
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 45, March 2020

22

Left-Right Mid Way Linear Searching Algorithm

Lakshay Goyal
School of Computer Science

UPES Dehradun

Kunal Sharma
School of Computer Science

UPES Dehradun

Tanu Rai
School of Computer Science

UPES Dehradun

Bharat Gupta
School of Computer Science

UPES Dehradun

Nitin Arora
Electronics & Computer Discipline

IIT Roorkee

ABSTRACT
Searching on an element from a large set of data elements is

always a time taking task. It becomes more challenging if the

data set is random and is very large, having millions of items.

Many searching techniques already exist like linear search, two-

way linear search, etc. All the exiting algorithms have their best

and worst performances depending upon the input cases. This

paper proposed a new technique Left-Right midway (LRMW)

linear search algorithm, which is based on the midway and then

two-way method. The proposed algorithm works well in many

types of input cases. The proposed algorithm, linear search

algorithm, and two-way linear search algorithm is implemented

in C language and tested on different size of input elements and

time of execution is calculated for all the three algorithms for

all input elements. Results show significant improvement if the

data set is extensive and the required element is present nearby

the middle element. The time complexity analysis of the

proposed algorithm is also discussed in the paper.

Keywords
Linear Search; Binary search; Two Way Linear Search; Time

Complexity Analysis.

1. INTRODUCTION
Searching is a technique that is used to find a particular element

in the array. When the iterator finds an element that is equal to

the key, then the search stops, and it returns the index of the

element. If the key is not present in the array, then the size of

the array will be returned. There exist many variants of the

linear search algorithm. In [1], the author discussed many

searching and sorting algorithms. Without searching, we would

have to look at each item of data individually, to see whether it

is what you are looking for. In this, we discussed three types of

searching methods: Mid Two Way Linear Search(proposed

algorithm), Two Way Linear Search [4], and Linear Search. We

also discussed the time complexity analysis of these three

searching algorithms. These searches are used to find a

particular element in the array. In linear search algorithms, the

array doesn't need to be sorted.

The rest of the paper is divided as follows: Related work is

discussed in section 2. Section 3 represents the existing

algorithms related to the article. The proposed algorithm is

discussed in Section 4. Time complexity analysis is done in

Section 5. Results are shown in section 6, and the paper has

been concluded along with future scope in section 7.

2. RELATED WORK
Many researchers work on searching for algorithms. In this

section, we discussed the work associated with searching

algorithms. In [1], the author discussed many sorting and

searching algorithms and also did the comparative analysis. In

[2] author compared the searching process of linear, binary, and

interpolation algorithms and also mentioned that in binary

search, a sorted array is required. The two-way linear search

algorithm is discussed in [4]. In this, the author searched the

key element from two sides left and right and found a

remarkable improvement in the time of execution for particular

cases. A new algorithm two-way counting position sort is

discussed in [3], which is based on a non-comparative sorting

technique. Double hashing technique in closed hashing search is

used in [5]. The author also quoted that this is one of the best

methods. In [6], Odd-Even based binary search algorithm is

proposed by the author. Odd-Even based binary search

algorithm is better than a binary search algorithm as this

algorithm searches the key element in less time. A ternary

search algorithm is proposed in [7], which is based on binary

search. The only difference is that the input array is divided into

three parts instead of two parts. In [8], a novel sorting algorithm

is discussed by the authors. They proposed sorting algorithms

and compared them with bubble and insertion sort. In [9], the

authors deploy all the sorting and searching algorithms. An

iterative method for recreating a binary tree from its traversals

is discussed in [10] and used linear search technique in this

method. All the basics searching and sorting algorithm with

time complexity analysis is presented in [11-12]

3. EXISTING ALGORITHM
There are many variants of the linear search algorithm. In this

section, we discussed some of the existing options of linear

search algorithms.

3.1 Linear search
Linear Search is used to find a particular element in an array.

There is not the compulsion of a collection to be sorted. Linear

Search starts consecutive searching the items in the array, and if

the element has been found, it will display the particular

element and the index value of the element. The performance of

linear search improves if the required value is present near the

beginning of the list than to its end.

