
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

11

High Performance Model for Handling Machine

Breakdown in Identical Parallel Machines

Onwuachu Uzochukwu C.
Department of Computer Science,

Imo State University,
Owerri, Imo State, Nigeria

Ugwu C.
Department of Computer Sciences,

University of Port Harcourt,
Choba, Rivers State, Nigeria

Williams Edem
Department of Computer Science,

University of Calabar,
Cross River State, Nigeria

ABSTRACT
Machine breakdown is an issue that cannot be overlooked

when considering the performance of any scheduling model.

This issue has resulted in the inability to meet up with the job

due date and also increases job completion time among

identical parallel machines. Therefore, an efficient job

scheduling model will take care of machine failure issues to

obtain a good job schedule. This paper developed an efficient

scheduling model that is robust, to handle the issues of

machine failure and minimize the total completion time for

job execution in identical parallel machines. The developed

model adopted fuzzy logic technique in developing a job

dispatcher for the identical parallel machines. The job

dispatcher was used in determining the available machine and

the failed machine before dispatching jobs to the individual

parallel machines. The model was tested with fifteen identical

parallel machines used for printing jobs in the printing press.

The parameter used in analyzing this model includes the

machine load balancing and machine utilization. The result

from this model was compared with other existing model like

first come first serve scheduling model and genetic scheduling

model. The lowest machine utilization recorded from the

experiment conducted using first come first serve scheduling

model, genetic scheduling model and the developed

scheduling model was 83.46856%, 89.57643% and 98.2949%

respectively, which shows that the new model achieved better

load balancing and efficient machine utilization among the

identical parallel machines.

Keywords
Job scheduling model, machine breakdown, machine

utilization, identical parallel machines and load balancing.

1. INTRODUCTION
Job scheduling problem subject to machine breakdown is one

of the challenging issues in production field. Robustness and

stability are the important measures to consider when we

reschedule jobs [1]. Machine breakdown have lead to so many

losses in production industries and one of its effect is the

inability to meet the job due date. The challenges of job

scheduling in an identical parallel machine are dealing with

the computing resources for the number of jobs, considering

the following factors which include complexity, dependency,

resource starvation, load balancing and efficiency [2].

Utilizing dispatching rules is a well-known technique for

taking care of scheduling issues. The dispatching rules

figures out what job to process straightaway. The scheduling

problem deals with the optimal assignment of jobs to the

identical parallel machine and orders their execution so that

the total completion time is minimized [3].

Identical parallel machines are important resources that are

generally shared by communities of users. The charge of job

scheduling is to decide when and how each job should be

carried out in order to exploit the system’s cumulative value

to its owners [4]. The way in which jobs are allocated to

machine is fundamental to realizing the high performance of

the corresponding systems, such as minimizing mean job

response time and maximizing machine throughput. [5]

In general, the aim of job scheduling is to have load balancing

among the identical parallel machines, whereas for the later

minimization of overall execution time is the main concern

[6]. The intention behind scheduling is to exploit the system’s

throughput by effecting maximum number of jobs in the given

time span. Load balance [7] is considered as a major problem

when scheduling multiple jobs with limited resources. The

load balance should be minimized to improve the machine

throughput and efficiency.

Heuristic optimization algorithm [7] is broadly used to solve a

diversity of problems. [8]Abraham and Nath (2000) proposed

three basic heuristics implied in nature for grid scheduling,

namely Genetic Algorithm [9], Simulated Annealing [10] and

Tabu Search [11], and heuristics derived by a combination of

these three algorithms are very powerful.

The job scheduling algorithm is considered a complex process

because it must schedule a large number of jobs into the

available resources [12][13]. This paper identifies a number of

issues that may be experienced when utilizing the identical

machine in the scenario of job scheduling, namely mapping,

arrangement of execution, and optimal configuration of the

identical parallel machines. [14] There is a need therefore to

develop a model for job dispatch to conquer these issues. [15]

The enabling strategy is the use of job scheduling plan based

on genetic algorithm and fuzzy logic to determine these

issues.

