
International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

Metaheuristic Tuning Generalisation by Cross-Validated
Racing

Thiago Henrique Lemos Fonseca
Federal University of Santa Catarina

Department of Informatics and Statistics
Brazil

Alexandre Cesar Muniz de Oliveira
Universidade Federal do Maranho

Departament of Informatics
Brazil

ABSTRACT
Many tuning methods are based on concepts of sensitivity anal-
ysis combined with heuristics that tend to reduce the search
space by eliminating less promising configurations. Neverthe-
less, tuning parameters is a task that requires specific and time-
consuming experiments, especially when involving large prob-
lem instances. This is particularly due to existing methods were
not designed to efficiently generalise a tuning of parameters to
other instances that did not participate of the training process.
In this paper, the recently proposed tuning method named Cross-
Validated Racing (CVR) is revised in order to clarify theoretical
fundamentals of tuning problem and expand the experiments to
make possible evaluating its generalisation capacity against the
reduction in the size of the training set. For validation, the Bi-
ased Random-Key Evolutionary Clustering Search (BRKeCS) is
applied to solve scalable instance groups of Permutation Flow
Shop Scheduling Problem. The computation results have demon-
strated that CVR is robust in finding an effective parameter set-
ting, requiring training process in only a half of total instance set.

General Terms
Machine Learning, Optimisation

Keywords
Tuning, Irace, Permutation Flow Shop Scheduling, BRKeCS, Evo-
lutionary Clustering Search, Cross-Validated Racing Approach

1. INTRODUCTION
A metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop
heuristic global optimisation algorithms [29]. Metaheuristics are
considered as higher level heuristics that are devised to guide other
constructive heuristics or local searches to reduce the risk of being
trapped into a poor local optimum[28].
One of the main characteristics of metaheuristics is their possibility
of being instantiable to any problem formulated from quantitative
decision variables and numerical functions that represent objective
and constraints [30].
Adaptability can be achieved by a so-called performance parame-
ters, which despite being an elegant algorithmic behaviour adapta-

tion mechanism, it is also a challenge to provide the correct param-
eter adjustment in order to achieve competitive results [3].
Many metaheuristic tuning methods are based on concepts of sen-
sitivity analysis combined with heuristics that tend to reduce the
search space by eliminating less promising configurations [18].
Racing algorithms (RA) are tuning methods in which the perfor-
mance evolution of a candidate configuration can be performed in-
crementally in a race competition among candidate configurations
[3].
Nevertheless, tuning parameters is a task that requires time-
consuming experiments, especially when involving large problem
instances. Further more, even when applied to smaller instances,
most existing methods are not designed to generalise the parameter
tuning so that, in general, training on the entire dataset is required
to obtain robustly tuned parameters [2, 18, 1].
This paper is devoted to revisit the recently proposed tuning method
named Cross-Validated Racing (CVR) in order to clarify theoretical
fundamentals of the method as well as to expand the experiments
to make possible evaluating its generalisation capacity against the
reduction in the size of the training set.
Generalisation, by a machine learning perspective, allows to learn
the best tuning, from training instances, and to verify the perfor-
mance of the target metaheuristics in instances out of training. This
perspective differs from the usual one, since, in general, the practi-
tioners are interested in super tuning algorithms so that they obtain
high quality solutions for each instance. However, when the num-
ber of problem instances is significantly large, the instance-specific
tuning can be very time-consuming. This can be especially relevant
when dealing with large or complex instances for which the tuning
experiment time can even be prohibitive.
CVR, therefore, comes to provide an alternative for automatic tun-
ing of parameters from a small and representative training set, leav-
ing the larger instances out of this costly process. This possibility is
particularly important for the CVR itself since it is designed to run
many races and consequently be slower than other tuning methods,
when applied in all instances of interest.
For experiments, an application based on the recently proposed
Biased Random-Key Evolutionary Clustering Search (BRKeCS)
[6, 11] is employed to solve scalable instance groups of Permu-
tation Flow Shop Scheduling Problem.
This paper is organised as follows: Section 2 presents the back-
ground on metaheuristic tuning problem, featuring some differ-
ences among some existing tuning packages. Section 3 is devoted
to revisit Cross-Validated Racing, detailing each step of the tuning

1

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

method. In Section 4, the target optimisation problem, Permutation
Flow Shop Problem, is presented as well as the target metaheuristic,
Biased Random Key Evolutionary Clustering Search, highlighting
the parameters to be tuned. The computational results are discussed
in Section 5, especially with regard to the capacity of generalisation
of the CVR when applied to part of the training instances. Finally,
Section 6 is devoted to highlight the main findings and future re-
search.

2. THEORETICAL BACKGROUND
A theoretical framework is now exposed seeking to include ele-
ments of understanding of the proposal, while being sufficiently
generic to also encompass other approaches that are aimed at opti-
mising the running time necessary to obtain quality solutions after
the tuning process.

