
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

33

Programmatic Effect of Optimized Smali Code on Saving

Energy of Android Applications

Marwa Dahdouh
PhD Student

Dept. Computer
Engineering

Faculty of Electrical and
Electronic Engineering
University of Aleppo,

Syria

Amer Bouchi
Assist Professor
Dept. Computer

Engineering
Faculty of Electrical and
Electronic Engineering
University of Aleppo,

Syria

Souheil Khawatmi
Associate Professor
Dept. Systems and
Computer Networks

Faculty of Informatics
Engineering

University of Aleppo,
Syria

Mouhamad Ayman
Naal

Associate Professor
Dept. Computer

Engineering
Faculty of Electrical and
Electronic Engineering
University of Aleppo,

Syria

ABSTRACT

This paper presents the effect of saving Android application

execution time on saving energy consumed by optimized

applications. An algorithm for optimizing instructions on a

Smali code-level proposes to provide execution time. The

Smali optimization algorithm relies on replacing high

execution times instructions with lower execution times ones

and equivalent in behavior. MySMALI compiler is designed

to support the proposed optimization algorithm and applied on

Android applications. Optimized APK files are generated for

optimized applications. Measurements of APKs execution

times are taken. Measurements prove that the percentage of

optimization in execution time is approximately 26.27%.

The paper provides code-level estimates of the energy

consumption of Android applications. A programmatic

method about reading operating system files is applied to

determine resource consumption by the applications. Energy

measurements are also recorded by a power monitor

(PowerTutor) for Android-based mobile platforms. The

measurements of resources (Memory, CPU, Disk)

consumption prove that the optimized compiler helps to save

the consumption percentage of Android applications about

19.9%. The memory consumed is provided by the optimized

compiler to approximately 20000 Kbyte and 31.7 KB size of

files. The time that the optimized process of application

consumes from the CPU time is reduced from 26% to 5%.

The results demonstrate that the providing execution times of

applications can save energy consumed to approximately

8.4%, and can save the power consumption by up to 14%.

General Terms

Compiler Efficiency, Bytecode Optimization, Saving Energy,

Android Applications Performance, Resource Utilization.

Keywords

Smali Code Optimization, Energy Consumption, Power Usage

Measurement, Optimized Compiler, Execution Time.

1. INTRODUCTION
With the rapid development of mobile devices, energy

consumption has become a more and more important issue

[1], [2]. It has become necessary for software developers to

take into account the energy consumed by their applications.

Developers should also know the impact of application

implementation on battery life [3]. Battery life is one critical

computing resource for mobile applications. Energy saving

has become an increasing requirement imposed to meet the

needs of mobile device users in energy saving applications

[4]. Measurement of software energy consumption is

expensive in terms of hardware and difficult in terms of

expertise [5]. it is critical to analyze the energy consumption

of Android applications [6]. Several attempts have been made

to determine and measure energy consumption at code-level,

which helps developers know and determine the effect of code

modification on the energy consumed by the application [7-9].

The impact of code obfuscation, code smells and refactoring

is studied on the energy consumption of several Android

applications [10-12]. Some efforts are made to understand the

correlation between execution time and consumption energy

of Android applications [13]. Energy saving is discussed as a

result of shorter execution times [14]. Programming

methodologies are used to measure the energy consumed by

applications [15-17]. This research comes to meet the energy

saving requirements of Android applications. For this

purpose, an optimized compiler is designed to reduce the

energy consumption of Android applications. The optimized

compiler relied on optimizing Smali code on bytecode

instructions. The optimizing process leads to reduce Android

application execution time.

The rest of the paper is organized as follows. Section 2

explains the optimizing process of Smali code. Next, in

section 3 The optimization algorithms supported in the

compiler are explained. An overview of the method for

determining resource consumption and energy measurement is

described in section 4. Finally, the experimental results of

energy consumption measurements are displayed in section 5.

The experimental results are discussed and analyzed in section

6 and conclusion is given in section 7.

