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ABSTRACT 

This paper presents the effect of saving Android application 

execution time on saving energy consumed by optimized 

applications. An algorithm for optimizing instructions on a 

Smali code-level proposes to provide execution time. The 

Smali optimization algorithm relies on replacing high 

execution times instructions with lower execution times ones 

and equivalent in behavior. MySMALI compiler is designed 

to support the proposed optimization algorithm and applied on 

Android applications. Optimized APK files are generated for 

optimized applications. Measurements of APKs execution 

times are taken. Measurements prove that the percentage of 

optimization in execution time is approximately 26.27%. 

The paper provides code-level estimates of the energy 

consumption of Android applications. A programmatic 

method about reading operating system files is applied to 

determine resource consumption by the applications. Energy 

measurements are also recorded by a power monitor 

(PowerTutor) for Android-based mobile platforms. The 

measurements of resources (Memory, CPU, Disk) 

consumption prove that the optimized compiler helps to save 

the consumption percentage of Android applications about 

19.9%. The memory consumed is provided by the optimized 

compiler to approximately 20000 Kbyte and 31.7 KB size of 

files. The time that the optimized process of application 

consumes from the CPU time is reduced from 26% to 5%. 

The results demonstrate that the providing execution times of 

applications can save energy consumed to approximately 

8.4%, and can save the power consumption by up to 14%.   

General Terms 

Compiler Efficiency, Bytecode Optimization, Saving Energy, 

Android Applications Performance, Resource Utilization. 

Keywords 

Smali Code Optimization, Energy Consumption, Power Usage 

Measurement, Optimized Compiler, Execution Time. 

1. INTRODUCTION 
With the rapid development of mobile devices, energy 

consumption has become a more and more important issue 

[1], [2]. It has become necessary for software developers to 

take into account the energy consumed by their applications. 

Developers should also know the impact of application 

implementation on battery life [3]. Battery life is one critical 

computing resource for mobile applications. Energy saving 

has become an increasing requirement imposed to meet the 

needs of mobile device users in energy saving applications 

[4]. Measurement of software energy consumption is 

expensive in terms of hardware and difficult in terms of 

expertise [5]. it is critical to analyze the energy consumption 

of Android applications [6]. Several attempts have been made 

to determine and measure energy consumption at code-level, 

which helps developers know and determine the effect of code 

modification on the energy consumed by the application [7-9]. 

The impact of code obfuscation, code smells and refactoring 

is studied on the energy consumption of several Android 

applications [10-12]. Some efforts are made to understand the 

correlation between execution time and consumption energy 

of Android applications [13]. Energy saving is discussed as a 

result of shorter execution times [14]. Programming 

methodologies are used to measure the energy consumed by 

applications [15-17]. This research comes to meet the energy 

saving requirements of Android applications. For this 

purpose, an optimized compiler is designed to reduce the 

energy consumption of Android applications. The optimized 

compiler relied on optimizing Smali code on bytecode 

instructions. The optimizing process leads to reduce Android 

application execution time. 

The rest of the paper is organized as follows. Section 2 

explains the optimizing process of Smali code. Next, in 

section 3 The optimization algorithms supported in the 

compiler are explained. An overview of the method for 

determining resource consumption and energy measurement is 

described in section 4. Finally, the experimental results of 

energy consumption measurements are displayed in section 5. 

The experimental results are discussed and analyzed in section 

6 and conclusion is given in section 7. 

2. SMALI CODE OPTIMIZATION 
The Smali language file is identified as the target file in the 

optimization process. The execution times of all Smali 

instructions are studied and compared. Instructions with the 

lowest execution time are specified. The proposed optimized 

algorithm of Smali instructions is based on replacing high 

execution time instructions with lower execution time 

instructions [18]. Android applications are written and the 

optimized compiler is applied to generate corresponding 

Smali code [19]. Special structures are proposed to be adopted 

in the designing of the compiler. Compound statements 

(conditional, jump, selection, repetition) are processed. The 

proposed structures are adopted in the optimization process. 