Algorithm

Input: Array L, Key x and total number n

Output: If Key belongs to L return 1 else return -1

1: i = 0

2: for (i = 0; i< n; i++)

3: if (L[i] == x)

4: then return 1

5: if (i==x)

6: then return -1

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 45, March 2020

23

Let the input array be as follows (figure 1), and the key element

is 55. Now, to search a key component of the input array using

the linear algorithm, four comparisons are required.

Fig1. Processing of linear search

3.2 Two way linear search
In Two Way Linear Search, we initialize the array with the

values. In this searching will start to search the array from index

0 as well as from the index n-1. If the value is found at its

position from the left or the right, then it will return 1. If the

values are not found, the value returned is -1. Is it much faster

than Linear Search as linear search start searching from index 0

but two-way linear search both index 0 and index n-1?The

proposed algorithm executes in less time if the searching

element is present at the last positions or somewhere in the first

mid part of the array.

Algorithm

Input: Array L, Key x and total number n

Output: If Key belongs to L return 1 else return -1

1: first=0

2: last=n-1

3: while (first <= last)

4: if ((L[first] == x) or (L[last] == x))

5: then return 1 //end of while loop

6: else first = first+1; last = last-1;

7: if (first > high)

8: return -1

Let the input array be as follows (figure 2), and the key element

is 55. Now, to search for a key element in the input array using

the linear algorithm, two iterations are required.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 45, March 2020

24

Fig. 2: Processing of Two way linear search

4. PROPOSED ALGORITHM
In the proposed linear search, we initialize the array with the

values. In this searching will start to search the variety from the

middle. In these, the array is divided into halves, and the key is

compared with the middle element of the array. If the match is

found then, the location of the middle element is returned;

otherwise, we will apply the two-way linear search in both the

left and right subarray. The proposed algorithm executes in less

time if the searching element is present in the middle position or

last positions or somewhere in the first mid part of the array.

Algorithm

Input: Array L, Key x and total number n

Output: If Key belongs to L return 1 and return -1

1. low=0;

2. mid=(low+high)/2;

3. while ((low<=mid-1) && (mid+1<=high))

4. if (array[mid]==search)

a. 4. then return 1 //end of while loop

5. if (((array[low]==search) || (array[mid-

1]==search)) || ((array[mid+1]==search) ||

(array[high]==search)))

6. then return 1

7. else

8. low=low+1;

a. mid-1 =mid-1 -1;

b. mid+1 =mid+1 +1;

9. high=high-1;

10. if ((low>x) || (y>high))

11. return -1

Let the input array be as follows (figure 3), and the key element

is 45. Now, to search for a key element in the input array using

the proposed algorithm, only one comparison is required. Here

63 is the middle element. First, we will compare the key to the

central element. Then the algorithm will apply a two-way

search algorithm in both the halves.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 45, March 2020

25

Fig. 3: Processing of proposed algorithm

5. TIME COMPLEXITY ANALYSIS
In this section, we computed the time of execution of the three

algorithms for the different sizes of the input array. The details

are shown in table 1.

Table 1: Time of execution for different exiting algorithms and proposed algorithms for the different sizes of

inputs and various types of input cases.

Searching

Algorithm

/ Input

1000 10000 50000 100000 500000

EPSP EPEP EPSP EPEP EPSP EPEP EPSP EPEP EPSP EPEP

Two Way

Linear

Search

0 0 0 0 0 0 0.02 0 0.068 0.052

Linear

Search
0 0 0 0 0 0.016 0.021 0.061 0.092 0.125

Proposed

Algorithm
0 0 0 0 0 0 0 0 0.01 0.01

EPSP: Element Present at Starting present EPEP: Element

Present at ending Position

5.1 Linear Search Algorithm
The time complexity analysis is done using a linear method. For

the linear search algorithm as the size of the problem is reduced

to half in each iteration. The recurrence relation for the linear

search is:

 (1)

on solving eq. 1 for T(n)

 (2)

 (3)

 (4)

 (5)

.. ...

.. ...

 (n+1)

Adding all the eq. (2) to eq. (n+1)

We can say that the time complexity of the linear search

algorithm is O(n)

5.2 Two way linear search Algorithm
In Two Way Linear Search, the array doesn't need to be sorted.

In this, we will search the element in the array from index 0 as

well as from the index n-1. If the searched element is found at

its position from the left or the right, then it will return 1. If the

values are not found, the value returned is -1. Is it much faster

than Linear Search as linear search start searching from index 0

but two-way linear search both index 0 and index n-1.

