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ABSTRACT
An exact solution of the vacuum Einstein field equations (VE-
FEs) has been obtained of a spatially homogeneous and anisotropic
(SHA) Bianchi type-I cosmological model by Kasner. The Kasner
metric is shown to be a special case, and the exact vacuum solution
of Kasner form model is obtained. Some physical properties of the
model have been discussed.
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1. INTRODUCTION
The simplest models are the Bianchi type-I cosmologies in class A
with n(i) = 0, i.e. Ci

jk = 0, where n(i) is the parameters various
symmetry types with values 0,±1 and Ci

jk are the structure con-
stants of the Lie algebra of the homogeneity group. So that all three
Killing vectors (the group generators) commute. They contain the
standard Einstein de-sitter model with flat spatial hyper-surfaces
(curvature index k = 0). In the vacuum case, all Bianchi type-I
models are given by the well-known 1-parameter family of Kasner
metrics (found in 1921 by E. Kasner and in 1933 by G. Lemaitre
without considering the Bianchi groups) [1].

The Kasner space-time is an exact solution of the VEE Rij = 0,
and the solutions play an important role in the discussion of cer-
tain cosmological questions. In another way, the Kasner solutions
are obtained if the energy-momentum tensor Tij vanishes and the
isometry group on spatial slices is the trivial one. Deruelle and
Sasaki 2003 [2] were considered the Kasner metrics in the Gauss-
Bonnet case.

The purpose of this paper is to obtain an exact solution of the vac-
uum FEs from a SHA Bianchi type-I cosmological model. The
well-known Kasner solution is obtained as a particular case.

2. BIANCHI TYPE-I COSMOLOGICAL MODEL
Let us consider the simplest vacuum SHA Bianchi type-I cosmo-
logical solution. This is the so called Kasner solution. The metric

of Bianchi type-I is given by [3]

ds2 = dt2 −
3∑

i=1

A2
i (t)dx2i , (1)

where Ai, i = 1, 2, 3 are functions of time t which are called
cosmic scale factors [3]. Note that if A1 = A2 = A3 = a we
encounter the Friedmann-Robertson-Walker (FRW) solution with
k = 0. The computations of the Ricci tensor Rij and its spur using
Mathematica [4] and [5]; the non-vanishing components are,

R11 = −Ḣ1 − θH1, (2)

R22 = −Ḣ2 − θH2, (3)

R33 = −Ḣ3 − θH3, (4)

R44 = θ̇ +H2
1 +H2

2 +H2
3 , (5)

where an overhead dot denotes derivative with respect to time t and
H1, H2, H3 and θ are the directional Hubble parameters (HPs) in
the direction of x1, x2, x3 and scalar expansion respectively gives

H1 =
Ȧ1

A1

, H2 =
Ȧ2

A2

, H3 =
Ȧ3

A3

, and θ = H1+H2+H3. (6)

The energy -momentum conservation condition is of the following
form

ρ̇+ θ (ρ+ p) = 0, (7)

where ρ is the proper energy density and p is the isotropic pressure.
Because it’s consider the vacuum solution, Tij = 0.
The EFEs are given by

Rij −
1

2
Rgij = 0, (8)

where the corresponding Ricci scalar R is given by

R = 2
[
H1H2 +H2H3 +H1H3 + θ̇ + θ2

]
. (9)

The “44” component of the Einstein field Equations (8) for the met-
ric (1) lead to

R44 −
1

2
R = − [H1H2 +H2H3 +H1H3] = 0. (10)

As the result at Equation (10), from the definition of θ it’s found
that

θ2 = (H1 +H2 +H3)2 = H2
1 +H2

2 +H2
3 . (11)
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Fig. 1. The plot of Kasner indices pi, i = 1, 2, 3 versus parameter 1
u .

Hence, using Equation (11) in Equation (5), we get

R44 = θ̇ + θ2 = 0. (12)

If θ = 0, Equation (11) implies that H1 = H2 = H3 = 0, i.e., A1,
A2 and A3 are constants. This gives Minkowski space-time.

