
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

15

Solution- Architecture in ASP.Net Core

Ahmed Othman Mohammed
Department of Computer Science

Faculty of Science
Minia University, El-Minia, Egypt

Moheb R. Girgis
Department of Computer Science

Faculty of Science
Minia University, El-Minia, Egypt

ABSTRACT

In software development process, the development team

should focus on business development solutions not on

technical issues. This means that in order to increase the

developers' productivity, they must be assisted to focus only

on how to implement business issues. This can be achieved by

building a good solution in maintainable and reliable

architecture to avoid any critical problems. This paper

presents proposed solution architecture in ASP.Net Core that

can handle the business logic of multiple domains for the

same organization in one technical solution. This solution

uses multiple design patterns such as Repository, Unit of

Work, and Inversion of Controls, to solve common problems

that face developers and help them to increase business

productivity. Also, this solution provides an easy way to

integrate and facilitate the communication between domains.

This solution leverages some characteristics from

Microservices architecture and Domain-Driven Design

approach. Also, it includes some features to fit the problem

solution, and handles some common technical issues such as

authentication, authorization, caching, exception, tracing, etc.

The paper also presents a simple case study to show how the

proposed solution architecture enables multiple domains to

interact with each other to serve organization business needs.

General Terms

Solution Architecture, Software Development.

Keywords

Solution Architecture, Architecture Patterns, Design Patterns,

ASP.NET Core, Domain-Driven Design.

1. INTRODUCTION
There are common behaviors which the developer needs to

write to start in working or in implementing the business. In

real world, from business perspective, the main concern of a

business owner is achieving the client requirements not the

type of technical solutions that the developer has been used.

The main problem which faces the developer is the type of

architecture that he/she will use to achieve business

requirements. This means that the developer needs to consider

some factors like Memory and CPU utilities, Business rules

management, Data storage and other factors. Unfortunately,

good solution architecture is very expensive, and the

developer should be familiar with.

The solution architecture should guide the developers and

restrict their mistakes, which may cause application crash.

Also, it should be simple in working, and should handle more

assets like Dependency Injection, Authorization,

Authentication, Cashing, Database migrations, Security,

Mapping, Auditing, Rule base engine, Unit Testing … etc.,

which are very expensive.

ASP.NET Core [1], the next generation of ASP.NET, is a

cross-platform, high-performance, open-source framework,

developed by Microsoft, for building modern, cloud-based,

Internet-connected applications. It is a modular framework

that runs on Windows or any operating system (OS).

This paper presents proposed solution architecture in ASP.Net

Core (SAIA) that utilizes the power of design patterns such as

Repository, Unit of Work, and IoC (Inversion of Controls) to

solve common problems that face developers and help them to

increase business productivity. This solution provides a best

practice at each system component then packages all of them

in one solution architecture that will help developers and put

them on the right way to achieve their goals.

The paper is organized as follows: Section 2 presents some

related work that use similar concept but different

implementation. Section 3 presents the problem definition and

solution. Section 4 describes the high-level design of the

proposed solution architecture, and its benefits, then gives

summery of this solution. Section 5 presents a case study.

Finally, Section 6 presents experiments and results, and

Section 7 presents the conclusion of the presented work.

2. RELATED WORK
There are some solutions available in the market, which have

been implemented for the problem under consideration. This

section presents some examples of such solutions.

2.1 Clean Architecture
Clean Architecture [2] is a pattern, practice and principle,

which implements some concepts from Domain-Driven

Design (DDD). This solution is considered domain centric

architecture, which divides the solution architecture into

several components as shown in Figure 1. These components

are:

 Presentation Layer: represents the user interface.

 Application Layer: is a core layer that depends on the

Domain Layer.

 Domain Layer: is domain context with no dependency.

 Persistence Layer: handles database logic, depends on

the Application Layer, and implements IoC concept.

 Infrastructure Layer: depends on the Application Layer

and handles services which are related to OS and

external services.

 Common Layer: considered as cross cutting layer.