2.1 Tuning problem
In a tuning problem[3], a finite set of candidate configurations Θ
is given along with a class of instances I . A θ ∈ Θ, chosen to
perform at a time t ∈ T on an instance i ∈ I with probability
PI(i), generates a cost c. The set C is a collection of c with the
possible cost values of the best solution found in the execution of a
θ on the set I .
PC (c/θ,i) indicates the probability of c is the cost of the best solu-
tion by running for t(i) seconds with configuration θ on instance i.
The problem is to find, within a time T , the best setting (minθ), ac-
cording to a criterion C, when the measures PI e PC are unknown.
Thus, the Tuning Problem can be described by the following com-
ponents:

—Θ: set of candidate configurations;
—I: set of instances;
—PI : probability of an instance i to be selected to be solved;
—t : I → IR: the function that computes the computing time spent

to solve a given instance;
—c: a random variable that represents the cost of the best solution

found by running the θ setting on the instance i for t(i) seconds;
—C ⊂ IR: range of possible values of c, i.e., cost of best solution

found in a run θ configured on instance i;
—PC(c|θ, i): probability of c is the cost of the best solution found

by running the θ setting for t(i) seconds on the i instance;
—C(θ) = C(θ|Θ, I, Pi, PC , t): criteria to be optimised concern-

ing to the desirability of θ;
—T : amount of time feasible for experimentation given a set of

candidate configurations on a set of instances.

Based on these concepts, the Tuning Problem can be formally de-
scribed as the 7-Tuple 〈Θ, I, P I, PC, t, C, T 〉 where the goal is
given by:

θ = argmin
θ
C(θ) . (1)

It is expected to find the cost µ expressed by the integral:

µ =

∫
cdPC(c|θ, i)dPI(i) . (2)

The above expression cannot be computed analytically since the
values of PC e PI are not known. However, the samples can be
analysed and, according to these measurements, the quantities µ(θ)
can be estimated [27].

For this purpose, a set of experiments is performed with |J | = N .
For each experiment j ∈ J , from cost cj , the amount µ can be
estimated by µ̂:

µ̂ =
1

N

∑
j∈J

cj (3)

For example, given K distinct instances i1, i2, ..., iK , with K ≤
N , and the θ setting is executed n1 times on instance i1, n2 times
in instance i2, and so on. This is equivalent to consider a set of J
experiments that is partitioned into subsets J1, J2, ..., JK , where
|Jk| = nk e

∑
k nk = N . Each j element in the generic subset Jk

is an experiment consisting of running θ once on the instance ik.

2.2 Some tuning packages
Formally, the definition of [3] covers the main tuning methods di-
vided into two main distinctions: Model-Based and Model-Free ap-
proaches [13]. The former determines promising sample points to
be investigated, aiming to improve the model. The later draws im-
plicit conclusions based on heuristic rules where choices for in-
teresting parameter vectors to be investigated are often guided by
randomness or a simple experimental design.
In race approaches[3],[18], tuning algorithms are designed to pro-
vide a better allocation of computational resources between the
candidate configurations. Therefore, such methods have superior
performance than a typical brute force method. To do this, race
algorithms sequentially evaluate candidate configurations and dis-
card those of poorer quality as soon as sufficient statistical evidence
is gathered against them. Eliminating lower profit candidates, such
approaches tries to speed up the processing and evaluating more
promising settings in more instances, thus obtaining more reliable
estimates of the algorithm behaviour [9].
CALIBRA algorithm, in turn, uses Taguchis fractional factorial de-
sign of experiment coupled with a local search procedure, i.e., it
combines exploration and exploitation to find good parameter set-
tings [2]. Relevance Estimation and Value Calibration (REVAC)
estimates the distribution of promising parameter vectors by means
of information theory. REVAC can be classified as an Estimation of
Distribution Algorithm (EDA) and is limited to continuous param-
eter domains [20].
ParamILS, in turn, is an abstract algorithmic description [14], for
which the authors present two implementations: BasicILS and Fo-
cussedILS. The former compares simple estimates for the cost
statistics of subsequent runs while the later attempts to overcome
the overconfidence based on the training instances adaptively by
choosing the number of training instances to be used for the evalu-
ation of each parameter setting [14]. Both use iterative local search
techniques (ILS) to guide the search for promising areas in the
parameter search space. Recently, Variable Neighbourhood Search
was proposed to equiped ParamILS instead of ILS [5].

3. PROPOSAL APPROACH : CROSS-VALIDATED
RACING

CVR is a cross-tuning technique that employs cross-validation to
evaluate the performance of different metaheuristic parameter set-
tings considering different sets of instances in order to find a bet-
ter overall fit with the shortest execution time from a generalisation
perspective by Machine Learning. The approach can be graphically
described by the Figure 1:
As can be observed on Figure 1, CVR consists basically of sep-
arating a certain percentage of whole problem instances for the

2

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

Fig. 1. CVR conceptual design: training instances are distributed in folds
and k race iterations are performed over the folds until the configuration
most likely to obtain quality solutions eliminates the inferior ones with a
certain percentage of confidence.

training step, in which the best set of parameter values is held on.
The training instances are then organised into k mutually exclusive
folds. The training consists in performing k race tunings using the
leave-one-out method. Through statistical analysis, the configura-
tions most likely to be the best remain in the race until the best or
best family is found. The performance parameters should be ade-
quate enough to allow good performance of the target metaheuristic
also when applied to the instances that were out of the training step.