2. LITERATURE REVIEW
Savas (2012) worked on non-identical parallel machine

scheduling with fuzzy processing times using robust genetic

algorithm and simulation. His research addresses non-

identical parallel machine scheduling problem with fuzzy

processing times (FPMSP). The proposed GA approach yields

good results and can explore alternative schedules providing

the same results.[16]

Mostafa et al. (2012) searched for an optimal solution in

scheduling real-world problems in industrial applications,

especially for mission time critical systems. A parallel GA

was employed to solve flow shop scheduling issues with the

aim of minimizing the makespan. It was found that the

proposed parallel genetic algorithm (PPGA) considerably

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

12

decreased the CPU time without adversely affecting the

makespan.[17]

Rachhpal (2012) worked on task scheduling with genetic

approach and task duplication technique. In his paper,

numbers of alternative solutions and heuristics techniques

were proposed to solve the problem. He noticed that applying

the GA with task duplication technique enhances the

efficiency of the task scheduling in parallel multiprocessor

environment.[18]

Kaleeswaran et al (2012) worked on dynamic scheduling of

data using genetic algorithm in cloud computing. They

discovered that task arrival was uncertain at run time in

dynamic scheduling and allocating resources was tedious as

several tasks arrive at the same time. Their result reduced the

execution time in parallel processing and obtained global

optimization.[19]

Zubair et al. (2012) worked on tasks allocation using fuzzy

inference in parallel and distributed system. They proposed a

task assignment model and multi-agent distributed approach

based on fuzzy assessment of machines and a virtual budget to

assign tasks to processing element in a dynamic environment.

Parallel and distributed computations were performed directly

within the interpretive MATLAB environment. They found

some good response time of tasks in parallel and distributed

system.[20]

Ali (2012) worked on fuzzy dynamic load balancing

algorithm for homogenous distributed systems. He proposed a

new fuzzy dynamic load balancing algorithm for homogenous

distributed systems. The proposed algorithm utilizes fuzzy

logic in dealing with inaccurate load information, making load

distribution decisions, and maintaining overall system

stability. In terms of control, they proposed a new approach

that specifies how, when, and by which node the load

balancing is implemented. [21]

Mohammad and Mehdi (2013) worked on high performance

scheduling in parallel heterogeneous multiprocessor systems

using evolutionary algorithms. In their research, they

introduced a method based on genetic algorithms for

scheduling and load balancing in parallel heterogeneous

multi-processor systems. The results of the simulations

indicated that Genetic algorithm is better than LPT, SPT and

FIFO. Simulation results indicate Genetic Algorithm reduces

total response time and also it increases machine utilization.

[22]

Prabhjot and Amanpreet (2013) worked on implementation of

dynamic level scheduling algorithm using genetic operators.

In their research they implemented APN Dynamic Level

Scheduling algorithm by using genetic operators for task

scheduling in parallel multiprocessor system including the

communication delays to reduce the completion time and to

increase the throughput of the system. The parameters used

are makespan time, processor utilization and scheduled length

ratio. The graphs showed better results of dynamic level

scheduling with genetic operators as compared to simple

dynamic level scheduling algorithm.[23]

Aparna et al (2014) worked on task scheduling in

homogeneous multiprocessor systems using evolutionary

techniques. Their research shows how genetic algorithms can

be adapted to tackle this problem, considering first a single

task network and then a number of task networks with a given

time period. For the single network as well as for a group of

networks treated independently in a multi-network system, the

research shows that the average of total processing time

decreases with respect to generations. [24]

Leila (2014) worked on solving the Job Shop Scheduling

problem with a Parallel and Agent-Based Local Search

Genetic Algorithm. In his research, he presented a parallel and

agent-based local search genetic algorithm for solving the job

shop scheduling problem. A multi-agent system containing

various agents each with special behavior is developed to

implement the parallel local search genetic algorithm.

Benchmark instances are used to investigate the performance

of the proposed approach. The results show that the proposed

agent-based parallel local search genetic algorithm improves

the efficiency.[25]

Selvi (2014) worked on multi objective optimization problems

on identical parallel machine scheduling using genetic

algorithms. He attempted to solve scheduling problems

involving identical parallel machines, where the objective is

to optimize the multi-objective scheduling problems using

Genetic algorithms. The major contribution of present work

lies in proposing mathematical models using Genetic

algorithms to optimize major objectives and to study the

effectiveness of these algorithms for small and large size

problems.[26]

Zeinab and Seyed (2014) worked on novel decentralized

fuzzy-based approach for grid job. They followed the

identification of grid scheduling with the help of fuzzy theory

and sought to present a new method for grid scheduling with

respect to exiting obstacles. The results of the experiments

show the efficiency of the proposed method in terms of

makespan and standard deviation of the load of clusters. [27]