This solution architecture solves the problem under

consideration but the maintainability and readability of the

project will take more time because this solution handles all

domains as a parent domain and sub-domains, which will

make the project complex and hard to maintain, and increase

the dependency [2]. This kind of architecture is used for small

scope projects that contain some core user stories need to

focus on. [3]

https://en.wikipedia.org/wiki/ASP.NET
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Windows

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

16

Fig 1: The Clean Architecture Components

2.2 Microsoft Unit of Work Architecture
The Repository and Unit of Work patterns [4] are intended to

create an abstraction layer between the data access layer and

the business logic layer of an application. Implementing these

patterns can help isolate the application from changes in the

data store and can facilitate automated unit testing or Test-

Driven Development (TDD). This solution depends on TDD

not DDD. Some architects consider it as a database centric

architecture. It implements N-Tiers kind of solution

architectures, which divide the solution into several parts as

shown in Figure 2.

Fig 2: Microsoft Unit of Work Solution Architecture

2.3 ASP.Net Boilerplate
ASP.NET Boilerplate (ABP) [5] is an open source and well-

documented application framework. It's not just a framework,

it also provides a strong architectural model based on DDD,

with all the best practices in mind. ASP.Net Boilerplate

framework provides many features such as Dependency

Injection, Repository pattern, Authorization, Validation, Audit

Logging, Unit of Work, Exception Handling, Logging,

Localization, Auto Mapping, Dynamic API Layer, and

Dynamic JavaScript AJAX Proxy. But, as the Clean

Architecture, it deals with the problem as a main domain and

subdomains. ABP is good solution architecture but it needs a

huge learning curve from developers to understand. Figure 3

shows the components of ABP architecture.

Fig 3: Boilerplate Architecture Components

3. PROBLEM DEFINITION AND

SOLUTION
Assume that there is a big organization that needs

management system, which has a large-scale business logic

divided into multiple domains, such as Accounts, Accountant,

Sales, etc. The organization needs one solution that handles

all business logic across these domains in the same project.

The problem here is so difficult because one solution is

needed for all organization logic that should be maintainable,

readable, extensible, and provide ability of integration and

communication between domains.

Microservice architecture integrated with DDD can solve this

problem but not in the same solution, which means that each

domain will be separated from other domains and this will

consume more time for integration and communication

between these domains.

The solution architectures available in the market are either

very costly to license them or provide difficult solution. So,

this paper presents proposed solution architecture in ASP.Net

Core (SAIA) to solve the above-mentioned problems by

integrating some design patterns to develop a good model that

helps developers to implement and focus only on business

requirements. SAIA uses best practices from each field and

tried to eliminate the mentioned problems for helping

developers to be more productive. The proposed solution

provides a simple way to do all required tasks such that

multiple teams can collaborate with each other smoothly. This

solution will cover common functionalities such as

Authentication, Authorization, Security, User Management,

Service Locator, Rule-base engine, Notification engine,

Mapping, Exception Handling, Exception Logging, Email

Service, SMS Service, Caching, Project Template, and

Localization.

4. THE PROPOSED SOLUTION

ARCHITECTURE (SAIA)
The proposed solution architecture SAIA depends on some

design patterns and architecture patterns, such as DDD,

Microservices, Repository Pattern, Unit of Work, IoC,

Dependency Injection, Service Locator Pattern, Factory.

4.1 SAIA Components
Figure 4 depicts the components of the proposed solution

architecture. These components are described in the following

subsections.

https://github.com/aspnetboilerplate/aspnetboilerplate
https://aspnetboilerplate.com/Pages/Documents/Dependency-Injection
https://aspnetboilerplate.com/Pages/Documents/Dependency-Injection
https://aspnetboilerplate.com/Pages/Documents/Repositories
https://aspnetboilerplate.com/Pages/Documents/Authorization
https://aspnetboilerplate.com/Pages/Documents/Validating-Data-Transfer-Objects
https://aspnetboilerplate.com/Pages/Documents/Audit-Logging
https://aspnetboilerplate.com/Pages/Documents/Audit-Logging
https://aspnetboilerplate.com/Pages/Documents/Unit-Of-Work
https://aspnetboilerplate.com/Pages/Documents/Handling-Exceptions
https://aspnetboilerplate.com/Pages/Documents/Logging
https://aspnetboilerplate.com/Pages/Documents/Localization
https://aspnetboilerplate.com/Pages/Documents/Data-Transfer-Objects
https://aspnetboilerplate.com/Pages/Documents/Dynamic-Web-API
https://aspnetboilerplate.com/Pages/Documents/Dynamic-Web-API#dynamic-javascript-proxies

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

17

Fig 4: The components of the proposed solution architecture (SAIA)

4.1.1 Infrastructure Layer (Data Store Layer)
Data Store Layer is responsible for storing and retrieving data.

It can be SQL-Server, Oracle or any other data store type.