Structures of instruction blocks are studied in different cases 

(overlapping or singular). Figure 1, shows the stages of 

optimization process. 
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Figure 1: stages of the optimizing process on Smali code

The replacing instruction blocks process of replaceable 

structures is carried out as four stages. First stage, a temporary 

symbols table is created from the original symbols table 

resulting from lexical analysis phase of the compiler. The 

second stage, the proposed and replaceable instruction 

structures are identified, ensuring that an application 

maintains the same required behavior. The next two stages are 

the replacement and manipulate the internal structures. The 

optimization algorithm is applied at the level of structure 

definition and conditional blocks replacement. The instruction 

block that appears at the end of the input file is replaced 

before replacing the instruction that is presented in the first, as 

will be explained in the next section. 

The optimization algorithm replaces conditional instruction 

blocks with lower execution time blocks. Conditional 

statements within Smali language are classified into IF and 

IFZ classes. A special structure is declared for each type of 

conditional statement. The optimization algorithm handles the 

structure of each class taking into account the presence of 

overlapping structures. Table 1, shows the proposed structures 

of IF Block statements. 

Table 1. The proposed structures of IF instructions 

Typedef  Struct declaration  Description 

IFInfo_struct 

char *if_name; 

int Line; 

int index; 

char *cond_label;  

int LblLine; 

int Lblindex; 

struct IFInfo_struct *next; 

Structure of 

each IF 

statement 

OptIF_struct int *If_Line; optimized IF 

int *cond_Line; 

int block1_BIndex; 

int block1_EIndex; 

int block2_BIndex; 

int block2_EIndex; 

struct OptIF_struct * next; 

Structure 

 

3. PROPOSED OPTIMIZED 

ALGORITHM 
The optimization process is done according to two algorithms. 

First algorithm analyzes the source code of the compiler's 

input file. Second algorithm performs the replacing instruction 

blocks.  

3.1 Conditional Structures 
The conditional structures differ according to their type (IF or 

IFZ) and their overlap with other structures by (if-else) 

statements. The optimized compiler applies the structure 

definition algorithm and blocks replacement algorithm. Three 

main conditional structures are defined as follows. 

3.1.1 IF Instruction Blocks 
The first block begins with IF statements (if-eq, if-lt, if-gt) 

and ends with a (:cond_name) statement. This block includes 

instructions (gotoLab_name1) and (goto :gotoLab_name2). 

While second block begins with an instruction that 

immediately follows (:cond_name) statement. This block 

includes instructions (goto :gotoLab_name1) and 

(gotoLab_name2). The statement (gotoLab_name2) defines 

the end of this block. The formula of this block is: 

 IF_statement reg1, reg2, :cond_name # statements 

:gotoLab_name1    # statements 
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goto :gotoLab_ name2 # statements   

:cond_name  

goto :gotoLab_ name1 # statements  

:gotoLab_ name2 

3.1.2 IFZ Instruction Blocks 
The first block begins with IFZ statements (if-eqz, if-ltz, if-

gtz) and ends with a statement (:cond_name). This block 

includes (:gotoLab_name1). The second block begins with the 

instruction that follows (:cond_name) and includes (goto 

:gotoLab_name1). 

3.1.3 IF Nested Blocks 
The first block begins with IF and ends with (:cond_name). 

This block includes (goto :gotoLab_name1). The second 

block begins with the instruction that follows (:cond_name) 

statement and includes (goto :gotoLab_name1). The goto 

statement within this block exactly the same as the instruction 

in the first block. This block ends with (gotoLab_name1) 

statement. Label of goto jump is programmatically 

distinguished from goto/16 and goto/32 jump instructions. 

3.2 Structure Definition Algorithm 
This Proposed algorithm identifies the proposed and 

replaceable conditional block structures. The structure of (IF, 

IFZ)  blocks and nested conditional instruction blocks are 

defined to be replaced. A linked list of proposed and 

replaceable statements is produced. The replaceable 

conditional instructions are added to the list according to the 

sequence they appear in the source code file. The instructions 

adding process is done at the front of the list. This makes the 

last replaceable instruction placed first in the list and treated 

first by the optimized algorithm. Figure 2, Shows steps of 

structures definition algorithm. 

 

Figure 2. Flowchart of Structure definition algorithm 

3.3 Blocks Replacement Algorithm 
This Proposed algorithm replaces the high execution time 

instructions with the lower execution time instructions. The 

algorithm changes the structure of conditional instructions 

within the linked list that results from the definition algorithm. 