3.1 Data pre-processing
The pre-processing step in CVR comprises the instance organisa-
tion in folds in order to make them containing representative sub-
sets. It is expected the method to be robust concerning this first step,
but the effect of a bad distribution along folds was not studied yet
[11]. In this work, the instances are randomly distributed across the
folds.

3.2 K-fold Cross-validation
The CVR estimates the learning method error for instances not
included in the training step, that is, the residual error for new
instances (not considered yet). In fact, the generalisation the-
ory says that a machine M is able to generalise if, in the train-
ing set T = [x0, x1, , xn; y0, y1, , yn] containing the answers
y0, y1, ..., yn, given by a supervisor for the inputs of values
x0, x1, ..., xn, the machine is able to predict the responses to the
input variables that are not contained in T .
To analyse the estimation of CVR error it is necessary to consider
the concepts of bias and variance. The bias of an estimator is de-
fined as the value of the actual error minus the expected error value:

ε−E[ε̂] (4)

The variance is determined by:

E[(ε−E[ε̂)2] (5)

where the bias measures the mean accuracy of the estimated error,
while the variance measures the variability of the estimated error.
In the k-fold cross-validation process, the instance base Sn is ran-
domly partitioned into k groups of mutually exclusive instances of
the same size P = P1, P2, ..., Pk where k − 1 groups are used by
the estimation model in a training process and the remaining group
for testing. The process is repeated until all groups have undergone
a training and validation state. The estimated model error after val-
idation is given by:

ε̂(Sn, P) =
1

n

k∑
i=1

Pj∑
j=1

RACE(Pj , teste) (6)

where RACE(Pj , test) is the error resulting from the application
of the target metaheuristic tuned with the parameter set Pj in test
instance group. The error estimated by the cross validation is a
mean of model errors trained with the respective partitions Pj .
It is expected that successive cross-validation repetitions will sta-
bilise the estimation error, reducing the variance, increasing relia-
bility in the acquired results.

3.3 Race tuning
With the generated sets of instances, the running algorithm is ap-
plied in a training and testing process. In the training process, the
performance of a candidate setting θ is evaluated by being incre-
mentally acquired. In fact, the empirical average:

µ̂k(θ) =

k∑
j=1

cθj , (7)

where results for k experiments is an estimate of the criterion given
by:

µ(θ) =

∫
cdPC(c|θ, i)dPI(i) (8)

as long as the instances i1, i2, ..., ik are sampled according to the
measure PI and the costs cθ1, c

θ
2, ..., c

θ
k of the best solutions found

in an execution of the θ configuration at a time t are the realisa-
tion of stochastic variables described by the unknown measures
PC(c|θ, i1), PC(c|θ, i2), ..., PC(c|θ, i3).
Based on these assumptions, one can conclude that a sequence of
estimators µ̂1(θ), µ̂2(θ), ... can be constructed where µ̂1(θ) = cθ1
is simply the cost obtained by running a θ configuration at a given
time t on an instance i1 and the generic term µ̂k(θ) is given by:

µ̂k(θ) =
(k − 1)µ̂k−1(θ) + cθk

k
(9)

where cθk is the cost obtained by running the configuration θ at a
time t on the kth instance ik according to the measure PI . In other
words, µ̂k(θ) is an empirical mean of the observation vector:

ck(θ) = (cθ1, c
θ
2, ..., c

θ
k)

that can be acquired by adding the term cθk to the vector:

ck−1(θ) = (cθ1, c
θ
2, ..., c

θ
k−1)

whose average is the estimate µ̂k−1(θ).

3

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

The variance of this sequence of estimates decreases by 1/k, and
therefore the estimate of the performance of the candidate θ gets
sharper and sharper as k increases and converges to the true expec-
tation µ(θ).
Given the possibility of constructing the estimates, µ1(θ), µ2(θ), ...
for each candidate θ ∈ Θ, the racing algorithm incrementally builds
in parallel such sequences for all set candidates in Θ and, as soon as
sufficient evidence is obtained that criterion µ(θ

′
) for a given can-

didate θ
′

is better than the criterion µ(θ̃) of some other candidate
θ̃, and θ

′
is discarded for additional evaluations.

A racing algorithm therefore generates a sequence of nested sets of
candidate configurations:

Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ ...,
starting from Θ0 = Θ, and the next step, taken from set Θk−1 to
Θk, is obtained discarding some suboptimal configurations based
on available information at step k.
At step k, when the racing candidate set is Θk−1, a new instance
ik is selected out. Each candidate θ ∈ Θk−1 is tested in ik and the
observed cost cθk is appended in the vector ck−1(θ) to forming the
difference vectors ck(θ), one for each θ ∈ Θk−1.
The step k is finished by defining Θk and discarding from Θk−1
the sub-optimal sets using Friedman statistical test that compares
the vectors ck(θ) for all θ ∈ Θk−1.
The Algorithm 1 exemplifies the operation of a generic racing al-
gorithm.