This layer is divided into five key elements:

 Database Management System, which will be SQL

Server.

 Database Entities, which play as object relational

mapping (ORM) for database tables or database

collections in case of using No-SQL database type.

 ORM Engine, like Entity Framework in our case, which

will be responsible for storing and retrieving data from

data source.

 Database Context Object, which will be managed by

Entity Framework to store and retrieve data.

 Data Filters.

4.1.2 Service Locator
The Service Locator is the most important object in our

solution architecture. This layer is responsible for resolving

any required dependency. This requires each domain to

register its own objects in it and decide whether they will be

shared between other domains or not. If any service in our

application needs a dependency, it doesn’t instantiate the

dependency explicitly from the respective class; instead it will

get it through the Service Locator. This will enable us to avoid

the overhead of creating unnecessary objects. Figure 5 shows

how the Service Locator resolves needed dependencies.

The pattern seeks to establish a level of abstraction via a

public interface and to remove dependencies on components

by supplying ‘plug-in’ architecture, i.e. individual

components are tied together by the architecture rather than

being linked together by themselves.

The main difference between shared services and local

services is that shared services need extra implementation. In

order to register any service as a shared domain service,

developer should add its interface to the Service Locator layer

to be accessible by other domains.

Fig 5: Service Locator Pattern and Dependency Injection

As shown in Figure 6, if any domain needs to register a

domain service as a shared service, it must share

implementation contract at the Service Locator, and data

transfer objects should be implemented in a shared layer. By

this way SAIA can isolate each domain and mark only

services that team needs to be shared as shared services to

interact with other domains. Service Locator layer plays a big

role in this case as it restricts sharing only for domain services

that can be shared not core objects or repositories.

4.1.3 Generic Repositories
The third component of the proposed solution architecture is a

generic repository for database root aggregate entities. The

generic repository is a class that can be used generically with

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

18

any entity of type DB entity and implements the main

methods that will be used to store and retrieve data.

Fig 6: Shared Services Registration

A generic repository will be used only on each bounded

context (domain) to get/restore data from database

generically.

4.1.4 Bounded Contexts (Domains)
This part will be the first part of isolation; SAIA will be

divided into multiple domains that collaborate with each other

using the Service Locator.

Each domain will follow the Onion Architecture [6]

implemented by DDD [7], which consists of some layers and

main Core layer at the center, as shown in Figure 7. It is

similar to classic layer architecture, except that Onion

Architecture and the Core part of domain can’t be dependent

on any other part. This means that the core elements of our

domain model should act in isolation from each other.

Fig 7: The Onion Architecture [6]

The Repository Layer will be responsible for dealing with the

generic repository and map database entities into domain

entity using Auto mapper and fluent APIs. Each domain in

our solution will be responsible for registering its objects on

the Service Locator layer and mark these objects as either

sharable objects or internal objects.

Fig 8: Examples of Cross-Cutting Services

4.1.5 Cross-Cutting service
Cross-Cutting services are consumed across all the solution

layers. A cross-cutting service can be a web service or NuGet

package or external repository, i.e. Notification Gateway,

Rabbit MQ, Exceptions, etc. These services can be used as

external services. Figure 8 shows some examples of these

services.

4.1.6 API Gateway
API Gateway is considered the end point for any consumer

that will call or deal with our service. It will present the

consumer to all domains (services) and the container that will

hold all references and support the required configuration.

Also, it will be Restful API (Service Oriented Architecture)

that can be consumed from Android, IOS, Angular or any

other consumer. Our solution will use OAuth concept to

secure this API; it will implement JSON Web Token (JWT) to

authenticate the users and give them the authorization.

JWT [8] is an open standard (RFC 7519) that defines a

compact and self-contained way for securely transmitting

information between parties as a JSON object. This

information can be verified and trusted because it is digitally

signed. JWTs can be signed using a secret key (with

the HMAC algorithm) or a public/private key pair

using RSA or ECDSA techniques. [8]

As Figure 9 shows, using JWT token to authenticate clients

and assign authorization to them each time they call the

server. Although JWTs can also be encrypted to provide

secrecy between parties, it is considered a signed token.

Signed tokens can verify the integrity of the claims contained

within it, while encrypted tokens hide those claims from other

parties. When tokens are signed using public/private key

pairs, the signature also certifies that only the party holding

the private key is the one that signed it.