The conditional instruction that is included at the end of the 

compiler's input file is first handled according to the 

replacement algorithm. Each replaceable structure is divided 

into two instruction blocks. The replacement process is done 

by switching the order of instructions within the blocks. So, 

the instructions for the first block are placed where the 

instructions for the second blocks are placed and vice versa. 

The resulting instruction structures are stored within the 

temporary symbols table structure to keep the original 

symbols table information unchanged. Figure 3, Shows steps 

of the optimized algorithm for replacing (IF, IFZ) instructions 

blocks with the suggested equivalent blocks. Optimized 

applications rely on the conditional  statements (if-ge, if-le, if-

nez, if-gez, if-lez). 

  

Figure 3. Flowchart of IF blocks replacement algorithm  
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4. ENERGY ACCOUNTING 
In this paper, the effect of optimizing the Smali code on 

resources and energy consumption is studied. The energy 

measurement methods differ between Hardware-based and 

Software-based [20], [21]. The power consumed by Android 

applications can be determined by reading system files [22], 

[23]. Power monitor tools are used to take accurate 

measurements of the energy consumed [24], [25]. There are 

several challenges to measuring and calculating source code 

energy consumption [26]. PowerTutor is a real time system 

and application power monitor. It provides accurate real-time 

power consumption estimates for power components 

including CPU and LCD display as well as GPS, Wi-Fi [27], 

[28]. In this paper, PowerTutor (V1.4) is used to enables real-

time information over all time about energy consumed by unit 

of joules and power calculation by unit of mille-Watt. 

5. RESOURCES CONSUMPTION  
CPU usage and memory consumption by the process are 

defined during the execution period. The Smali instructions 

that will be optimized with the compiler are included within a 

specific process. 

5.1 System Files 
The files in root of /proc/ have various information about the 

overall state of the system. The information in a /proc/ file is 

generated on the fly when the file is read. The /proc/[PID] 

pseudo-file system is created in order access to a ton of kernel 

data accessible. Three files are read. 

5.1.1 /proc/uptime 
This file includes the uptime of a system and the time spent in 

idle process (in seconds). 

5.1.2 /proc/[PID]/stat 
This file includes status information about the process and 

informs how many jiffies have been executed by a single 

process. 

5.1.3 /proc/stat  
This file tells how many jiffies the CPU has executed in total.  

5.2 Programming Methods 
Some methods are programmed to determine the effect of 

optimizing code on energy saving and resources consumption. 

The methods use data from operative system files stored 

under /proc/. Three methods are written to measure resources 

consumption by a specific process. 

5.2.1 Get_processTime() 
The process consumption time of CPU is determined. Process 

identifier is defined by calling (android.os.Process.myPid()). 

The first value (uptime) from "/proc/uptime" is used. The 

values (utime, stime, cutime, cstime, starttime) from 

"/proc/[PID]/stat" are used to calculate elapsed CPU time 

spent in user and kernel code, measured in jiffies. Both hertz 

and jiffies are converted to seconds in the calculations. A 

jiffie is clock tick, system's hertz is a number of ticks per 

second. 

5.2.2 GetMemory_Usage() 
The process identifier is defined by calling 

(getProcessMemoryInfo(PID)). The Memory consumption of 

a specific process can be determined by calling: 

(dalvikPrivateDirty, dalvikSharedDirty, dalvikPss, 

nativePrivateDirty, nativeSharedDirty, nativePss, 

otherPrivateDirty, otherSharedDirty, otherPss, 

getTotalPrivateDirty, getTotalSharedDirty, getTotalPss). 

5.2.3 Get_processTime() 
The "/proc/stat" and "/proc/[PID]/stat" files are read to 

calculate the CPU usage of a process. The line of 

"/proc/[PID]/stat" file contains (52) numerical values with 

different meaning. The line from "/proc/stat" file contains (9) 

different values. 

The consumption measurements are taken from the moment 

the process is performed for 100 seconds. The values are 

recorded over equal 3-second intervals. Programmatically, 

CountDownTimer(100000,500) is declared and its methods 

(onTick, onFinish) are overridden. 

