
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 47, March 2020

34

Performance Optimization by Integrating Memoization

and MPI_Info Object for Sieve of Prime Numbers

Haraprasad Naik
Asst. Professor

Dept. of Computer
Science,

Utkal University, Odisha,
India

Mousumi Mishra
Graduate Student, M.Sc

Computer Science,
Utkal University, Odisha,

India

Gayatri Routray
Graduate Student, M.Sc

Computer Science,
Utkal University, Odisha,

India

Megharani Behera
Graduate Student, M.Sc

Computer Science,
Utkal University, Odisha,

India

ABSTRACT

Sieving prime numbers is an idle example of linear time

algorithm since the first sieve of this kind proposed by

Eratosthenes. Afterward many sieving algorithm are proposed

such as-: Sieve of Sundaram, Sieve of Atkin, Sieve of

Sorenson and wheel factorization of prime number. In this

paper we have proposed the integration of parallelism with

these sieving algorithm. We have proposed MPI_Info object

with memoization to avoid redundant steps during prime

number processing and adding them into the sieve.

Nevertheless this paper also demonstrates the MPI Binding

with familiar/popular object oriented programming language

such as-: C++ and Java. This binding done through the two

different tools which includes OpenMPI and MPJ Express.

Keywords
Java, Open MPI, Prime Table, Java Native Interface,

Message Passing

1. INTRODUCTION
MPI is the acronym of Message Passing Interface, which is a

standard of communication when the program requires

parallelism[5]. MPI is a collection of multiple advanced

routines. MPI functions are soly responsible for various task

such as spawning, barrier synchronization as well as set

operation.

One of the advantages of using MPI over traditional processes

and sockets is the ability of launching multiple executable

simultaneously or concurrently. There are two main MPI

implementation available such as Open MPI, MPICH2. Every

MPI program should atleast have MPI_Init() and MPI-

Finalize(). MPI-Init is used for the calling task, it must be

called before any other MPI functions. For Example:-

MPI_Init(&argc,&argv);. These command line arguments are

passed in Init as a "command" and "variable" that are relevant

to it. The MPI_Finalize() routine deallocates resources from

the MPI task no more MPI functions are called after

MPI_Finalize() has been declared. For Example:-

MPI_Finalize();.

 In this paper represented the method of implementations of

MPI_Info object has been represented, by which the

performance can be improved. The method of implementation

of MPI_Info object through which the performance of

algorithms meant for sieving the prime numbers can be

improved. We have also integrate the concept of memoization

through which the redundant processing are avoided.

Java Native Interface is the principal approach of this paper.

Java has been proposed since a long ago, the feature of high-

performance computing became very significant for its

appealing features, any java program with this feature will

create a optimized program in terms of parallelism.

MPI is a popular library which is generally used in HPC

application. For abstraction of many details of the underlying

networking(S). MPI can be implemented using three types of

communications schemes:-

1. Point to point

2. One sided.

3. I/O

In point to point communication scheme a pair of peers can

exchange message which are belongs to different MPI

process. In One sided communication scheme Messages can

be interchanged among two processes, where one process is

not explicitly participating in the operation. In I/O

communication scheme multiple MPI processes can

simultaneously access storage subsystems.

MPI communicator is a collection of MPI processes. The API

of MPI is responsible to utilize multiple types of handles. In

the case of MPI communicator the handle is MPI-COMM. In

java the MPI handles are presented as Objects[11]. Several

MPI implementations available, Open-MPI is one of the most

widely used and it is developed as a coordinated international

effort.

MPJ Express is an extended form of open-MPI which can be

used in support of object oriented programming. The java

programming language has similar syntax with C and C++.

Its main advantages is that its source files are translated into

byte code which is an intermediate code that is executable on

JVM[11].

 Java programs are platform independent i.e any program can

be executed over another system which has JVM without

recompiling the program[11]. The Java Development Tool Kit

(JDK) is used to develop software which contains compiler,

debugger, and other tools that provides a architecture

independent way to implement host centric features like

graphics, thread, networking and file management. The Java

Native Interface (JNI) is used to call/invoke Remote

subroutines from many different APIs and vice-versa.