Fig 9: JWT Auth

https://tools.ietf.org/html/rfc7519

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

19

Fig 10: Detailed components of SAIA

4.2 Benefits of SAIA
Section 2 presented some alternatives to the proposed solution

but each of these solutions fits a part of business. Also, all

these solutions except Boilerplate Architecture don’t fit the

problem under consideration. But, Boilerplate architecture

deals with a problem as a single domain with sub-domains not

as multiple domains. SAIA divides the problem into multiple

domains that can be dealt to with using the Service Locator.

The benefits of the proposed solution are:

 Like Microservice Architecture, SAIA can handle

multiple domains in one solution architecture.

 Communications and interactions between these

domains will be so simple and don’t need extra

work to do.

 SAIA can handle most common problems that face

the developers, and accordingly increase their

productivity.

 It guarantees memory optimization because no one

can create objects anywhere (DI Benefits).

 It implements DDD concepts, which guarantee code

maintainability and reusability.

 Identity management operation and external identity

providers integration will be implemented in a

single layer that will deal with API gateway, and

applications will receive only authenticated

requests.

4.3 Summary of SAIA
SAIA uses several design patterns that help developers to do

best practice to solve their problems. Integration of these

patterns with each other will help the developers to do only

business tasks and increase the productivity. Figure 10 shows

the detailed components of SAIA.

As Figure 10 shows, the proposed solution can be summarized

in the following points:

 API gateway will be responsible for filtering and

auditing and logging requests that will fire our

application. This allows us to do pricing, auditing,

and logging for our APIs.

 Identity Management Layer will be responsible for

authenticating and authorizing request plus handling

user management APIs.

 API Controllers and OData controllers hold solution

domains.

 The problem will be divided into multiple domains,

which will be integrated with each other through the

Service Locator.

 The Service Locator Layer will be responsible for

resolving all required objects across the project.

 Exception Handling Layer will handle any fired

exception and log it.

 Each domain will contain the following layers:

- Application Layer that will hold domain use cases

plus data transfer objects and parameter validations.

- Core Domain Layer that will contain domain

entities, events, value objects, repositories interfaces

and domain business.

- Rule Engine Layer that will be injected into the

Domain Layer and hold business rules.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

20

Fig 11: Create Coupon request

- Domain Infrastructure that will hold domain

repositories and data filters.

 Cross Cutting Services will register themselves into

the Service Locator Layer and used across all

solution parts.

 Infrastructure Layer will be used by domains

infrastructure and its responsibilities are ORM, Db

Migrations, Database Repositories, and Data Filters

5. CASE STUDY
As mentioned in the previous section, SAIA helps developers

to build an extensible solution for large scale projects that

share same data and infrastructures. This section presents a

small example that will show how SAIA enables multiple

domains to interact with each other to serve organization

business needs.

Let COPONO be a big organization that deals with generating

discount business coupons for clients. COPONO should have

a big database for its users and user’s clients. Also let

COPONO users be other organizations interested in different

business models. COPONO organization needs technical

solution that gathers its own business in one solution and

serves its business needs. COPONO organization will be

taken as the case study.

A small feature of COPONO business model will be taken as

an example to implement it across system layers to

demonstrate how SAIA implements the interactions between

its components.

Assume that COPONO includes two domains: Membership

domain and Cor-G domain. Membership domain will

encapsulate the business of users and clients and will be

responsible for supporting all services including storing and

retrieving all data that are related to COPONO users and

clients. Here, "users" refers to organizations that deal with

COPONO and "clients" refers to end-users who deal with

these organizations. Core-G domain will be responsible for

creating discount coupons for clients and validating these

coupons during their usage by client.

In this example, creating a coupon for a specific client will be

demonstrated. Core-G domain needs information about this

client. It will get this information from the Membership

domain, which exposes ClientService class that encapsulates

data about a client.

Figure 11 shows how SAIA deals with requests that require an

interaction between multiple domains in our organization.

SAIA forces each domain to implement its own logic and

share it to other domains through the Service Locator layer,

which plays a main role for aggregation and interaction

between layers.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

21

In this case, SAIA will take the following steps to handle

requests and interactions between domains.

Step 1: Initiate request

As shown in Figure 11, the salesperson opens his/her web-

portal and login to the system then selects the client that needs

a coupon.

