Design of a Compact Bandstop Ulam Spiral Frequency Selective Surface

Rodrigo B. Moreira
State University of Southwest Bahia (UESB)
DCT – CPDS
Jequié – BA, Brazil

Alex F. dos Santos
Federal University of Recôncavo da Bahia (UFRB) CETENS
Feira de Santana – BA, Brazil

Saulo C. Peixoto
State University of Southwest Bahia (UESB)
DCT – CCSTI – CPDS
Jequié – BA, Brazil

Robson Maniçoba
State University of Southwest Bahia (UESB)
DCT – CCSTI – CPDS
Jequié – BA, Brazil

ABSTRACT
In this paper, a novel low-profile bandstop Frequency Selective Surface (FSS) is proposed for Wireless Local Area Networks (WLAN) Applications. The unit cell of the proposed FSS consists of a modification in a square patch element by the insertion of square shaped slots to obtain the Ulam spiral. The designs demonstrate a dual stopband in the WLAN frequencies bands, with angular independence.

Keywords
Frequency selective surfaces, angular stability, Ulam spiral, Dual-band, WLAN

1. INTRODUCTION
Frequency Selective Surface (FSS) is a kind of periodic structure and can be defined as a 2D or 3D planar array structure of identical elements on one side of the dielectric slab, widely used as spatial filters in many telecommunications applications. FSS elements can be of aperture type, patch type or an array of all-dielectric elements. These structures can exhibit bandstop or bandpass characteristics, with the proposal for blocking electromagnetic waves in certain frequencies, which depends primarily on the type and the geometry of the structure in one period called unit cell [1-5].

FSS have received special attention by several researchers over the years due to their widespread applications. The applications include bandpass and bandstop spatial filters, absorbers, artificial electromagnetic bandgap materials, uses as superstrate of antenna or antenna array to enhance the directivity and gain [6-8]. One of the most important uses is the integration with antennas systems acting as radomes and subrefectors, the latter is applied to separate electromagnetic waves into different frequency bands.

Currently, FSS with spiral elements, angular stability, polarization independent, and multiband or wideband characteristics (transmission or reflection), has received special attention [9-16].

In this paper, a compact bandstop FSS with Ulam spiral elements providing a dual-band response, from 2.0 GHz to 2.45 GHz and from 4.3 GHz to 5.8 GHz approximately, for a 10 dB insertion loss reference level, is proposed. A structure of the element in the unit cell provides an angular stability and can be used for WLAN applications.

2. ULAM SPIRAL
Ulam spiral, also known as prime spiral, can be defined as a graphical representation of a set of prime numbers. The process consists of distributing an infinity of natural numbers in a spiral sequence that starts from the number 1, following the sequential distribution of these numbers (1, 2, 3, 4, ...). The Ulam spiral is obtained by writing the positive integers numbers in a spiral arrangement. The spiral curve considered is in the counterclockwise and the position of each number in the sequence is represented by a square. Through this distribution, it is possible to highlight the squares containing the prime numbers, as can be seen in Figure 1.

Fig 1: Ulam Spiral (Up to natural number 100).

The visual effect of the spiral gains more property as the number of natural numbers in the distribution increases, Figure 2. The dimensions of the squares can be of any measure, however their use is often seen with tiny sizes and the computational resources for this analysis is essential.
3. PROPOSED FSS UNIT CELL

The geometry of the proposed bandstop FSS structure, from Ulam spiral, was characterized by the removal of squares with sides equal to 2.0 mm whose location in the distribution in the form of Ulam spiral was the location of a prime number. The proposed geometry is obtained from a square patch of dimensions $l = 22.0 \text{ mm}$ and $h = 22.0 \text{ mm}$, as can be seen in the Figure 3.

The periodicity considered for the construction of the unit cell was $T_x = T_y = 24.0 \text{ mm}$. Figure 4 represents the distribution of the numbers from 1 to 101 in the shape of Ulam spiral, as well as the emphasis given to the prime numbers that were removed from the square patch.

A better detail of the dimensions used in the highlighted squares, can be seen in Figure 5. It shows that the sides of the square considered were 2.0 mm and their locations are defined by the distribution of the numbers in a spiral shape.

The FSS structure is mounted on a dielectric substrate (a low-cost FR-4 substrate) with relative permittivity of 4.4 with dielectric loss tangent of 0.02 and the thickness dielectric substrate is 1.28 mm.

4. RESULTS

The performance of the proposed Ulam spiral FSS in terms of transmission characteristics was obtained using Method of Moments (MoM), these results are presented in Figures 6. Can be observed a transmission characteristics for the proposed FSS structure with resonances frequencies at 2.25 GHz (-32.83 dB) and at 5.4 GHz (-22.55 dB), with bandwidths equal to 450 MHz (from 2.0 GHz to 2.45 GHz) and 1.50 GHz (from 4.3 GHz to 5.8 GHz), for a 10 dB insertion loss reference level, respectively.
The proposed Ulam spiral FSS can be used in WLAN applications and it has very attractive characteristics, such as a low-profile structure and an angular independence. Several frequency channels used in WLAN are within the bandwidths obtained for the proposed FSS: 2.4 GHz (IEEE 802.11b/g/n), and 5 GHz (802.11a/b/j/n/ac).

5. CONCLUSION
A compact single-layer bandstop Ulam spiral FSS is proposed in this paper. A simple modification on a traditional square patch FSS was made, squares shaped slots was inserted into it. This modification allowed to obtain a structure for WLAN applications. This FSS structure has the advantage of angular stability and dual-hand frequency response at WLAN frequencies bands. As a proposal to continue this work, an investigation with the proposed structure with a different number of squares in the shape of Ulam spiral and in a multilayer format can be made to observe the behavior in terms of transmission and reflection coefficients and its bandwidths.

6. ACKNOWLEDGMENTS
This work is supported by Foundation for Research Support of the State of Bahia (FAPESB – Fundação de Amparo à Pesquisa do Estado da Bahia).

7. REFERENCES

Fig 5: Transmission coefficient for the proposed FSS.

International Journal of Computer Applications (0975 – 8887)
Volume 177 – No. 47, March 2020

IJCA™: www.ijcaonline.org