The MPJava, MPJExpress and F-MPJ are some examples of

developing java binding on a pure java basis by implementing

socket or RMI. Usually a java method calls MPI primitive

through JNI and extract the result that can be return to java

method. public static void main (String[] arg) throws

MPIException {

MPI.Init (arg) ;

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 47, March 2020

35

int r = MPI.COMM_WORLD.getRank(),

s = MPI.COMM_WORLD.getSize(),

delay = 100;

double hi = 1.0 / (double)delay ,

summ = 0.0;

for (int j = r + 1; j <= delay; j += s){

double xi = hi* ((double) j -0.5);

summ += (4.0/(1.0+xi*xi)); }

double sBuffer [] = { hi * summ },

rBuffer [] = new double [1];

MPI .COMM_WORLD .reduce

(sBuffer, rBuffer, 1, MPI .DOUBLE, MPI .SUM, 0) ;

if (r == 0) System.out.println("PI: "+ rBuffer [0]) ;

MPI.Finalize();}

Exception Handling:-

Exception handling is the general method to deal with errors.

Exception handling is supported by both open MPI and MPJ

Express. MPIExceptions is thrown by every java method if

MPI primitive called through JNI which returns with an error

code rather than MPI_SUCCESS. The java API may return

exceptions if the MPI .ERRORS_RETURN is set as follows:

MPI.COMM_WORLD.setErrorhandler(MPI.ERRORS_RET

URN);

The try_catch block can be used to separate the main

application code from error handling code.

try {

File f = new File

(MPI .COMM_SELF, “filename”, MPI .MODE_RDONLY);

}

catch(MPIException ex) {

System.err.println("Error Message: "+ ex.getMessage()) ;

System.err.println("Error Class: "+ ex.getErrorClass()) ;

ex.printStackTrace() ;

System.exit(-1) ;

}

Point to point communication:-

The methods of the communication class can be used to

implement point to point communication. The method send()

and recv() operations receives arguments such as the message,

number of elements and datatype. An Example of point to

point communication can be stated as below:

Comm com = MPI.COMM_WORLD;

int m = com.getRank() ;

if (m == 0)

{

com.send(data,5,MPI.DOUBLE,1,1);

} else if(m == 1){

Status sts = com.recv

(data, 5, MPI .DOUBLE, MPI .ANY_SOURCE, 1) ;

int c = sts.getCount(MPI.DOUBLE);

int s = sts.getSource() ;

System.out.println("Received "+ c+"values from"+s);

}

The memorization can be facilitated through user-driven

workflow. A general approach to create a parallel application

can be described as three steps workflow:

1. Scripting of code

2. Compilation

3. Running in a parallel architecture

Figure-1(The user driven workflow)[3]

A set of annotations can be added to the existing code in order

to specify which function can be memoized. The annotation

includes information nregarding I/O parameters and their

respective size.

Now a days a massive amount of data are created by almost

every application of data processing. For Example:- many

business application are trying to receive or analyze the

customer behavior of their business. Therefore a huge storage

space is needed in ordered to store these data.

As an alternative cloud computing is a solution of data,

however the parallel and distributed processing of data are

cumbersome in data retrieval and processing. Recently the

MPI forum is actively working for the integration of cloud

computing with the MPI_Info[3] object for a better MPI

standard .

In particular the consolidation of multilevel multi core system

open the operating to add a new functionality to MPI in order

to improve the performance of computing intensive

application by integrating with many different technology

such as OpenMP, MPJexpress and CUDA.

In this context MPI_Info object has been discussed in details.

MPI_Info object:- Info object of MPI is an opaque object of

type MPI::Info in C++.

It keeps hash keys which comprises of (key, value) on ordered

pair where both key and value are string type. Usually the

MPI_Info object are passed as an argument to many of the

MPI routines or functions.