As shown in Figure 12, the receiver of salesperson request is

SAIA’s API-Gateway (Firewall), which will be public for all

clients (Mobile, Web, and Desktop).

API-Gateway layer will be responsible for filtering the

requests and doing statistics and dealing with identity server

for checking authentication and authorization logic. If the

request is authorized, the system will send it to COPONO API

URL which will be responsible for handling the rest of the

request. If the request is not authorized the API-Gateway will

log it and return forbidden response to the salesperson to take

an action, such as re-login or refresh the authorization token.

Fig 12: Request Initiation

Step 2: Request handling

COPONO API is a non-public API that can be accessed only

from the API-Gateway, which make it highly secure. It

receives the authorized salesperson request. By implementing

this model, no one can reach our organization logic without

visiting the API-Gateway, which permits only authorized

requests to be processed.

As shown in Figure 13, COPONO-API includes

CouponController class, which is the API controller that is

responsible for handling coupon requests logic. The

CouponController receives Create Coupon request from

API-Gateway. CouponController has multiple dependencies

such as CouponApplicationService, which is responsible for

encapsulating the creation of coupons and other business

services.

Fig 13: COPONO API

In SAIA, the Service Locator layer is responsible for creating

dependencies to avoid any mistakes from non-experience

developers, and this will be the only way for resolving

dependencies. So, the CouponController will get its own

dependencies from the Service Locator using the power of

dependency injection.

CouponController uses property injection technique to get

an object from ICouponApplicationService, and then call

CreateCoupon() method which is responsible for consuming

domain service to do the required logic.

Step 3: Get client data through Membership domain

The Membership domain, in this case, registers a

ClientService as shared domain service to be used by other

domains. ClientService encapsulates some logic for the client

such as GetBasicData() which return some basic data about

this client. In this case, using this method to get client data by

passing a ClientId as a parameter and get Data transfer object

(Dto) that encapsulates client's information.

Figure 14 describes how the data will be extracted using

GetBasicData() on ClientService class. Also, the Service

Locator is responsible for getting a repository object of type

IClientRepository for ClientService class. GetBasicData()

calls a repository to get the required data.

ClientRepository class here doesn’t call a data source

directly but calls General Persistence layer class, which is

responsible for storing/retrieving data to/from data store.

General Persistence layer contains general repository classes,

which will be used by each domain repository or persistence.

It includes GClientRepository class, generic repository for

client, which is responsible for getting data from data store

and returning it to Membership domain’s repository class.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

22

Fig 14: Membership Domain layer

Step 4: Create the coupon by the Core-G Domain

Core-G domain is responsible for creating a coupon for the

specified client. ApplicationService layer in Core-G domain

is responsible for interacting with other domains to get all

required data.

In this case, CouponApplicationService class asks the

Service Locator to get an instance of ClientService, which

was implemented in the Membership domain, then the Service

Locator resolves the dependency and returns the required

ClientService object. Also, CouponApplicationService calls

GetBasicData() method to get required client basic data.

As shown in Figure 15, CouponApplicationService class

gets the client data from the Membership domain using

ClientService object.

Fig 15: Coupon Generation

Marking ClientService as a shared service allowed the

CouponApplicationService class to communicate with

Membership domain and get the required data.

By following this process, it can be said that “Each business

domain is responsible for deciding which services it will

share” and this provides easy communication between

domains.

Figure 15 shows the steps of generating coupons:

1. Application Service class (CouponApplicationService)

will get the client basic data from Membership domain.

2. Pass these data to CouponService class, which is

responsible for implementing the business of generating

a coupon.

3. CouponService calls its domain repository object to

save the new coupon and return its id. Then the

repository object calls the General Repository class to

save the new coupon.

4. General Repository will save the coupon data and

return coupon id to above layers.

This model will guarantee isolation between domains, and

each domain will be responsible for implementing its logic.

Also, each domain can contain multiple bounded contexts

which can communicate with each other in a simple way. The

Service Locator layer will be responsible for setting up the

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

23

communication channels between these domains and

guarantee the way for resolving all dependencies.

API Gateway will be responsible for filtering the requests and

pass only authorized requests to the application layer.

6. EXPERIMENTAL RESULTS
As the case study demonstrated, SAIA provides a

development strategy that helps developers and increases their

productivity. It also adds a value from business perspective by

eliminating the time that developers take to handle common

problems, such as authentication, authorization, exception

logging, caching and sharing services.