2. SMALI CODE OPTIMIZATION
The Smali language file is identified as the target file in the

optimization process. The execution times of all Smali

instructions are studied and compared. Instructions with the

lowest execution time are specified. The proposed optimized

algorithm of Smali instructions is based on replacing high

execution time instructions with lower execution time

instructions [18]. Android applications are written and the

optimized compiler is applied to generate corresponding

Smali code [19]. Special structures are proposed to be adopted

in the designing of the compiler. Compound statements

(conditional, jump, selection, repetition) are processed. The

proposed structures are adopted in the optimization process.

Structures of instruction blocks are studied in different cases

(overlapping or singular). Figure 1, shows the stages of

optimization process.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

34

Figure 1: stages of the optimizing process on Smali code

The replacing instruction blocks process of replaceable

structures is carried out as four stages. First stage, a temporary

symbols table is created from the original symbols table

resulting from lexical analysis phase of the compiler. The

second stage, the proposed and replaceable instruction

structures are identified, ensuring that an application

maintains the same required behavior. The next two stages are

the replacement and manipulate the internal structures. The

optimization algorithm is applied at the level of structure

definition and conditional blocks replacement. The instruction

block that appears at the end of the input file is replaced

before replacing the instruction that is presented in the first, as

will be explained in the next section.

The optimization algorithm replaces conditional instruction

blocks with lower execution time blocks. Conditional

statements within Smali language are classified into IF and

IFZ classes. A special structure is declared for each type of

conditional statement. The optimization algorithm handles the

structure of each class taking into account the presence of

overlapping structures. Table 1, shows the proposed structures

of IF Block statements.

Table 1. The proposed structures of IF instructions

Typedef Struct declaration Description

IFInfo_struct

char *if_name;

int Line;

int index;

char *cond_label;

int LblLine;

int Lblindex;

struct IFInfo_struct *next;

Structure of

each IF

statement

OptIF_struct int *If_Line; optimized IF

int *cond_Line;

int block1_BIndex;

int block1_EIndex;

int block2_BIndex;

int block2_EIndex;

struct OptIF_struct * next;

Structure

3. PROPOSED OPTIMIZED

ALGORITHM
The optimization process is done according to two algorithms.

First algorithm analyzes the source code of the compiler's

input file. Second algorithm performs the replacing instruction

blocks.

3.1 Conditional Structures
The conditional structures differ according to their type (IF or

IFZ) and their overlap with other structures by (if-else)

statements. The optimized compiler applies the structure

definition algorithm and blocks replacement algorithm. Three

main conditional structures are defined as follows.

3.1.1 IF Instruction Blocks
The first block begins with IF statements (if-eq, if-lt, if-gt)

and ends with a (:cond_name) statement. This block includes

instructions (gotoLab_name1) and (goto :gotoLab_name2).

While second block begins with an instruction that

immediately follows (:cond_name) statement. This block

includes instructions (goto :gotoLab_name1) and

(gotoLab_name2). The statement (gotoLab_name2) defines

the end of this block. The formula of this block is:

 IF_statement reg1, reg2, :cond_name # statements

:gotoLab_name1 # statements

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

35

goto :gotoLab_ name2 # statements

:cond_name

goto :gotoLab_ name1 # statements

:gotoLab_ name2

3.1.2 IFZ Instruction Blocks
The first block begins with IFZ statements (if-eqz, if-ltz, if-

gtz) and ends with a statement (:cond_name). This block

includes (:gotoLab_name1). The second block begins with the

instruction that follows (:cond_name) and includes (goto

:gotoLab_name1).

3.1.3 IF Nested Blocks
The first block begins with IF and ends with (:cond_name).

This block includes (goto :gotoLab_name1). The second

block begins with the instruction that follows (:cond_name)

statement and includes (goto :gotoLab_name1). The goto

statement within this block exactly the same as the instruction

in the first block. This block ends with (gotoLab_name1)

statement. Label of goto jump is programmatically

distinguished from goto/16 and goto/32 jump instructions.

3.2 Structure Definition Algorithm
This Proposed algorithm identifies the proposed and

replaceable conditional block structures. The structure of (IF,

IFZ) blocks and nested conditional instruction blocks are

defined to be replaced. A linked list of proposed and

replaceable statements is produced. The replaceable

conditional instructions are added to the list according to the

sequence they appear in the source code file. The instructions

adding process is done at the front of the list. This makes the

last replaceable instruction placed first in the list and treated

first by the optimized algorithm. Figure 2, Shows steps of

structures definition algorithm.