5.3 Proposed Algorithm
In Mid Two Way Linear Search, firstly, we will search the

middle element if the searched element found it will return 1.

Then we will divide the array into two parts, and we will apply

the Two Way Linear Search in both the left and right sub array.

If the value is found, it will return 1; otherwise, it will return -1.

.This array doesn't need to be sorted. It is much faster than Two

Way Linear Search as it starts searching from both index 0 and

index n-1 in both sub arrays.

6. RESULTS AND DISCUSSION
In this section, we computed and compared the time complexity

of the proposed algorithm (mid-two-way linear search), two-

way linear search, and linear search algorithms. The time of

execution vs. size of the input array is shown in figure 1. The x-

axis represents the size of the array, and the y-axis represents

the time of execution. All three algorithms are tested for the

random array of sizes one lakh, two lakh, three lakh, four lakh,

and five lakhs elements. The time of execution is computed in

milliseconds. The results show that in starting the time

execution is almost the same, but by gradually increasing the

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 45, March 2020

26

size of the array two-way linear search takes very less time as

compared to linear search as it searches the values from both

the index.

Fig. 4: Time of execution vs. size of input array for all the three algorithms

7. CONCLUSION AND FUTURE SCOPE
Searching is a technique that is used to find a particular element

in an array. In the proposed linear search algorithm, two-way

linear search, and linear search algorithms, it's not necessary for

the array to be sorted unlike in case of binary search and ternary

search. By increasing the size of the array from 100 elements to

10,000 elements and more, the time of execution increases from

less time to consider time. There can be any random input

elements. The result shows that the proposed searching

algorithm is working well for all input values, and it takes lesser

time for specific types of inputs as compared to the other

searching techniques. In the future, many algorithms can be

proposed related to big data analysis.

8. REFERENCES
[1] Subbarayudu, B., et al. "Comparative Analysis on Sorting

and Searching Algorithms." International Journal of Civil

Engineering and Technology (IJCIET) 8.8 (2017): 955-

978.

[2] Rahim, Robbi, et al. "Comparison Searching Process of

Linear, Binary and Interpolation Algorithm." J. Phys.

Conf. Ser. Vol. 930. No. 1. 2017.

[3] Arora, Nitin, Anil Kumar, and Pramod Mehra. "Two Way

Counting Position Sort." International Journal of

Computer Applications 57.12 (2012).

[4] Arora, Nitin, Garima Bhasin, and Neha Sharma. "Two way

linear search algorithm." International Journal of

Computer Applications 107.21 (2014).

[5] Rahim, Robbi, Iskandar Zulkarnain, and Hendra Jaya.

"Double hashing technique in closed hashing search

process." IOP Conference Series: Materials Science and

Engineering. Vol. 237. No. 1. IOP Publishing, 2017.

[6] Karthik, S. "Odd Even Based Binary

Search." International Journal of Computer Engineering

& Technology (IJCET) 7.5 (2016): 40-55.

[7] Arora, Nitin, Mamta Martolia Arora, and Esha Arora. "A

Novel Ternary Search Algorithm." International Journal

of Computer Applications 144.11 (2016).

[8] Arora, Nitin, Suresh Kumar, and Vivek Kumar Tamta. "A

novel sorting algorithm and comparison with Bubble sort

and Insertion sort." International Journal of Computer

Applications 45.1 (2012): 31-32.

[9] ALAJEELI, Adnan Saher Mohammed. Development of

Sorting and Searching Algorithms. Diss. Ankara Yıldırım

Beyazıt Üniversitesi Fen Bilimleri Enstitüsü, 2017.

[10] Arora, Nitin, Pradeep Kumar Kaushik, and Satendra

Kumar. "Iterative method for recreating a binary tree from

its traversals." International Journal of Computer

Applications 57.11 (2012): 6-13.

[11] Lipschutz, Seymour. "Data Structure with C, Schaum

Series." (2009).

[12] McGraw-Hill, Herbert Schildt Tata. "The Complete

Reference C." (2005).

IJCATM : www.ijcaonline.org