6. EXPERIMENTAL RESULTS 
Several applications are implemented that include different 

cases of conditional instructions. Some applications include  

overlapping structure that is repeated a number of times. All 

proposed conditional instructions are studied and tested within 

iterative loops. 

The corresponding Smali instructions is generated for original 

APKs using a reverse engineering tool (APK_Easy Tool 

v1.55). MySMALI compiler is used to generate optimized 

Smali code. Table 2, shows the original and optimized code. 

The optimized code contains an if-eqz statement repeated 

three times with overlapping structures.  

Table 2. Comparison original and optimized Smali code 

source code Optimized Code 

if-eqz v13, :cond_0 

.line 194 

const-wide/16 v8, 0xa 

goto :goto_1 

.line 196 

:cond_0 

const-wide/16 v13, 0x2 

cmp-long v13, v8, v13 

if-eqz v13, :cond_1 

.line 197 

const-wide/16 v8, 0x14 

goto :goto_1 

.line 199 

:cond_1 

const-wide/16 v13, 0x3 

cmp-long v13, v8, v13 

if-eqz v13, :cond_2 

.line 200 

const-wide/16 v8, 0x1e 

goto :goto_1 

.line 202 

:cond_2 

const-wide/16 v8, 0x28 

.line 204 

:goto_1 

if-nez v13 , :cond_0 

const-wide/16 v13 , 0x2 

cmp-long v13 , v8 , v13 

if-nez v13 , :cond_1 

const-wide/16 v13 , 0x3 

cmp-long v13 , v8 , v13 

if-nez v13 , :cond_2 

const-wide/16 v8 , 0x28 

.line 204 

:cond_2 

.line 200 

const-wide/16 v8 , 0x1e 

goto :goto_1 

.line 202 

:cond_1 

.line 197 

const-wide/16 v8 , 0x14 

goto :goto_1 

.line 199 

:cond_0 

.line 194 

const-wide/16 v8 , 0xa 

goto :goto_1 

.line 196 

:goto_1 
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A case study is performed for applications that include IFZ 

statements. The if-eqz instruction is studied in several cases 

and repeated a different number of times with (else) 

statement. The execution times of applications are measured 

with an average of 1000 repetitions per execution. Figure 4, 

shows a comparison of execution times between APK files 

before and after applying the optimized compiler. The results 

show that the execution time of if-eqz APKs can be saved 

about 543.7 nano seconds. The optimization percentage of 

execution time is up to 26.27. 

 

Figure 4: Comparison execution times of (if-eqz) APKs  

All conditional instructions are studied in a similar way. 

Figure 5, shows a comparison of APK files for applications 

with nested if-ltz structures. The results of if-ltz APKs, show 

that it is possible to provide 395.4ns of execution time and the 

percentage of optimization may be up to 19.8%. 

 

Figure 5: Comparison execution times of (if-ltz) APKs  

Another case study is performed for applications that include 

IF (if-eq, if-lt, if-gt) statements. Figure 6, shows a comparison 

of APK files for applications with nested (if-eq). 

 

Figure 6: Comparison execution times of (if-eq) APKs 

In figure 7, a comparison of APKs for applications with 

nested (if-lt) structures is displayed. The percent optimization 

of if-lt case ranges from 3.27% to 19.045% percent. 

 

Figure 7: Comparison execution times of (if-lt) APKs 

Table 3, shows the percentage of optimization the if-lt 

statement. The structure of a one-way conditional instruction 

isn't replaceable because it causes a change in instructional 

behavior.  

Table 3. Comparison averages of execution times between 

original and optimized APKs  (nano_second) 

cases Before After 
profit 

time 
percent 

% 

if-lt (0) 1402.71 --- --- --- 

if-lt  (1) 1416.12 1369.71 1402.711 3.276 

if-lt (2) 1615.48 1489.08 46.406 7.824 

if-lt (3) 1731.25 1544.08 126.401 10.810 

if-lt (4) 1887.04 1589.70 187.163 15.757 

if-lt (5) 1977.48 1600.85 297.343 19.045 

 

 

Figure 8: Comparison execution times of (if-gt) APKs 

Figure 8, shows a comparison of APK files for applications 

with nested (if-gt). In (if-gt) case study, the results 

demonstrate that the optimization process for the If statement 

provided execution time of approximately 457.55ns and the 

percentage of optimization is 21.89%.  