If θ 6= 0 the differential Equation (12) can be solved by separation
of variables,

θ =
1

t− t0
. (13)

By a choice of the origin it can be set t0 = 0. Then

R11 = −Ḣ1 − θH1 = 0, (14)

Solving Equation (14), we get

H1 =
p1
t
, (15)

for some constant p1. Similarly by using Equations (3) and (4 ), we
obtain respectively

H2 =
p2
t
, and H3 =

p3
t
, (16)

for some constants p2 and p3. So the Equations (11), (13) and (16)
with (6) imply that θ = 1

t
= H1 +H2 +H3 = p1

t
+ p2

t
+ p3

t
, we

get

3∑
i=1

pi =

3∑
i=1

p2i = 1. (17)

These are known as the Kasner relations. Now from H1 = Ȧ1
A1

=
p1
t

we obtain that A1 = A0t
p
1 and similarly for A2 and A3 . Thus,

the Kasner’s metric can therefore be written as

ds2 = dt2 −
3∑

i=1

t2pidx2i , (18)

after the appropriate rescalings of xi, i = 1, 2, 3. Here pi, i =
1, 2, 3 are subject to Equation (17).

The Kasner metric (18) is a solution to the VEFEs, thus Ricci tensor
Rij , Ricci scalar R and its spur identify vanishes for any choice
of exponents satisfying the Kasner conditions. The full Riemann
tensor vanishes only when a single pi = 1, i = 1, 2, 3 and the rest
vanish, in which case the space is flat.

For t > 0 the Kasner metric metric (18) describes an expanding
homogeneous anisotropic universe, while for t < 0 the contracting
universe.

The exponents pi, i = 1, 2, 3 which is called the Belinskii, Kha-
latnikov, and Lifshitz (BKL) in the 1960’s and 70’s [6, 7, 8]
parametrization can be parametrized by a real variable u ≥ 1. Sup-
pose without loss of generality that p1 < p2 < p3, then

p1(u) =
−u

1 + u+ u2
, (19)

p2(u) =
1 + u

1 + u+ u2
, (20)

p3(u) =
u(1 + u)

1 + u+ u2
, (21)

as the parameter u varies in the range ( see Figure 3)

1 ≤ u < +∞. (22)

Figure 1 is a plot of pi, i = 1, 2, 3 versus parameter 1
u

. The num-
bers p1(u) and p3(u) are monotonously increasing while p2(u) is
monotonously decreasing function of the parameter u.

The parameterization for u < 1 leads to the same range by follow-
ing the inversion property

p1(
1

u
) = p1(u), (23)

p2(
1

u
) = p3(u), (24)
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Fig. 2. The plot of Kasner indices pi, i = 1, 2, 3 versus parameter 1
u .

p3(
1

u
) = p2(u). (25)

Figure 2 is a plot of pi, i = 1, 2, 3 versus parameter 1
u

. The num-
bers p1(u), p2(u) and p3(u) are monotonously increasing and de-
creasing function of the parameter u.

The quantity p1p2p3 is typically replaced by the Kasner parameter
u through

p1p2p3 =
−u2 (1 + u)2

(1 + u+ u2)3
, u ∈ [1,∞) . (26)

Looking for explicit values of those exponents one find that except
for the solutions with one index pi = 1, i = 1, 2, 3 the others van-
ish, which could be proved in correspondence with the Minkowsky
space solution (MSS) the Kasner indexes must be distributed in the
following way

−1

3
≤ p1 ≤ 0, (27)

0 ≤ p2 ≤
2

3
, (28)

2

3
≤ p3 ≤ 1. (29)

The Equations (19), (20) and (21) imply that except for the two sets
of Kasner exponents (1, 0, 0) or (2,−1,−1) and (−1

3
, 2
3
, 2
3
), all

other sets of exponents contain one negative number and two posi-
tive numbers which are all different. The Kasner metric belongs to
the homogeneous Bianchi type-I classification of the metric.

We come back to the spatial form of the Kasner metric (17) and
(18), one sees that the requirement of symmetry in the plane be-
tween the x2 and x3 directions implies the condition

p2 = p3. (30)

Figure 3 is a plot of pi, i = 1, 2, 3 versus parameter 1
u

. The
domain of u is [1,∞); for lower values of u the inversion prop-

erty (23), (24) and (25) holds. The numbers p1(u) and p3(u) are
monotonously increasing while p2(u) is monotonously decreasing
function of the parameter u.