Figure 2. Flowchart of Structure definition algorithm

3.3 Blocks Replacement Algorithm
This Proposed algorithm replaces the high execution time

instructions with the lower execution time instructions. The

algorithm changes the structure of conditional instructions

within the linked list that results from the definition algorithm.

The conditional instruction that is included at the end of the

compiler's input file is first handled according to the

replacement algorithm. Each replaceable structure is divided

into two instruction blocks. The replacement process is done

by switching the order of instructions within the blocks. So,

the instructions for the first block are placed where the

instructions for the second blocks are placed and vice versa.

The resulting instruction structures are stored within the

temporary symbols table structure to keep the original

symbols table information unchanged. Figure 3, Shows steps

of the optimized algorithm for replacing (IF, IFZ) instructions

blocks with the suggested equivalent blocks. Optimized

applications rely on the conditional statements (if-ge, if-le, if-

nez, if-gez, if-lez).

Figure 3. Flowchart of IF blocks replacement algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

36

4. ENERGY ACCOUNTING
In this paper, the effect of optimizing the Smali code on

resources and energy consumption is studied. The energy

measurement methods differ between Hardware-based and

Software-based [20], [21]. The power consumed by Android

applications can be determined by reading system files [22],

[23]. Power monitor tools are used to take accurate

measurements of the energy consumed [24], [25]. There are

several challenges to measuring and calculating source code

energy consumption [26]. PowerTutor is a real time system

and application power monitor. It provides accurate real-time

power consumption estimates for power components

including CPU and LCD display as well as GPS, Wi-Fi [27],

[28]. In this paper, PowerTutor (V1.4) is used to enables real-

time information over all time about energy consumed by unit

of joules and power calculation by unit of mille-Watt.

5. RESOURCES CONSUMPTION
CPU usage and memory consumption by the process are

defined during the execution period. The Smali instructions

that will be optimized with the compiler are included within a

specific process.

5.1 System Files
The files in root of /proc/ have various information about the

overall state of the system. The information in a /proc/ file is

generated on the fly when the file is read. The /proc/[PID]

pseudo-file system is created in order access to a ton of kernel

data accessible. Three files are read.

5.1.1 /proc/uptime
This file includes the uptime of a system and the time spent in

idle process (in seconds).

5.1.2 /proc/[PID]/stat
This file includes status information about the process and

informs how many jiffies have been executed by a single

process.

5.1.3 /proc/stat
This file tells how many jiffies the CPU has executed in total.

5.2 Programming Methods
Some methods are programmed to determine the effect of

optimizing code on energy saving and resources consumption.

The methods use data from operative system files stored

under /proc/. Three methods are written to measure resources

consumption by a specific process.

5.2.1 Get_processTime()
The process consumption time of CPU is determined. Process

identifier is defined by calling (android.os.Process.myPid()).

The first value (uptime) from "/proc/uptime" is used. The

values (utime, stime, cutime, cstime, starttime) from

"/proc/[PID]/stat" are used to calculate elapsed CPU time

spent in user and kernel code, measured in jiffies. Both hertz

and jiffies are converted to seconds in the calculations. A

jiffie is clock tick, system's hertz is a number of ticks per

second.

5.2.2 GetMemory_Usage()
The process identifier is defined by calling

(getProcessMemoryInfo(PID)). The Memory consumption of

a specific process can be determined by calling:

(dalvikPrivateDirty, dalvikSharedDirty, dalvikPss,

nativePrivateDirty, nativeSharedDirty, nativePss,

otherPrivateDirty, otherSharedDirty, otherPss,

getTotalPrivateDirty, getTotalSharedDirty, getTotalPss).

5.2.3 Get_processTime()
The "/proc/stat" and "/proc/[PID]/stat" files are read to

calculate the CPU usage of a process. The line of

"/proc/[PID]/stat" file contains (52) numerical values with

different meaning. The line from "/proc/stat" file contains (9)

different values.