MPI_INFO_GET_NKEYS, MPI_INFO_GET_NTHKEY

must written all pairs, show that layered functionality can also

used the info object.

The keys has a maximum length of 32 characters to 255

characters, because the set of known keys will always be

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 47, March 2020

36

finite.

It is important to note that the keys are unique and the keys

value pair are implemented with the help of link list.

There a new MPI_Info object has been proposed which is

based on block chain. In this work the focused is on existing

MPI_Info performance and our new proposal will enhanced

the performance of MPI_Info object by adopting the

following goals :-

1) Implementation of block-chain structure to store the key

value pair.

2) The introduction of memoization will reduce the redundant

computing.

Reconstruction of MPI_Info object:-

As it has been stated earlier MPI_Info object is an on ordered

set of key value pairs, where both key and values are of

string type. Usually MPI_Info object is stored as the link list

structure by many of the MPI format.

Our proposal is to change the data structure of MPI_Info

object implementation from the existing link list to the block

chain data structure.

The main benefit of our proposed data structure is the Non-

immutable which promotes the opaque characteristics of

MPI_Info object.

To implement the same, we binding the MPI_Info object with

C++ object oriented programming language.

There are create routine MPI::Info object can be written as:

int MPI::Info::create (MPI::Info *info)

{

return MPI::Info::create_distributed

(MPI_COMM_SELF , info) ;

}

Int MPI::Info::create_distributed

(MPI_Comm comm., MPI::Info *info) {

}

More over, if two different processes are executing in two

different machine a new block chain must be added, otherwise

if two processes are executing in a single machine then, the

general hash table can be used to avoid the inter

communication complexity.

Prime Sieve
A number of algorithm has been proposed to generate prime

numbers ranging from simple to complex methods. The sieves

for computing primes include a good performance in RAM as

well as a good I/O performance. The proposed algorithm are

Sieve of Eratosthenes[1], Sieve of Sundaram, Sieve of Atkin

and Sieve of Sorenson[10].

Sieve of Eratosthenes is an efficient and easy method for

finding all prime numbers in a given range. This method

includes sorting the multiples of each prime numbers and

gradually marked them as composite and list the prime n

numbers starting from ‘2’ increasingly.

Sieve of Sundaram was proposed by S.P Sundaram.

According to his theory a set of numbers starting from 1 to

certain range removes all numbers that are in the form of

i+j+2ij and sort them as composite.

A.O.L Atkin and Daniel J.Berstein created the Sieve of Atkin.

This algorithm use binary quadratic forms to sort the

primes[4].

Sieve of Sorenson uses number of approach to sort the primes

like first it use wheel sieve to remove all multiples of small

primes, then by using pseudosquares it eliminates non prime,

and finally it removes composite prime powers with another

sieve.

2. OBJECTIVE

2.1 Integration of Memoization in MPI

application
Memoization is an optimization technique used to optimize

the execution speed of computer programs[13].

The memoization technique can be explained by storing the

results of expensive function calls and returning the

intermediate result, when the same parameters parsed again.

If memoization introduced in MPI application the function

needs to be chosen in which it could be applied.

Therefore the functions which have the following properties

are considered for MPI application:

1. Pure function

2. Function that obeys the applications scope

3. Recursive function

4. The functions which receives key as an input value

Pure functions are similar to hash functions which returns the

same results with the same input parameters. The second

categories of functions includes I/O routines which uses the

unaltered resources beyond the scope of the application. The

third category of function are recursive function which are

apparently involved many times during the execution. The last

type of function are proposed in MPI_Info[3] object which

will return the output value faster than other function because

it receives key as an input value.

2.2 Parallelism in Sieve of Prime Number
Parallelism refers to the techniques of deployment of parallel

thread to make programs faster [1]. The program is executed

concurrently by multiple entities known as thread and process

instead of splitting in two parts.

There are three types of parallelism technique has been

proposed.