Algorithm 1: Generic racing function
Data: M,Test
Result: θ
begin

numExp← 0; . Number of experiments;
numInst← 0 . Number of instances;
C ← ALLOCATEMATRIX(maxInstances,Θ);
survivors← Θ;
while numExp+ |survivors| >
M&numInstances+ 1 > maxInst do

i← CHOOSEINST() . Random selection of instances ;
numInst← numInst+ 1;
forall the θ ∈ survivors do

s← RUNEXP(θ, i) . run target-metaheuristic;
numInst← numInst+ 1;
C[numIns, θ]← EVALUATE(s);

survivors←
DELETECANDIDATES(survivors,C, Test)

θ ← BEST(survivors,C)

return θ; . best configuration

In short, the racing phase is the CVR’s core. The quest for the
best structure of the model is accelerated by the disposal of infe-
rior candidates as soon as statistical evidence of its poor quality is
collected. In fact, the measurement of µ(θ) relative to the generic
candidate θ, can be performed incrementally: the average of K er-
rors, each one with respect to its k examples in the dataset.
This amount can be approximated by the average µk(θ) which is
the optimal parameter setting for each step of the cross-validation.
Each k-fold cross-validation test generates an ideal parameter con-
figuration, however the goal is to find the parameter configu-
ration that performs better over all unknown instances. In this

way, CVR uses a statistical method based on the estimator µ =∫
cdPC(c|θ, i)dPI(i), µ =

∫
cdPC(c|θ, i)dPI(i) that allows to

find the optimal parameter configuration, with statistical relevance,
that has a shorter computational time among the parameters chosen
from all instances.

3.4 Statistical analysis
If the groups of instances generated in the preprocessing step are
representative, that is, each group is a representative sample of the
total base of instances, the following steps should return k equally
effective and statistically significant settings for solving the prob-
lem. However, since there is no way to guarantee the representative-
ness of the instance base (there may be groups of larger or harder
instances, i.e. heterogeneous distribution), there is a possibility in
the cross-validation process that some groups present more qual-
ity configurations than others, so a way is necessary to verify these
cases and treat them if they happen.
The statistical test used to guarantee the significance of the CVR
result is Kruskal-Wallis method (or non-parametric Anova - nP-
ANOVA). Unlike Kruskal-Wallis’s analysis of variance (Fisher’s
ANOVA, parametric test), nP-ANOVA does not require the as-
sumptions of normality of the variable or homogeneity of variances
among treatments. It is characterised as a distribution free test, that
is, the theoretical population distribution of the data need not be
estimated by means or sample variances for its correct application.
When significant differences are detected among treatments by the
nP-ANOVA, multiple double comparisons are usually made involv-
ing all pairs of treatments. At the end, a configuration optimised for
the whole set of instances and able to perform well in new instances
is obtained.

4. APPLICATION PROBLEM AND TARGET
METAHEURISTIC

Permutation Flow Shop Problem (PFSP) is a part of production
schedules that decides the order in which n jobs are processed onm
machines, subject to all the jobs are processed in all the machines in
the same sequence aiming to minimise some performance measure
as the duration of the programming (makespan) or total flow time.
PFSP plays a vital role in both automated manufacturing industries
and NP-hard class problem [19],[15],[25]. In this work, PFSP is
solved by finding the minimum makespan that is the total time that
elapses from the first and the last tasks processed.
To accomplish this optimisation problem, a hybrid metaheuris-
tic constructed from Biased Random-Key Genetic Algoritm
(BRKGA) [10],[12] and Evolutionary Clustering Search (ECS)
[22], has been recently proposed [11]. The Biased Random Key
Evolutionary Clustering Search (BRKeCS) is designed to perform
a clustering process for detecting promising search areas in a coded
search space instead of the original problem one [6].
Applications involving BRKGA and CS are first designed to deal
with the Minimisation of Tool Switches Problem (MTSP)[6].
MTSP is a combinatorial optimisation problem that seeks a se-
quence of jobs that minimises the number of tool switches required
for a given processing[31].
BRKGA is an evolutionary meta-heuristic that encodes a candidate
solution as a vector of random keys, i.e., a vector with real-valued
components randomly generated in the interval [0, 1]. In combi-
natorial optimisation, the algorithm seeks in the solution space
indirectly, by exploring the continuous unit hypercube and map-
ping continuous solutions to discrete ones using a encoder/decoder
scheme [12].

4

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

Clustering Search (CS) is a generic way of combining search meta-
heuristics with clustering in order to detect promising regions so
that these regions are subsequently exploited by problem-specific
heuristics [8].
CS attempts to locate promising search areas by framing them by
dynamic clusters that are represented by their respective center.
Clusters are created, activated and eventually removed depending
on the search dynamics performed by the support metaheuristic
[22, 6, 21, 17]. In Evolutionary Clustering Search (ECS), the sup-
port meta-heuristic is an evolutionary algorithm, working as con-
tinuous generator of candidate solutions[8].
In this work, BRKGA is employed to generate candidate solutions
for the clustering process, since it encodes a solution as a vector of
random keys and produces a feasible solution through the decoder.
BRKGA makes possible to simplify some components of the CS
framework, requiring implement only the decoder and local search
heuristic [6, 11].
The local search is an essential part to effectiveness of BRKeCS,
since the promising areas of search space should be explored as
soon as they are discovered. BRKeCS uses a 2-opt-based enumer-
ative heuristic for promising areas exploitation [7, 8]. Decoder is
designed to guarantee that, given as input a vector of random keys,
it produces a feasible discrete solution of the combinatorial optimi-
sation problem [12].
Despite the number of applications involving CS based algorithms
[21, 17], a certain difficulty rests on the need for specific procedures
for distance metric, assimilation operator and local search, beyond
native meta-heuristic operators. Besides, a lot of performance pa-
rameters need to be tuned as well[22].
The following parameters are needed to be tuned with respec-
tive ranges: number of clusters NumCl (1,20), population size P
(1,1000), mutation rate pm (0.0,1.0), elite rate pe (0.0,1.0), maxi-
mum number of individuals to make a cluster promising λ (0.0,1.0),
maximum number of local search rMax (1,10), and native local
search parameter, sometimes expressed as width (1,5) and depth
(1,5) in enumerative methods [8],[11].