The consumption measurements are taken from the moment

the process is performed for 100 seconds. The values are

recorded over equal 3-second intervals. Programmatically,

CountDownTimer(100000,500) is declared and its methods

(onTick, onFinish) are overridden.

6. EXPERIMENTAL RESULTS
Several applications are implemented that include different

cases of conditional instructions. Some applications include

overlapping structure that is repeated a number of times. All

proposed conditional instructions are studied and tested within

iterative loops.

The corresponding Smali instructions is generated for original

APKs using a reverse engineering tool (APK_Easy Tool

v1.55). MySMALI compiler is used to generate optimized

Smali code. Table 2, shows the original and optimized code.

The optimized code contains an if-eqz statement repeated

three times with overlapping structures.

Table 2. Comparison original and optimized Smali code

source code Optimized Code

if-eqz v13, :cond_0

.line 194

const-wide/16 v8, 0xa

goto :goto_1

.line 196

:cond_0

const-wide/16 v13, 0x2

cmp-long v13, v8, v13

if-eqz v13, :cond_1

.line 197

const-wide/16 v8, 0x14

goto :goto_1

.line 199

:cond_1

const-wide/16 v13, 0x3

cmp-long v13, v8, v13

if-eqz v13, :cond_2

.line 200

const-wide/16 v8, 0x1e

goto :goto_1

.line 202

:cond_2

const-wide/16 v8, 0x28

.line 204

:goto_1

if-nez v13 , :cond_0

const-wide/16 v13 , 0x2

cmp-long v13 , v8 , v13

if-nez v13 , :cond_1

const-wide/16 v13 , 0x3

cmp-long v13 , v8 , v13

if-nez v13 , :cond_2

const-wide/16 v8 , 0x28

.line 204

:cond_2

.line 200

const-wide/16 v8 , 0x1e

goto :goto_1

.line 202

:cond_1

.line 197

const-wide/16 v8 , 0x14

goto :goto_1

.line 199

:cond_0

.line 194

const-wide/16 v8 , 0xa

goto :goto_1

.line 196

:goto_1

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

37

A case study is performed for applications that include IFZ

statements. The if-eqz instruction is studied in several cases

and repeated a different number of times with (else)

statement. The execution times of applications are measured

with an average of 1000 repetitions per execution. Figure 4,

shows a comparison of execution times between APK files

before and after applying the optimized compiler. The results

show that the execution time of if-eqz APKs can be saved

about 543.7 nano seconds. The optimization percentage of

execution time is up to 26.27.

Figure 4: Comparison execution times of (if-eqz) APKs

All conditional instructions are studied in a similar way.

Figure 5, shows a comparison of APK files for applications

with nested if-ltz structures. The results of if-ltz APKs, show

that it is possible to provide 395.4ns of execution time and the

percentage of optimization may be up to 19.8%.

Figure 5: Comparison execution times of (if-ltz) APKs

Another case study is performed for applications that include

IF (if-eq, if-lt, if-gt) statements. Figure 6, shows a comparison

of APK files for applications with nested (if-eq).

Figure 6: Comparison execution times of (if-eq) APKs

In figure 7, a comparison of APKs for applications with

nested (if-lt) structures is displayed. The percent optimization

of if-lt case ranges from 3.27% to 19.045% percent.

Figure 7: Comparison execution times of (if-lt) APKs

Table 3, shows the percentage of optimization the if-lt

statement. The structure of a one-way conditional instruction

isn't replaceable because it causes a change in instructional

behavior.

Table 3. Comparison averages of execution times between

original and optimized APKs (nano_second)

cases Before After
profit

time
percent

%

if-lt (0) 1402.71 --- --- ---

if-lt (1) 1416.12 1369.71 1402.711 3.276

if-lt (2) 1615.48 1489.08 46.406 7.824

if-lt (3) 1731.25 1544.08 126.401 10.810

if-lt (4) 1887.04 1589.70 187.163 15.757

if-lt (5) 1977.48 1600.85 297.343 19.045

Figure 8: Comparison execution times of (if-gt) APKs

Figure 8, shows a comparison of APK files for applications

with nested (if-gt). In (if-gt) case study, the results

demonstrate that the optimization process for the If statement

provided execution time of approximately 457.55ns and the

percentage of optimization is 21.89%.