As a result, cases study shows that optimized files consume 

less execution time. Then, resources consumption of 

applications is studied before and after the Smali code 

optimization process, and the results are compared. Memory 

consumption, process time consumed, and CPU consumption 
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are studied. Consumption measurements are recorded for 100 

seconds and values are taken at equal intervals of 3 seconds. 

Resource consumption are studied for applications with the if-

eqz instruction. Conditional if-eqz instruction is repeated 

within five overlapping structures. The study demonstrated 

that the execution of application more than once gives the 

same results for memory consumption values. As shown in 

Figure 9.  

 

Figure 9: Process memory consumption of Android 

application before optimization process 

In figure 10, the results show a decrease in memory 

consumption by the files resulting from the optimized 

application. The profit of memory is about 20000 Kbyte. 

Figure 11, displays a comparison of CPU time that the process 

takes before and after the code optimization. Figure 12, 

Shows a comparison of CPU usage before and after the 

optimization process. The results confirm a reduction in 

resource consumption of application with optimized 

instructions. 

 

Figure 10: Process memory consumption of Android 

application before and after the optimization  

 

Figure 11: Comparison of CPU time consumption  

 

Figure 12: Comparison of CPU usage of process 

To make a quantitative comparison of power consumption, a 

PowerTutor application is used. Consumption is studied for an 

application that includes conditional instructions with 

repeated structures. The required instructions are programmed 

into a method onHandleWork of a class JobIntentService. 

IntentService is advanced background service that create a 

separate background thread. The thread executes the 

instructions during the execution period of an application. 

The measurements of energy consumption are recorded and 

compared. Figure 13, shows a comparison power calculation 

percentage between original and optimized APKs. The 

comparison of energy consumption measurements for 

optimized applications demonstrates that optimized code 

consumes less power, as figure 14 shows. Figure 15, 

illustrates that power consumption measured by mille-Watt is 

also decreased compared to that of unimproved applications.  

 

Figure 13: Comparison power calculation percentage 

 

Figure 14: Comparison of energy consumption 
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Figure 15: Comparison of power consumption (mw)  

Table 4. Size of files after and before optimization 

Files SizeBefore Size After  Diff Size 

If_ltState.apk 1.5 MB 1.5 MB -31.6 KB 

res 294.7 KB 344.9 KB 50.2 KB 

classes.dex 2.2 MB 2.2 MB 6.6 KB 

AndroidManifest 2.2 KB 2.6 KB 352 B 

resources.arsc 212.2 KB 212.4 KB 144 B 

META-INF 97.1 KB 96.2 KB -930 B 

 

The effect of optimizing the Smali code on file size and 

saving disk space is studied. The results confirmed a slight 

saving in the size of application files after optimizing the 

code. As Table 4, displays. 

7. DISCUSSION AND ANALYSIS 

RESULTS 
APK files of conditional statements for original and optimized 

applications are generated and executed. Energy 

measurements are recorded every 5 minutes period. Energy 

metrics are compared for original and optimized APK files. 

Table 5, shows the results  of the comparison of consumption 

Percentage. The results display that the percentage of 

optimization in consumption power ranges from 6.7 to 19.9 

percent.  

Table 5. Comparison of consumption percentage (%)  

Statement 

case 
Before After profit 

Optimization 

percent % 

If-eq 36.1  28.9 7.2 19.944 

If-lt 39.9  37.0 2.9 7.268 

If-gt 42.2  34.3 7.9 18.720 

If-eqz 39.5  36.2 3.3 8.354 

If-ltz 37.3  30.8 6.5 17.426 

If-gtz 36.9  34.4 2.5 6.775 

 

Table 6, shows the results of the comparison of energy 

consumption. The percentage of optimization ranges from 

2.43 to 8.44%.  

Table 6. Comparison of energy consumption (Joule) 

Statement 

case 
Before After profit 

Optimization 

percent % 

If-eq 157.7 152.0 5.7 3.614 

If-lt 158.7 151.9 6.8 4.284 

If-gt 168.2 154.0 14.2 8.442 

If-eqz 164.5 160.5 4 2.431 

If-ltz 167.9 157.2 10.7 6.372 

If-gtz 161.4 156.0 5.4 3.345 

 

Table 7, shows a comparison of power calculation and the 

percentage of optimization ranges from 4.3 to 14.06%. 