5. COMPUTATIONAL RESULTS
For tests, a benchmark composed of two different set of instances
has been used: the first one, proposed by Taillard [26], commonly
found in literature. Taillard’s instances are composed of 12 groups,
ranging in size from 20 to 500 tasks and 5 to 20 machines, whereby
each group consists of 10 instances with the same size. The second
set, composed of randomly realistic instances, is generated with in-
creased difficulty degree obtained by employing a task and machine
correlation[32].
For tuning method, the Iterated Racing for Automatic Algorithm
Configuration (Irace package [18]) has been employed for both
CVR’s built-in racing method as well as a competitive method
for comparison purposes in its standalone version, without cross-
validation. In both cases, Irace package was roughly configured in
the following way: {maxExperiments = 1000,maxT ime =
20000, budgetEstimation = 0.02,mu = 5, seed =
NA, softRestart = 1, confidence = 0.95, elitist = 1}. Most
of these configuration parameters are well-known for practitioners
in algorithm tuning. The parameter mu is related to the number of
configurations evaluated at each iteration.

5.1 BRKeCS without CVR tuning
Initially, a test of solution quality has been led by running BRKeCS
5 times, using the same number of objective function calls as other

approaches found in literature: MOACSA [33], CR(MC) [4], ACO
and HAMC1 algorithms [16, 23, 24]. Table 5.1 shows the percent-
age difference of algorithms with respect to PFSP instances 20x20.
As can be observed, BRKeCS even without applying CVR tuning
has a competitive performance compared with those approaches.

Table 1. Gap obtained by 4 optimisation approaches in Taillard’s
instances 20x20

Instances HAMC1 CR(MC) MOACSA ACO GA BRKeCS
Ta021 2.51 7.41 0 5.44 0.45 0.13
Ta022 11.96 3.42 2.56 5.43 0 0*
Ta023 0.46 0 4.31 6.06 7.13 0.08
Ta024 11.41 0.29 0.30 6.70 0 0.04
Ta025 0 5.16 2.19 7.90 0.21 0.21

* In this instance has been found a new lower bound.

For the biggest instances, BRKeCS has showed satisfactory perfor-
mance when compared with the other metaheuristics, as ACO [16].
Table 5.1 introduces more results of problem instances considered
of high and medium difficulty.

Table 2. Best solution obtained by ACOC and BRKeCS
in Taillard’s instances with high and medium difficulty
Instances jobs machines Best sol. ACOC BRKeCS

Ta041 50 10 3025 4036 3109
Ta051 50 20 3875 7080 3923
Ta061 100 5 5493 6245 5493
Ta071 100 10 5779 7563 5782
Ta081 100 20 6282 13270 6378

5.2 Minimum training instance subset
Considering that CVR needs to execute k race tuning to model the
parameter distribution and infer the best settings, it is valid to gauge
the minimum set of instances that must be included in the tuning
process in order to avoid loss of quality in the generalisation step.
For setup purposes, the experiments described bellow were per-
formed using k = 5 folds and the total number of instances per
fold was calculated according to the size of the training subset.
In this work, the process of discovering the minimum instance sub-
set consists of incrementally adding instances of each group in the
tuning process and analysing their impact over the BRKeCS per-
formance when applied to the hardest problem instances (group 12,
i.e., 500-task group) that were left out of the training process.
Tests has been performed through 6 tuning experiments, whereby
the first one has used best parameters found by CVR for instances
of the same test group, including instances of group 12 (CVR-
specific). In other words, the residual error acquired is computed
over the same instances used in training. In theory, the BRKeCS’s
best results are expected for this experiment since the performance
parameters are found specifically for that group, making no use
of generalisation. The problem in this strategy is the computational
cost required to tuning BRKeCS specifically for all instance groups,
including larger ones (groups 11 and 12).
The following 4 experiments (2nd, 3rd, 4th and 5th experiments)
have used best parameters found by CVR for only a part of the
120 problem instances (CVR-percentage). In other words, based
on training over a certain percentage of representative instances,
BRKeCS was tuning and, later, tested on the instances of group
12 (generalisation group), from which the average of residual error
was calculated.
For CVR-percentage, the first training subset was chosen by adding
5 instances, at random, of each group, except the generalisation