As a result, cases study shows that optimized files consume

less execution time. Then, resources consumption of

applications is studied before and after the Smali code

optimization process, and the results are compared. Memory

consumption, process time consumed, and CPU consumption

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

38

are studied. Consumption measurements are recorded for 100

seconds and values are taken at equal intervals of 3 seconds.

Resource consumption are studied for applications with the if-

eqz instruction. Conditional if-eqz instruction is repeated

within five overlapping structures. The study demonstrated

that the execution of application more than once gives the

same results for memory consumption values. As shown in

Figure 9.

Figure 9: Process memory consumption of Android

application before optimization process

In figure 10, the results show a decrease in memory

consumption by the files resulting from the optimized

application. The profit of memory is about 20000 Kbyte.

Figure 11, displays a comparison of CPU time that the process

takes before and after the code optimization. Figure 12,

Shows a comparison of CPU usage before and after the

optimization process. The results confirm a reduction in

resource consumption of application with optimized

instructions.

Figure 10: Process memory consumption of Android

application before and after the optimization

Figure 11: Comparison of CPU time consumption

Figure 12: Comparison of CPU usage of process

To make a quantitative comparison of power consumption, a

PowerTutor application is used. Consumption is studied for an

application that includes conditional instructions with

repeated structures. The required instructions are programmed

into a method onHandleWork of a class JobIntentService.

IntentService is advanced background service that create a

separate background thread. The thread executes the

instructions during the execution period of an application.

The measurements of energy consumption are recorded and

compared. Figure 13, shows a comparison power calculation

percentage between original and optimized APKs. The

comparison of energy consumption measurements for

optimized applications demonstrates that optimized code

consumes less power, as figure 14 shows. Figure 15,

illustrates that power consumption measured by mille-Watt is

also decreased compared to that of unimproved applications.

Figure 13: Comparison power calculation percentage

Figure 14: Comparison of energy consumption

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

39

Figure 15: Comparison of power consumption (mw)

Table 4. Size of files after and before optimization

Files SizeBefore Size After Diff Size

If_ltState.apk 1.5 MB 1.5 MB -31.6 KB

res 294.7 KB 344.9 KB 50.2 KB

classes.dex 2.2 MB 2.2 MB 6.6 KB

AndroidManifest 2.2 KB 2.6 KB 352 B

resources.arsc 212.2 KB 212.4 KB 144 B

META-INF 97.1 KB 96.2 KB -930 B

The effect of optimizing the Smali code on file size and

saving disk space is studied. The results confirmed a slight

saving in the size of application files after optimizing the

code. As Table 4, displays.

7. DISCUSSION AND ANALYSIS

RESULTS
APK files of conditional statements for original and optimized

applications are generated and executed. Energy

measurements are recorded every 5 minutes period. Energy

metrics are compared for original and optimized APK files.

Table 5, shows the results of the comparison of consumption

Percentage. The results display that the percentage of

optimization in consumption power ranges from 6.7 to 19.9

percent.

Table 5. Comparison of consumption percentage (%)

Statement

case
Before After profit

Optimization

percent %

If-eq 36.1 28.9 7.2 19.944

If-lt 39.9 37.0 2.9 7.268

If-gt 42.2 34.3 7.9 18.720

If-eqz 39.5 36.2 3.3 8.354

If-ltz 37.3 30.8 6.5 17.426

If-gtz 36.9 34.4 2.5 6.775

Table 6, shows the results of the comparison of energy

consumption. The percentage of optimization ranges from

2.43 to 8.44%.

Table 6. Comparison of energy consumption (Joule)

Statement

case
Before After profit

Optimization

percent %

If-eq 157.7 152.0 5.7 3.614

If-lt 158.7 151.9 6.8 4.284

If-gt 168.2 154.0 14.2 8.442

If-eqz 164.5 160.5 4 2.431

If-ltz 167.9 157.2 10.7 6.372

If-gtz 161.4 156.0 5.4 3.345

Table 7, shows a comparison of power calculation and the

percentage of optimization ranges from 4.3 to 14.06%.