1. Shared Memory Parallelism.

2. Distributed Memory Parallelism

3. Hybrid parallelism

 In shared memory parallelism as the name suggest threads

share a memory space among them.

In distributed memory parallelism each processes keep their

private memories distinct from memory of other

process.When one process retrives data from memory of other

process,the data communication takes place which is known

as “Message Passing”. The MPI(Message Passing Interface) is

a standard of this type of parallelism. It defines a set of

function that can be used in C, C++ Format for passing

message[5].

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 47, March 2020

37

The hybrid parallelism uses both shared and distributed

memory technique. In this parallelism the problem is

subdivided in to small chunks of problem which are processed

through parallel threads. After the execution of threads, their

result uses the shared memory to accumulate the results from

thread. Note that the message passing is used by the threads to

gather result from other threads.

Figure-2(Demonstrates the shared and distributed

memory architecture.)[3]

ANALYSIS OF PARALLEL SIEVE ALGORITHM

1. Create a list of natural numbers 2, 3, 4, 5, 6, ……,n.

None of which is marked. Each process creates its

share of lists.

2. Set k to 2, the first unmarked number on the list. Each

process does this.

3.while (K2< n)

a. Mark all numbers which are divisible by k.

b. Set k = smallest number which is divisible by k

within the range of k to n2

c. Process 0 broadcasts k to rest of process.

4. The numbers which are unmarked are primes.

5.determine number of primes.

2.2.1 Parallel Hardware
Hardware must have the capability to support parallelism. As

there is a single CPU connected to memory in case of classic

model of computer established by Jhon Von Newmann does

not support parallelism[5]. There must be multiple processing

threads running multiple streams of instruction, in order to

support parallelism.

Multi-core technology splits the CPUs into multiple units,

called as cores which allows parallelism. This model is

suitable for shared memory parallelism because the cores will

often share main memory.

Multiple computers are connected by a network also satisfy

parallelism. This required distributed parallelism because

each computer has its own main memory. Computers may

have multi-core processors that promots hybrid parallelism.

2.2.2 Motivation for Parallelism
The advantages of parallelism are speedup, accuracy and

weak scaling.

The speedup promotes speed of execution, through which a

program will run faster if it is executed parallelly. The main

advantages of speedup is to allow a problem to run faster. If

multiple threads executed simultaneously.

There is an equation represented below according to Amdahl's

Law:-

Speedup = 1/ (1-N)+P / P / N (1)

Where P = the time it takes to execute the parallel regions

1-P = the time takes to execute the serial regions

N = the number of processors

Accuracy promotes the correctness of parallel execution.

When multiple threads are assigned to a problem, times may

be wasted by them in doing error checks or other forms of

diagnostics in order to confirm that the result is accurate or

better approximation of the problem that is being solved.

Speedup may be sacrificed to make a program more accurate.

Weak scaling promotes to utilize more threads to solve a

bigger problem in the same amount of time it takes least

thread to solve a smaller problem.

Some advantages of parallelism are communication overhead

and the other one is specify as Amdahl's law.

"Communication overhead" defines as the lost time that is

waiting for communications between calculations to take

place . No development noticed on executing the algorithm ,

but there may some important data is being communicated in

this time. A program’s communication overhead can

instantaneously engulf the total time spent to solve the

problem, and occasionally to making the program less

efficient than its serial counterpart. Thus communication

overhead can be a disadvantage of parallelism.

Gene Amdahal proposed Amdahal’s law. It defines as the

speedup of a parallel program will be limited by its

continuous regions or the sections of algorithm that can't be

executed parallelly [5]. Amdahl's law hypothesize that as the

number of processors allotted to the program and the

advantages of parallelism is inversly proportional to each

other as the continuous regions become the only part of code

that take symbolic time to execute.

Amdahl's Law says as the number of processor is increased,

the program will have negligible returns. But it does not place

a limitation on weak scaling that can be achieved by the

program as it may allow huge class of problem to be solved as

a number of processor become available.