5

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

group 12, totalling 55 representative instances. Observe that con-
sidering the total of 120 instances, 5 × 11 corresponds approxi-
mately to 46% of training set.
The second training subset was built adding 5 instances, at random,
of the less expensive groups (groups 1 to 10), totalling 50 repre-
sentative instances (42% of training set). The third training subset
was formed by taking only 3 instances, at random, of the same less
expensive groups (groups 1 to 10), totalling 30 representative in-
stances (only 25% of training set).
The fourth training set was further reduced so as to contain only
1 instance, chosen at random, of each group of less expensive in-
stances, totalling only 10 instances (8% of training set). In the 6th
experiment, the BRKeCS parameters have been tuned using litera-
ture, considering the type of problem to be solved [6].
Similar 6 experiments, using same percentages, have been per-
formed by applying BRKeCS over a new group of PFSP instances:
the realistic ones, built by mixed correlation process [32]. Once
again CVR-specific, CVR-percentage and literature tuning are em-
ployed in the experiment and later the BRKeCS’s residual error
averages are obtained as well.
The average of residual error acquired over the generalisation group
(group 12) during the generalisation test is showed in Figure 5.2
for both PFSP instances: Taillard (blue line) and realistic (red line)
instances. Preliminary evaluations has demonstrated a CVR pre-
disposition to keep the residual error lower than 0.05 when used
above 25% of the training instances. These residual errors are less
than ones obtained just using literature parameters. It is worth em-
phasising that such good residual errors were obtained between 30
and 50 training instances, taken from a total of 120 ones.
As can be seen in Figure 5.2, the smallest residual errors were
obtained by tuning specifically to each group of instances (CVR-
specific), which is equivalent to training on all available ones, with
no concern for time-of-experiment issues. As the training dataset is
reduced, the residual error tends to increase, but depending on the
percentage of instances used to compose the dataset, it is still more
advantageous than using only the expertise found in the literature.
It can be observed that better results than the literature can be ob-
tained by performing training with at least 30% of the instances,
for both, Taillard and Realistic cases.

5.3 Comparing CVR and Irace
Considering that CVR uses a built-in race tuning method, Irace
package in this work, it is valid to compare the BRKeCS’s per-
formance tuned by both methods. In particular, it is interesting to
assess the generalisation capacity of both methods: CVR and Irace.
Recalling that the generalisation capability allows to use only a part
of the problem instances in the training process, which is useful to
avoid the need for training with large instances. Therefore, in this
experiment, once again only a percentage of Taillard’s instances are
used in tuning process and the largest ones (500-tasks instances -
group 12) were left out of training to be used in the generalisation
phase.
Figure 3 shows the BRKeCS’s residual error behaviour for 46%,
42%, 25% and 8% of training database, when tuned by CVR and
Irace.
As one can observe, CVR makes BRKeCS to perform more ro-
bustly by finding parameters with greater generalisation capacity.
The performance of BRKeCS trained by CVR on only 8% of the
dataset (training instances = 10 and residual error = 0.06074)
is comparable to its performance when trained by Irace using al-
most half of the dataset (training instances = 55 and residual error
= 0.06246). Observe that, in addition, the performance degrada-

tion of Irace-trained metaheuristic is much more pronounced than
using CVR.
Despite the apparent CVR superiority in this experiment, observe
that Irace was not designed to generalise and needs to be trained
with the complete dataset. Since 500-task (group 12) instances did
not participate of the training, Irace does not know anything about
them. Another point to be considered is that applying CVR over
8% of instances should not be as stable as Irace with 46%, that
is, there is not enough instances for CVR to generalise with 95%
confidence every time.

5.4 Folds and instances per fold
For tuning by CVR, it is necessary to define two parameters: num-
ber of folds, (k), and number of instances per fold, (ik). The quality
of the training and consequently the generalisation capacity must
be influenced by these parameters. All previous experiments were
carried out with k = 5 folds and varying ik depending the total
number of required training instances.
In this section, additional experiments are described aiming to eval-
uate the impact of different CVR parameter settings over BRKeCS
tuning. Once again, instances of group 12 were left out of the train-
ing and used for validation sake.
Considering that the number of instances used in training is critical
for the generalisation process, two very extreme situations were
tested using 25% of training instances (30 instances of groups 1 to
10): 3 folds and 10 instances per fold (case 1) , and 10 folds and 3
instances per fold (case 2). The underlying question to be answered
is: which is more advantageous, for the same number of instances,
to have more folds or more instances in each fold?
The residual error obtained by BRKeCS in 50 trials on the instances
of group 12 after CVR tuning has been 0.05463 and 0.07416 for,
respectively, case 1 (k = 3 × ik = 10) and case 2 (k = 10 ×
ik = 3). As can be observed, 3× 10-tuned BRKeCS has reached a
smaller residual error, over largest instances (generalisation group).
Moreover, note that 0.05463 of residual error obtained with case 1
is slightly high than 0.049325, previously achieved for the same
number of training instances, 30, and depicted on figures 5.2 and 3,
in which were used k = 5× ik = 6.
There is therefore a relationship between k and ik that induces a
tuning with better robustness from minimal amounts of folds and
instances per folds. Analysing the behaviour of the method in the
extreme points, one can affirm that increasing k allows reducing
dependence on the representativeness of instances in each training
fold since this can eliminate the discrepant tuning models. Increas-
ing ik, in turn, should reduce the risk of over fitting, that is, over-
tuned parameters for a small number of instances.
Hence the extremes k = 1 and ik = 1 are highly detrimental to the
good performance for CVR. The former is equivalent to apply only
the racing method over many instances with no cross-validation.
The later is similar to applying cross-validation to completely dis-
crepant models.
In the experiment in question, it seems less harmful, in a presence
of a small number of instances (only 25%), to set up CVR in or-
der to form fewer folds with more instances instead of more folds
with fewer instances. It is possible to conclude that the number of
instances per fold has a greater weight than the number of folds for
the generalisation capacity.