Table 7. Comparison of power measurements (mille-W)

Statement

case
Before After profit

Optimization

percent %

If-eq 440 421 19 4.318

If-lt 548 516 32 5.839

If-gt 550 526 24 4.363

If-eqz 583 501 82 14.065

If-ltz 522 493 29 5.555

If-gtz 577 535 42 7.279

The 'AVLoadingIndicatorView' application is adopted as

benchmark [29]. The Smali files are optimized at code-level

of conditional and selection instructions.

Table 8. Comparison of consumption measurements

Benchmark APKs percentage Energy Power

Original APK 0.9 % 1.3 J 118 mW

Optimized APK 0.4 % 526.0 mJ 58 mW

The APK files are generated according to the different cases

studied (original, optimized) of APKs. Table 8, displays a

comparison between consumption measurements of

benchmark APK files.

Then, the benchmark is modified at Java and Smali code-

level. The Smali code modification is done by adding a Smali

class file. The class (small_code.smali) file includes hungry-

energy instructions into the method (.method static test()V).

In this case study, The added class (.class public

Lcom/wang/avi/sample/small_code;) includes the conditional

statements (if-eqz, if-ltz, if-gtz). Each statement is repeated

with five overlapping structures. The invoke-static (test)

statement is called into (onCreate) virtual method. The

(onCreate) method is declared in Smali code as: (.method

protected onCreate(Landroid/os/Bundle;)V). The statement

of invoking a method of class into another class is: invoke-

static {}, Lcom/wang/avi/sample/small_code;->test()V.

The APK files of a modified benchmark after adding the

hungry-instructions and optimizing the modified code only

are generated. Power measurements are taken by PowerTutor

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

40

for modified files before and after optimizing the added code.

Comparing the energy consumption values proves the

increased energy consumption by the application after adding

the most energy-consuming instructions. Table 9, displays a

comparison between consumption measurements of

benchmark APK files in this case study.

Table 9. Comparison of consumption measurements

Benchmark APKs percentage Energy Power

Modified Smali

code
41.5 % 159.3 J 542 mW

Optimized hungry-

instructions
36.4 % 147.7 J 519 mW

The results prove the correct performance of the optimized

compiler and its effect on saving energy consumed by

applications, as in figure 16. The experiments demonstrate the

efficiency of the optimized compiler in the various cases

studied from the benchmark.

Figure 16: Comparison of energy consumption in joules

Unit for 'AVLoadingIndicatorView' APKs

8. CONCLUSION
In this paper, An optimized compiler is used to optimize

Smali code and generate saving-energy Android Applications.

The effect of code modification is studied by optimizing the

Smali language instructions. Execution time of Smali

instructions are measured. The instructions with the lowest

execution time are specified. The optimized compiler relies on

the lowest execution time instructions. A comparison of

resource consumption between APK files before and after

using the optimized compiler proved energy saving of

application.

The results demonstrate that the optimized applications with

lower execution times consume less power. Energy

consumption and resources usage measurements are taken for

original and optimized applications by using powerTutor.

Experiments prove that reducing execution time by

optimization Smali code works to save energy consumed by

Android applications. The consumption percentage is saved

between 6.7% to 19.9%. An open-source application

'AVLoadingIndicatorView' is used in the experiments to

validate the results of the optimized compiler. The application

instructions are modified at the smali code-level. APK files

for the benchmark application confirmed the validity of the

results and the quality of the optimized compiler.

In this research, the results demonstrate the ability to reduce

the energy consumed of Android applications by reducing the

execution time.

As for the future work, A tool can be built to monitor power

consumption at the Smali code-level in a programming stage.

The tool identifies the hungry-energy instructions and helps

developers produce less-consuming Android applications.

9. REFERENCES
[1] Claas Wilke et al, 2013, "Energy-Aware Development

and Labeling for Mobile Applications", Technischen

University Dresden.

[2] Shuai Hao, Ding Li, William G. J. Halfond, Ramesh

Govindan, 2013, "Estimating Mobile Application Energy

Consumption using Program Analysis", IEEE.

[3] Grace Metri, 2014, "Energy Efficiency Analysis And

Optimization For Mobile Platforms", Wayne State

University Dissertations.