 Gustafson's Law proposed by John Gustafson describes the

advantages of parallelism weak scaling, which says if the

processor count is increased the bigger problem can be solved

in the same amount of time as smaller problem.

2.2.3 Algorithm for Parallelism
In a parallel algorithm, by using shared memory, multiple

threads work continuously. It is not enough to have only one

thread executing task in a order, so it is necessary to identified

the procedures which have a ability take place at e same time.

Let us look at the Algorithm:-

1. 2 to 15 number should be written.

2. The smallest unmarked should circled and

uncircled the number in the list.

3. If the bigger circled number is a multiple of biggest

circled number then marked it for is bigger number

than the biggest circled number.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 47, March 2020

38

4. Step 2-4 should be repeated until all numbers have

been visited. The primes and the composites

numbers are the circled and marked successively.

3. RESULTS

4. CONCLUSIONS
After the execution of three sieve algorithms, we found that

“Sieve of Sundaram” gives a optimal result in a range of

10000.For a large range of 100000 Sieve of Sundaram has

crashed, and other two runs smoothly. Sieve of Eratosthenes

behaving like linear type algorithm. However Atkin is the

modern one. To solve this we have introduced MPI.

This work shows that the sieving algorithm, for prime number

document can be improved by integrity the MPI_Info object

along with memoization concept. In this work we have

analyzed three different sieve algorithm for prime number

such as Eratosthenes, Sundaram and Atkin. Surprisingly we

found that the performance of the algorithm sieve of

Sundaram is enhanced as compared to other two, when the

integration do happens.

Our future work includes the object of MPI_Info could be

mapped to the NoSQL database because NoSQL is based on

key value pairs.

5. ACKNOWLEDGMENTS
This work is supported by seed Grant Utkal University

6. REFERENCES
[1] Aaron Weeden. (n.d.). Parallelization: Sieve of

Eratothenes.

[2] Agosta,Francalanci. (2012). Automatic memoization for

energy efficiency in financial applications. Sustainable

Computing Informatics and Systems, 105–115.

[3] Alejandro Calendron, Felix Garcia, D. H., Jesus

Carretero. (2013). Improving MPI application with a new

MPI_Info and the uses of the memoization. EuroMPI.

[4] D. Bernstein, A. atkin. (2004). Prime Sieves Using

Binary Quadratic Forms. Mathematics of Computation,

1023–1030.

[5] David J Wirian. (n.d.). Parallel Prime Sieve: Finding

Prime Numbers.

[6] Graham,J.M. (2005). Open MPI:A flexible high

performance MPI.

[7] J. Misra, D. G. (1978). A Linear Sieve Algorithm for

Finding Prime Numbers. Communications of the ACM,

999–1003.

[8] Jeffrey M. Squyres. (1982). Design and Implementation

of java bindings in Open MPI. Acta Informatica, 477–

485.

[9] Jeffrey M.Squyres,Andrew Lumsdaine. (n.d.). Object

Oriented MPI:A Class Liabrary for the Message Passing

Interface.

[10] J.P Sorenson. (2006). The Pseudosquares Prime Sieve.

Algorithmic Number Theory, 193–207.

[11] Mark Baker,Sang Lim. (n.d.). Mpi Java:An Object-

Oriented Java interface to MPI.

[12] Michael A Bender, S. S. (2013). The I/O Complexity of

Computing Prime Tables.

[13] Mirko Stoffers,Klaus Wehrle. (2006). Automated

Memoization for Parameter Studies implemented in

impure Languages.

[14] MPICH2 http://www.mpich.org/. (2013).

[15] N.Saxena,N.kayal, M. A. (2004). Primes is in P. Annals

of Mathematics, 781–793.

[16] Open MPI.http://www.open-mpi .org/. (2013).

[17] P.Pritchard. (1982). Explaning the wheel sieve. Acta

Informatica, 477–485.

[18] Umat A.Acar,Robert Harper. (2003). Selective

Memoization.

IJCATM : www.ijcaonline.org