Rachhpal (2014) worked on task scheduling in parallel

systems using genetic algorithm. In his work, genetic

algorithm based on the principles of evolution to obtain an

optimal solution for task scheduling is developed. Genetic

algorithm was based on three operators: Natural Selection,

Crossover and Mutation. The simulation results prove that the

method proposed generates better results. [28]

Seyed et al. (2015) looked at fuzzy genetic algorithm for

scheduling of handling/storage equipment in automated

container terminals. They designed a Fuzzy Logic Controller

(FLC) to improve the performance of a GA in optimization of

integrated scheduling of handling/storage equipment in

automated container terminals. The FLC controls crossover

and mutation rates of the GA during its generations, which are

the main control parameters of the GA to avoid the premature

convergence. The numerical results for the small size test

cases solved by using the proposed fuzzy genetic algorithm

showed that solutions found by this algorithm are 2.5% better

than the solutions found by the GA. [29]

3. MATERIALS AND METHODS
In order to solve the issue of complexity in handling machine

failure faced by the existing system, we proposed a fuzzy

model for scheduling job among identical parallel machine

systems. The proposed system has a set of n jobs, N = {1, 2, ...

n} to be processed on m parallel machines. M = {1,2, ..., m}

within a time window [ri, di]. A job j will be processed by the

suitable machine m. All the machines have the same speed

(Vi) and can process only one job at a time. The processing

time of job j on machine m is denoted by P(m, j). The model

is designed to minimize the total tardiness time and total

completion time (makespan), also to give attention to jobs

with early due date. The new system boolean variable X (i, j)

which determines whether job j is processed by machine i(if

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

13

x(i, j) = 1) or not (if x(i, j) = 0). The system works efficiently

based on the assumptions listed in 3.1

3.1 Principal Assumptions
In order to minimize the total tardiness time of scheduling

grouped jobs in the identical parallel machines, the optimal

solution satisfies the following conditions:

1. No machine can process more than one operation at

a time.

2. Each operation, once started, must be performed till

completion except the case of machine failure issue.

3. A job is an entity, i.e. Job cannot represent many

individual parts, and will not be processed by more

than one machine at a time.

4. Each operation must be completed before any other

operation can begin.

5. Time intervals for processing are independent of the

order in which operations are performed.

6. There can be only the same type of machine for the

processing.

7. A job is processed as soon as possible subject to

ordering requirements.

8. All jobs are known and are ready to start processing

before the period under consideration begins.

9. The time required to transfer jobs between machines

is negligible.

3.2 Determining machine failure and

availability
The system uses these assumptions listed in 3.1 to develop a

fuzzy model for job dispatch in identical parallel machines.

The job dispatcher performs fuzzy reasoning jobs considering

the job waiting time and machine availability in order to know

which job to be dispatched to the individual machines. The

fuzzification module receives the crisp numeric values as

input, process them and map them into fuzzy membership

function values. The fuzzy engine is responsible for

processing all determined membership function values using

fuzzy sets’, with fuzzy rule base to identify the most suitable

fuzzy output. However, the defuzzification module is

responsible for converting the fuzzy output into a numeric

output suitable for the environment decision and control

situation. The fuzzy inference system determines the

membership function for the job waiting time and machine

availability which will be used in job allocation to the

identical parallel systems.

The fuzzy sets for job waiting time depends on how long a

particular job has to wait to be dispatched , the waiting time

fuzzy values are giving as Short, Average, and Long. The

machine availability depends on the state of the processing

machines; machine availability fuzzy values are given as free,

busy and failed.

3.2.1 Fuzzy Input/Output Specifications
The fuzzy input/output variables are used for job dispatching

and it is assumed to be the base for the dispatching rule. The

fuzzy I/O specification is presented in Table 1. There are two

input variables and one output. The output is the effect of the

result of input states.

3.2.2 Fuzzification
Fuzzification is the process of transforming a crisp value into

a fuzzy set so that it can be used and processed by fuzzy

inference mechanism. The inputs and output of the design as

specified in Table 1 are assigned linguistic variables and some

degrees of membership. For input one (the job waiting time),

the corresponding range is short (0.0, 0.3), average (0.4, 0.6)

and long (0.7, 1.0). For input two (machine availability), the

corresponding value is failed = 0.0, many free = 0.25, two free

= 0.5, one free = 0.75 and all busy = 1.0. The levels for

output (job allocation) are retrieve job and send to next

available device = 0.0, wait = 0.5, and allocate = 1.0. The

fuzzy variables for this proposed model include the following:

Machine availability (MA) = {One Free (OF), Two Free

(TF), Many Free (MF), All Busy (AB), Failed (F)}.