[4] Irene Manotas Gutierrez, 2017, "Developing A Software

Engineer's Energy-Optimization Decision Support

Framework", University of Delaware.

[5] Anton Georgiev, Alberto Sillitti, Giancarlo Succi, 2016,

"Open Source Mobile Virtual Machines: An Energy

Assessment of Dalvik vs. ART", HAL Id: hal-01373061.

[6] Xueliang Li John P. Gallagher, 2016, "Energy

Optimization of Source Code Guided by a Fine-Grained

Energy Model", arXiv:1605.05234v1.

[7] Cagri Sahin, Mian Wan et al, 2016," How does code

obfuscation impact energy usage?", JOURNAL OF

SOFTWARE: EVOLUTION AND PROCESS.

[8] Abhijeet Banerjee, Abhik Roychoudhury, 2016,

"Automated Re-factoring of Android Apps to Enhance

Energy-efficiency", ACM.

[9] Shuai Hao, Ding Li et al, 2012," Estimating Android

Applications’ CPU Energy Usage via Bytecode

Profiling", IEEE.

[10] Hina Anwar et al, 2019, "Evaluating the impact of code

smell refactoring on the energy consumption of Android

applications", 45th Euromicro Conference on SEAA.

[11] Shaiful Chowdhury et al, 2017, "An exploratory study on

assessing the energy impact of logging on Android

applications", Springer Science.

[12] Fabio Palomba et al, 2018, "On the Impact of Code

Smells on the Energy Consumption of Mobile

Applications", Information and Software Technology.

[13] Marco Couto, J_acome Cunha et al, 2015,"Analyzing

and Classifying Energy Consumption in Android

Applications", Science of Computer Programming.

[14] Luis Corral, Anton B. Georgiev, Alberto Sillitti,

Giancarlo Succi, 2014, "Can execution time describe

accurately the energy consumption of mobile apps? An

experiment in Android", ACM.

[15] Marco Couto, Tiago et al, 2014, "Detecting

Anomalous Energy Consumption in Android

Applications", Springer International Switzerland.

[16] Roberto Verdecchia et al, 2018, "Empirical Evaluation of

the Energy Impact of Refactoring Code Smells", EPiC

Series in Computing,Volume 52, Pages 365-383.

[17] Abhijeet Banerjee, Abhik Roychoudhury, 2016, "Future

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

41

of Mobile Software for Smartphones and Drones: Energy

and Performance", National University of Singapore.

[18] Marwa DAHDOUH, Amer BOUCHI, Souheil

KHAWATMI, Mouhamad Ayman NAAL, 2019,

"Structural Analysis of Smali Language to Enhance

Performance of Android Applications", Research

Journal-University of Aleppo, Volume 151.

[19] Marwa Dahdouh, Mouhamad Ayman Naal, Souheil

Khawatmi, Amer Bouchi, 2019, "Design an Optimized

Compiler to Enhance Performance of Android

Applications", IJCA.

[20] Xueliang Li, John P. Gallagher, 2015, "A Top-to-Bottom

View: Energy Analysis for Mobile Application Source

Code", Roskilde University arXiv:1510.04165v1.

[21] Ruben Saborido, Foutse Khomh et al, 2018, "An App

Performance Optimization Advisor for Mobile Device

App Marketplaces", Sustainable Computing: Informatics

and Systems.

[22] Inmaculada Ayala et al, 2019, "An Energy Efficiency

Study of Web-Based Communication in Android

Phones", Hindawi,Scientific Programming

[23] Yan Hu et al, 2017, "Lightweight Energy Consumption

Analysis and Prediction for Android Applications",

Science of Computer Programming.

[24] Luis Cruz et al, 2019, "EMaaS: Energy Measurements as

a Service for Mobile Applications", IEEE/ACM 41st

International Conference on Software Engineering.

[25] MOHAMMAD ASHRAFUL HOQUE et al, 2015,

"Modeling, Profiling, and Debugging the Energy

Consumption of Mobile Devices", ACM.

[26] Ding Li, Shuai Hao, William G.J. Halfond, Ramesh

Govindan, 2013, "Calculating Source Line Level Energy

Information for Android Applications", ACM.