Table 7. Comparison of power measurements (mille-W)  

Statement 

case 
Before After profit 

Optimization 

percent % 

If-eq 440 421 19 4.318 

If-lt 548 516 32 5.839 

If-gt 550 526 24 4.363 

If-eqz 583 501 82 14.065 

If-ltz 522 493 29 5.555 

If-gtz 577 535 42 7.279 

 

The 'AVLoadingIndicatorView' application is adopted as 

benchmark [29]. The Smali files are optimized at code-level 

of conditional and selection instructions.  

Table 8. Comparison of consumption measurements  

Benchmark APKs percentage Energy  Power  

Original APK 0.9 % 1.3 J 118 mW 

Optimized APK 0.4 % 526.0 mJ 58 mW 

 

The APK files are generated according to the different cases 

studied (original, optimized) of APKs. Table 8, displays a 

comparison between consumption measurements of 

benchmark APK files.  

Then, the benchmark is modified at Java and Smali code-

level. The Smali code modification is done by adding a Smali 

class file. The class (small_code.smali) file  includes hungry-

energy instructions into the method (.method static test()V).  

In this case study, The added class (.class public 

Lcom/wang/avi/sample/small_code;) includes the conditional 

statements (if-eqz, if-ltz, if-gtz). Each statement is repeated 

with five overlapping structures. The invoke-static (test) 

statement is called into (onCreate) virtual method. The 

(onCreate) method is declared in Smali code as: (.method 

protected onCreate(Landroid/os/Bundle;)V ). The statement 

of invoking a method of class into another class is: invoke-

static {}, Lcom/wang/avi/sample/small_code;->test()V. 

The APK files of a modified benchmark after adding the 

hungry-instructions and optimizing the modified code only 

are generated. Power measurements are taken by PowerTutor 
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for modified files before and after optimizing the added code. 

Comparing the energy consumption values proves the 

increased energy consumption by the application after adding 

the most energy-consuming instructions. Table 9, displays a 

comparison between consumption measurements of 

benchmark APK files in this case study.  

Table 9. Comparison of consumption measurements  

Benchmark APKs percentage Energy  Power  

Modified Smali 

code  
41.5 % 159.3 J 542 mW 

Optimized hungry-

instructions  
36.4 % 147.7 J 519 mW 

 

The results prove the correct performance of the optimized 

compiler and its effect on saving energy consumed by 

applications, as in figure 16. The experiments demonstrate the 

efficiency of the optimized compiler in the various cases 

studied from the benchmark. 

 

Figure 16: Comparison of energy consumption in joules 

Unit for 'AVLoadingIndicatorView' APKs 

8. CONCLUSION 
In this paper, An optimized compiler is used to optimize 

Smali code and generate saving-energy Android Applications. 

The effect of code modification is studied by optimizing the 

Smali language instructions. Execution time of Smali 

instructions are measured. The instructions with the lowest 

execution time are specified. The optimized compiler relies on 

the lowest execution time instructions. A comparison of 

resource consumption between APK files before and after 

using the optimized compiler proved energy saving of 

application.  

The results demonstrate that the optimized applications with 

lower execution times consume less power. Energy 

consumption and resources usage measurements are taken for 

original and optimized applications by using powerTutor. 

Experiments prove that reducing execution time by 

optimization Smali code works to save energy consumed by 

Android applications. The consumption percentage is saved 

between 6.7% to 19.9%. An open-source application 

'AVLoadingIndicatorView' is used in the experiments to 

validate the results of the optimized compiler. The application 

instructions are modified at the smali code-level. APK files 

for the benchmark application confirmed the validity of the 

results and the quality of the optimized compiler. 

In this research, the results demonstrate the ability to reduce 

the energy consumed of Android applications by reducing the 

execution time.  

As for the future work, A tool can be built to monitor power 

consumption at the Smali code-level in a programming stage. 

The tool identifies the hungry-energy instructions and helps 

developers produce less-consuming Android applications. 
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