognition — A survey”, Pattern Recognition Volume
29, Issue 4, April 1996, Pages 641-662

[6] K. Indira, S. Sethu Selvi, “Kannada Character
Recognition System: A Review”, InterJRI Science and
Technology, Vol. 1, Issue 2, July 2009

[7] Netravati Belagali, Shanmukhappa A. Angadi, “OCR for
Handwritten Kannada Language Script”, International
Journal of Recent Trends in Engineering & Research
(JRTER) Volume 02, Issue 08; August — 2016.

[8] C V, Aravinda, “Kannada handwritten character
recognition using multi feature extraction tecnhiques”.
International Journal of Science and Research (IJSR).
Vol 10, 2014

[9] Shashikala Parameshwarappal , B.V.Dhandra, ‘“Basic
Kannada Handwritten Character Recognition System
using Shape Based and Transform Domain Features”,
International Journal of Advanced Research in Computer
and Communication Engineering Vol. 4, Issue 7, July

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 177 — No. 37, February 2020

2015

[10] M. Vishwaas, M. M. Arjun and R. Dinesh, "Handwritten
Kannada character recognition based on Kohonen Neural
Network," 2012 International Conference on Recent
Advances in Computing and Software Systems, Chennai,
2012, pp. 91-97.

[11] G. Keerthi Prasad, I. Khan, N. R. Chanukotimath and F.
Khan, "On-line handwritten character recognition system
for Kannada using Principal Component Analysis
Approach: For handheld devices," 2012 World Congress
on Information and Communication Technologies,
Trivandrum, 2012, pp. 675-678.

[12] Gururaj mukarambi , dhandra b.v , mallikarjun hangarge,
“recognition system for handwritten and printed kannada
numerals and vowels”, International Journal of Machine
Intelligence ISSN: 0975-2927 & E-ISSN: 0975-9166,
Volume 3, Issue 4, 2011, pp-259-262.

[13] CS231n Convolution Neural Networks for Visual
Recognition; http://cs231n.github.io/convolutional-
networks/

58