6. CONCLUSION
This paper revisits the Cross-Validated Racing (CVR): a tuning
technique that employs cross-validation to evaluate the perfor-

6

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

Fig. 2. BRKeCS’s residual error average obtained in the generalisation test: at the extreme points are the residual errors referring to CVR-specific and
parameters found in the literature. The larger the training set, the better the quality of the solutions found by BRKeCS.

mance of different metaheuristic parameter settings in order to find
a better overall fit with the shortest execution time from a machine
learning perspective.
CVR is applied to tune the recently proposed Biased Random Key
Evolutionary Clustering Search in order to achieve competitive re-
sults for solving instances of Permutation Flow Shop Problem.
Computational experiments have been carried out considering the
expertise found in literature as well as racing method, using Tail-
lard’s and realistic instances.
The CVR generalisation capacity has showed a predisposition to
keep the residual error low when used between between 25% and
42% of training instances. When compared with Irace package,
CVR makes BRKeCS to perform more robustly by finding pa-
rameters with greater generalisation capacity. In the experiments
performed, it has been required around 6 times fewer instances of
training to obtain the same results over test instances. The generali-
sation process allows spending less training time, specially whether
instances outside of training are the largest ones.
A natural gap lies in experimenting CVR over other optimisation
algorithms and target problems, especially in applications that may
contribute to new frontiers of state-of-the-art in combinatorial op-
timisation. In this sense, one aspect that deserves special interest
concerns the ability of the CVR to select algorithms, not just algo-
rithm parameters.

7. ACKNOWLEDGMENTS
This research is partially supported by FAPEMA, BRAZIL (Proc.
UNIVERSAL 01294/16).

8. REFERENCES
[1] Eduardo Batista de Moraes A. Barbosa, Edson Luiz Frana

A Senne, and Messias Borges A. Silva. Improving the perfor-
mance of metaheuristics: An approach combining response
surface methodology and racing algorithms. International
Journal of Engineering Mathematics, 2015.

[2] Belarmino Adenso-Diaz and Manuel Laguna. Fine-tuning of
algorithms using fractional experimental designs and local
search. Operations research, 54(1):99–114, 2006.

[3] Mauro Birattari. Tuning Metaheuristics: A Machine Learning
Perspective. Springer Publishing Company, Incorporated, 1st
ed. 2005. 2nd printing edition, 2009.

[4] Rajendran C. Heuristics for scheduling in flowshop with mul-
tiple objectives. European Journal of Operational Research,
82:540555, 1995.

[5] Leslie Prez Cceres and Thomas Sttzle. Exploring variable
neighborhood search for automatic algorithm configuration.

Electronic Notes in Discrete Mathematics, 58:167 – 174,
2017. 4th International Conference on Variable Neighbor-
hood Search.

[6] A.A. Chaves, L.A.N. Lorena, E.L.F. Senne, and M.G.C. Re-
sende. Hybrid method with cs and brkga applied to the mini-
mization of tool switches problem. Computers & Operations
Research, 67:174 – 183, 2016.

[7] G.A Croes. : A method for solving traveling salesman prob-
lems. Operations Research, 6:791–812, 1958.

[8] A.C.M de Oliveira and L.A.N. Lorena. Hybrid evolutionary
algorithms and clustering search. In Ajith Abraham, Crina
Grosan, and Hisao Ishibuchi, editors, Hybrid Evolutionary
Algorithms, volume 75 of Studies in Computational Intelli-
gence, pages 77–99. Springer Berlin / Heidelberg, 2007.

[9] Katharina Eggensperger, Marius Lindauer, and Frank Hutter.
Pitfalls and best practices in algorithm configuration. CoRR,
abs/1705.06058, 2017.

[10] M. Ericsson, M.G.C. Resende, and P.M. Pardalos. A genetic
algorithm for the weight setting problem in ospf routing. Jour-
nal of Combinatorial Optimization, 6(3):299–333, Sep 2002.

[11] Thiago Henrique Lemos Fonseca and Alexandre Cesar Muniz
de Oliveira. Tuning of clustering search based metaheuristic
by cross-validated racing approach. In Ignacio Rojas, Gon-
zalo Joya, and Andreu Catala, editors, Advances in Computa-
tional Intelligence, pages 62–72, Cham, 2017. Springer Inter-
national Publishing.