After assessment of a problem that has two domains, the times

required to handle and maintain common problems, with and

without using SAIA, are shown in Table 1.

Table 1. A comparison between development time with

and without using SAIA

Problem
Time Needed (in man-days)

with SAIA without SAIA

Architecture Assets

Project Template 0 10

Folder and Domain

Structure
1 10

Maintaining and enforcing

development rules and

technical architecture rules

0
> 5 / Main

change request

Implementing DDD 0
> 5/ each

domain.

Integrating domains 0

2 / deploying

and extracting

services if

microservices

are used

Deployment 1
1/

Microservice

Technical Tools

Authentication 0 >5

Authorization 1 >10

Caching 0 >5

Notifications (Firebase) 0

>20 for web

and mobile

platforms

Exception Handling and

Logging
0 > 10

Table 1 shows part of SAIA features that help the developer

to minimize the time taken to solve common problems. For

example, Project template feature does not take time because

SAIA provides a template that can be used directly, and

Authorization problem takes only 1 man-day because SAIA

provides the developer with a designed solution that handles

authentication and authorization using OAuth and JWT

technologies.

According to this evaluation, the business productivity chart

at the first 8 development weeks will be as showm in Figure

16. SAIA increases business productivity from the first day of

the development cycle because it handles all common

technical problems that face the devloper. It also adds a great

value for business team by increasing productivity; and for

development team by organizing a solution into multiple

domains and facilitating the communication between these

domains.

Fig 16: SAIA productivity chart

Fig 17 : Microservices (without SAIA) productivity chart

As shown in Figure 17, the used microservices architecture

without SAIA does not cover common problems, which

makes the developer reinvent the wheel. This will cause a

delay in delivery and business acheievement.

7. CONCLUSION
This paper presented proposed solution architecture in

ASP.Net Core, called SAIA, and described its components. It

is a good architecture that will solve and handle the huge

organizations business. It provides a simple way to do all

required tasks such that multiple teams can collaborate with

each other smoothly. It will handle multiple domains in one

solution architecture with easy communications and

interactions between domains. It guarantees memory

optimization and implements DDD concepts which guarantees

code maintainability and reusability. In addition, it provides

secured API gateway.

Also, the paper presented a small case study that showed how

SAIA enables multiple domains to interact with each other to

serve organization business needs.

Finally, the paper presented comparisons between

development time and team productivity with and without

using the proposed SAIA solution architecture. The results

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 42, March 2020

24

indicated that using SAIA significantly reduces the

development time, and increases the team productivity.

8. REFERENCES
[1] Roth D., Anderson R., and Luttin S. 2019. Introduction

to ASP.NET Core. https://docs.microsoft.com/en-

us/aspnet/core/?view=aspnetcore-3.0.

[2] Vegliach G. 2018. Clean Architecture by Uncle Bob:

Summary and review. https://clevercoder.net/

2018/09/08/clean-architecture-summary-review/.

[3] Clean-architecture-patterns-practices-principles, https://

app.pluralsight.com/library/courses/clean-architecture-

patterns-practices-principles/table-of-contents, Last

Accessed: 1/1/2019

[4] Dykstra T. 2013. Implementing the Repository and Unit

of Work Patterns in an ASP.NET MVC Application.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/

older-versions/getting-started-with-ef-5-using-mvc-4/

implementing-the-repository-and-unit-of-work-patterns-

in-an-asp-net-mvc-application.

[5] The ASP.NET Boilerplate. https://aspnetboilerplate.com

/Pages/ Documents/Introduction, Last accessed 4/1/2020.

[6] Palermo J. 2013. Onion Architecture: Part 4 – After

Four Years. https://jeffreypalermo.com/tag/onion-

architecture/.

[7] Millett S. and Tune N. 2015. Patterns, Principles, and

Practices of Domain-Driven Design, John Wiley & Sons,

Inc.

[8] Peyrott S. E. 2016-2017. The JWT Handbook, Auth0

Inc. Version 0.12.0.

IJCATM : www.ijcaonline.org

https://jeffreypalermo.com/2013/08/onion-architecture-part-4-after-four-years/
https://jeffreypalermo.com/2013/08/onion-architecture-part-4-after-four-years/
https://jeffreypalermo.com/tag/onion-architecture/
https://jeffreypalermo.com/tag/onion-architecture/