[27] Lide Zhang, Birjodh Tiwana et al, 2010,"Accurate

Online Power Estimation and Automatic Battery

Behavior Based Power Model Generation for

Smartphones", ACM.

[28] Lin-Tao Duan et al, 2013, "Energy analysis and

prediction for applications on smartphones", Journal of

Systems Architecture.

[29] https://github.com/81813780/AVLoadingIndicatorView/

blob/master/apk/app-debug.apk. [Accessed 1/9/2019].

IJCATM : www.ijcaonline.org

https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=ar&sp=nmt4&u=https://www.facebook.com/%25D9%2585%25D8%25AC%25D9%2584%25D8%25A9-%25D8%25A8%25D8%25AD%25D9%2588%25D8%25AB-%25D8%25AC%25D8%25A7%25D9%2585%25D8%25B9%25D8%25A9-%25D8%25AD%25D9%2584%25D8%25A8-207291042768690/%3Fhc_ref%3DARRmudxr8pkJ1t7ArhLtk0y7KtW12XnLmaHEO8a0hv9Q9tz7hXhND_V2gAoHv2n2KCg%26fref%3Dnf%26__xts__%255B0%255D%3D68.ARBkggDs4DK9CDFjaAgzfqYvPz8A6GVobVSz13Thry0rBMDTHoWrT6-uCSmEfEvHp7d-w3l38QpdUNJ8wjxyUka4omEk-Z5CutbbWCDCGtRo4aYxdvcNOUWHJ7kAfr6XrSCDNZwe2EDrKUwASMXSwezAtS81kbzyl6q6F3vXcFUVDH3Z9fjM5BxDVb9UdBKs5xBm4j8uCOae_TByTpW-MlaBEyiqitRVOKDJ4swknSnizx1tLb1nI7rGH0MpmZIjLF1-vwnQhAa9Gw-Ny7LrEuxmM6scvgR0PhqFveTydIjF4s2LycuBdKYZhIdQAXmTng1a-hamxw6w6wDKBbkR9Q%26__tn__%3DkC-R&xid=17259,1500003,15700019,15700186,15700191,15700256,15700259,15700262,15700265,15700271&usg=ALkJrhiHX3oChBIB66yFIfcdZhRYJO28eg
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=ar&sp=nmt4&u=https://www.facebook.com/%25D9%2585%25D8%25AC%25D9%2584%25D8%25A9-%25D8%25A8%25D8%25AD%25D9%2588%25D8%25AB-%25D8%25AC%25D8%25A7%25D9%2585%25D8%25B9%25D8%25A9-%25D8%25AD%25D9%2584%25D8%25A8-207291042768690/%3Fhc_ref%3DARRmudxr8pkJ1t7ArhLtk0y7KtW12XnLmaHEO8a0hv9Q9tz7hXhND_V2gAoHv2n2KCg%26fref%3Dnf%26__xts__%255B0%255D%3D68.ARBkggDs4DK9CDFjaAgzfqYvPz8A6GVobVSz13Thry0rBMDTHoWrT6-uCSmEfEvHp7d-w3l38QpdUNJ8wjxyUka4omEk-Z5CutbbWCDCGtRo4aYxdvcNOUWHJ7kAfr6XrSCDNZwe2EDrKUwASMXSwezAtS81kbzyl6q6F3vXcFUVDH3Z9fjM5BxDVb9UdBKs5xBm4j8uCOae_TByTpW-MlaBEyiqitRVOKDJ4swknSnizx1tLb1nI7rGH0MpmZIjLF1-vwnQhAa9Gw-Ny7LrEuxmM6scvgR0PhqFveTydIjF4s2LycuBdKYZhIdQAXmTng1a-hamxw6w6wDKBbkR9Q%26__tn__%3DkC-R&xid=17259,1500003,15700019,15700186,15700191,15700256,15700259,15700262,15700265,15700271&usg=ALkJrhiHX3oChBIB66yFIfcdZhRYJO28eg
https://github.com/81813780/AVLoadingIndicatorView/blob/master/apk/app-debug.apk
https://github.com/81813780/AVLoadingIndicatorView/blob/master/apk/app-debug.apk