[12] José Fernando Gonçalves and Mauricio G. C. Resende. Bi-
ased random-key genetic algorithms for combinatorial opti-
mization. Journal of Heuristics, 17(5):487–525, Oct 2011.

[13] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Se-
quential model-based optimization for general algorithm con-
figuration. In International Conference on Learning and In-
telligent Optimization, pages 507–523. Springer, 2011.

[14] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and
Thomas Stützle. Paramils: an automatic algorithm configu-
ration framework. Journal of Artificial Intelligence Research,
36:267–306, 2009.

[15] S. M. Johnson. Optimal two- and three-stage production
schedules with setup times included. Naval Research Logis-
tics Quarterly, 1(1):61–68, 1954.

[16] Tarik Lamoudan, Fatima Elkhoukhi, Jaouad Boukachour,
et al. Flow shop scheduling problem with transportation
times, two-robots and inputs/outputs with limited capac-
ity. International Journal of Intelligent Computing Research
(IJICR), 2(1/2/3/):244–253, 2011.

7

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

[17] Y. Liu, Y.and Ouyang, H. Sheng, and X. Zhang. Artificial
bee and differential evolution improved by clustering search
on continuous domain optimization. Signal Image Technology
and Internet Based Systems, 2008.

[18] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez
Cáceres, Thomas Stützle, and Mauro Birattari. The pack-
ageirace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3:43–58,
2016.

[19] E. Mokotoff. Minimizing the makespan and total flow
time on the permutation flow shop scheduling problem. In
J. Blazewicz, M. Drozdowski, G. Kendall, and B. McCol-
lum, editors, Proceedings of the 4th Multidisciplinary In-
ternational Scheduling Conference: Theory and Applications
(MISTA 2009), 10-12 Aug 2009, Dublin, Ireland, pages 479–
506, 2009. Paper.

[20] Volker Nannen and Agoston Endre Eiben. A method for pa-
rameter calibration and relevance estimation in evolution-
ary algorithms. In Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages 183–190.
ACM, 2006.

[21] A.C.M Oliveira and T. S. Costa. Artificial bee and differen-
tial evolution improved by clustering search on continuous
domain optimization. Soft Computing, pages 1–12, 2014.

[22] Alexandre C. M. Oliveira and Luiz A. N. Lorena. Ad-
vances in Artificial Intelligence – SBIA 2004: 17th Brazilian
Symposium on Artificial Intelligence, Sao Luis, Maranhao,
Brazil,September 29-Ocotber 1, 2004. Proceedings, chap-
ter Detecting Promising Areas by Evolutionary Clustering
Search, pages 385–394. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[23] Ahmad Rabanimotlagh. An efficient ant colony optimiza-
tion algorithm for multiobjective flow shop scheduling prob-
lem. world academy of science, Engineering and Technology,
75(54):127–133, 2011.

[24] Selvakuar S. J. Ravindran D., Noorul Haq A. and Sivaraman
R. Flow shop scheduling with multiple objective of minimiz-
ing makespan and total flow time. International Journal of
Advanced Manufacturing Technology, 25:10071012, 2005.

[25] S Reza Hejazi and Soroush Saghafian. Flowshop-scheduling
problems with makespan criterion: A review. 43:2895–2929,
07 2005.

[26] ric Taillard. Scheduling instances, 2013.
[27] Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the

Monte Carlo Method (Wiley Series in Probability and Statis-
tics). 2 edition.

[28] Said Salhi. Heuristic Search Book: The Emerging Science of
Problem Solving. Springer, 2017.

[29] Kenneth Sörensen and Fred W. Glover. Metaheuristics, pages
960–970. Springer US, Boston, MA, 2013.

[30] El-Ghazali Talbi. Metaheuristics: from design to implementa-
tion, volume 74. John Wiley & Sons, New Jersey, USA, 2009.

[31] Christopher S. Tang and Eric V. Denardo. Models arising
from a flexible manufacturing machine, part i: Minimiza-
tion of the number of tool switches. Operations Research,
36(5):767–777, 1988.

[32] Jean-Paul Watson, Laura Barbulescu, L. Darrell Whitley, and
Adele E. Howe. Contrasting structured and random permuta-
tion flow-shop scheduling problems: Search-space topology

and algorithm performance. INFORMS Journal on Comput-
ing, 14(2):98–123, 2002.

[33] B Yagmahan and M. M. Yenisey. A multi-objective ant colony
system algorithm for flow shop scheduling problem. Expert
Systems with Applications, 37:1361–1368, 2010.

8

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.47, March 2020

Fig. 3. Behaviour of CRV and Irace for gradual decrease of instances for training: BRKeCS performs better on the test instances with CVR parameters even
with a reduced training dataset (8% - 10 instances).

9

	Introduction
	Theoretical background
	Tuning problem
	Some tuning packages

	Proposal Approach : Cross-Validated Racing
	Data pre-processing
	K-fold Cross-validation
	Race tuning
	Statistical analysis

	Application problem and target metaheuristic
	Computational results
	BRKeCS without CVR tuning
	Minimum training instance subset
	Comparing CVR and Irace
	Folds and instances per fold

	Conclusion
	ACKNOWLEDGMENTS
	References