It is easy to see that there are two solutions of Equation (17) which
satisfy the condition (30).

2.1 Flat space-time
The flat space-time should be noted that with

p1 = 1, p2 = p3 = 0. (31)

In this case, the metric becomes

ds2 = dt2 − t2dx21 −
3∑

i=2

dx2i . (32)

which can be transformed to a metric of a flat space using a coor-
dinate transformation. Due to this reason, the Kasner metric with
any of the Kasner exponents unite and the others vanish is called
the flat Kasner metric. The classical flat Kasner space-time has a
non-curvature singularity at t→ 0.

This case was given by Taub (1951) [9], other rediscoveries were
listed by Harvey (1990) [10] It is well-known that the Rindler
space-time [11] represents a part of the Minkowski space-time
rewritten in the coordinates connected with an accelerated observer
by the transformation

t sinh x3 = ξ, t cosh x3 = τ. (33)

It is worth noting that in this particular case. There is a coordinate
singularity at t→ 0.

It’s conclude that in the Bianchi type-I cosmology, which corre-
sponds to a flat but anisotropic universe, there are three different
scale factors referred to the spatial axes with two of them that in-
crease with time and one which conversely decreases.

3



International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.45, March 2020

Fig. 3. The plot of Kasner indices pi, i = 1, 2, 3 versus parameter 1
u .

2.2 Non-flat space-time
The non-flat plane symmetric should be noted that with

p1 =
−1

3
, p2 = p3 =

2

3
. (34)

In this case, the metric becomes

ds2 = dt2 − t
−2
3 dx21 − t

4
3

3∑
i=2

dx2i . (35)

This particular solution was found by Weyl [12] and Levi-Civita
[13] before the work of Kasner. This solution describes a universe,
where a real curvature singularity is present at t→ 0.

3. PHYSICAL AND GEOMETRICAL PROPERTIES
OF THE KASNER MODEL

The average scale-factor a(t), and spatial volume V are given by,

V =
√
−g = a3 = tp1+p2+p3 = t. (36)

Note that the spatial volume V of a Kasner metric grows with time
t thus in the limit t→ 0 we have a Big-Bang (BB) like singularity
and vanishes at t = 0 . It expands exponentially as t increases and
becomes infinitely large as t→∞.
The mean HPs, deceleration parameter (DP) and scalar expansion
θ are

H =
ȧ

a
=

1

3t
, (37)

q(t) =
−ä
aH2

= 2 (38)

θ = 3H =
1

t
. (39)

Those do not depend on the supremacy of any of the axis.
The directional HPs in the direction of x1, x2 and x3 are obtained

as

Hi =
pi
t
, i = 1, 2, 3 (no sum). (40)

We observed that the HPs, directional HPs, and scalar expansion
start with infinite value at t = 0 and then become constant (de-
creasing function of time t) after some finite time t.
The shear scalar σ2, and the average anisotropy parameter Ā, which
are defined as

σ2 =
1

2

[
3∑

i=1

H2
i − 3H2

]
= 0, (41)

Ā =
1

3

[
3∑

i=1

(
Hi −H
H

)2
]

= 2 6= 0. (42)

The average anisotropy parameter Ā 6= 0 is constant throughout
the evolution of the universe, which implies that the Kasner model
is anisotropic.
The shear parameter is given by

Σ2 =
σ2

3H2
= 0 (43)

The shear scalar σ2 and shear parameter is zero throughout the evo-
lution of the universe.

4. CONCLUSION
Exact vacuum solution of the Kasner metric from Bianchi Type-
I models is obtained. The Kasner metric from Equation (18) de-
scribes an anisotropic space where volumes V linearly grow with
time, while linear distances grow along with two directions and de-
crease along the third one, different from the FRW solution where
all distances contract towards the singularity with the same behav-
ior. This metric has only one non-eliminable singularity in t = 0
with the single exception of the case p1 = 1, p2 = p3 = 0 men-
tioned above, corresponding to the standard Euclidean space.
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