Waiting Time (WT) = {Short (S), Average (A), Long (L)}.

Job Allocation (JA) = {Allocate (A), Wait (W), Retrieve and

Send to Available Machine (RSAM)}

Figure 1. Job dispatching system.

Figure 1 shows the diagrammatic representation of job

dispatching system. It handles the current schedule, the past

scheduling and current waiting queue. Here we have two

different rule selections, which include the rules for job

allocation and rules for machine availability. These rules are

used to take decisions on job allocation, machine failure, and

machine availability decisions. In machine failure decisions,

the unexecuted job will be reallocated to the next available

machine. Job allocation decisions are used in allocating jobs

to the parallel machine.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

14

Table 1: Fuzzy variables (Input/Output Specifications)

INPUT OUTPUT

Machine

availability (MA)

Waiting

Time (WT)

Job Allocation (JA)

One Free (OF)

Two Free (TF)

Many Free (MF)

All Busy (AB)

Failed (F)

Short (S)

Average (A)

Long (L)

Allocate (A)

Wait (W)

Retrieve and Send to

Available Machine

(RSAM)

3.2.3 Fuzzy Rules for machine availability.
The rules are formulated using a series of if-then statements,

combined with AND/OR operators. For instance, if one

device is free AND the job waiting time is small THEN job

allocation should wait. With two inputs having eight

membership functions, we have 5 * 3 = 15 rules as showed in

table 2.

R1: If MA = OF, and WT = S then JA = W

R2: If MA = OF, and WT = A then JA = W

R3: If MA = OF, and WT = L then JA = A

R4: If MA = TF, and WT = S then JA = W

R5: If MA = TF, and WT = A then JA = A

R6: If MA = TF, and WT = L then JA = A

R7: If MA = MF, and WT = S then JA = A

R8: If MA = MF, and WT = A then JA = A

R9: If MA = MF, and WT = L then JA = A

R10: If MA = AB, and WT = S then JA = W

R11: If MA = AB, and WT = A then JA = W

R12: If MA = AB, and WT = L then JA = W

R13: If MA = F, and WT = S then JA = RSAM

R14: If MA = F, and WT = A then JA = RASM

R15: If MA = F, and WT = L then JA = RASM

Table 2: The Fuzzy Rule Base Table

No Device

Availability

(DA)

Job Waiting

Time(JWT)

Job Allocation

(JA)

1 One Free (OF) Short (S) Wait (W)

2 One Free (OF) Average (A) Wait (W)

3 One Free (OF) Long (L) Allocate (A)

4 Two Free (OF) Short (S) Wait (W)

5 Two Free (OF) Average (A) Allocate (A)

6 Two Free (OF) Long (L) Allocate (A)

7 Many Free

(MF)

Short (S) Allocate (A)

8 Many Free Average (A) Allocate (A)

(MF)

9 Many Free

(MF)

Long (L) Allocate (A)

10 All Busy (AB) Short (S) Wait (W)

11 All Busy (AB) Average (A) Wait (W)

12 All Busy (AB) Long (L) Wait (W)

13 Failed (F) Short (S) Retrieve and Send

to Available

Machine(RSAM)

14 Failed (F) Average (A) Retrieve and Send

to Available

Machine(RSAM)

15 Failed (F) Long (L) Retrieve and Send

to Available

Machine(RSAM)

3.2.4 Defuzzification
The transformation from a fuzzy set to a crisp value is called

defuzzification. The CoG is adopted in this study for

defuzzification because its computational complexity is

relatively high.

Where Nq is the number of quantization used to discretize

membership function μB0() of the fuzzy output B0.

μB0() is the degree of membership and yq are elements of

the set.

Crisp Output = {Sum (Membership Degree * Singleton

Position)}/(Membership degree). For instance with the output

membership degree, are retrieving job and send to next

available device = 0.0, wait = 0.5, allocate = 1.0 then the crisp

value will be Crisp Output = (0.1*0.00)+

(0.5*0.50)+(1.0*1.00)/(0.0+0.5 +0.1) = 0.83 for this result

therefore system allocates job.

3.3 Determining the job allocation
The job dispatcher performs fuzzy reasoning on the jobs,

considering the job waiting time, the job due date and the job

processing time in order to know the jobs to be dispatched to

the individual parallel machines. The fuzzification module

will receive the crisp numeric values as input, process them

and map them into fuzzy membership function values. The

fuzzy engine is responsible for processing all calculated

membership function values using fuzzy sets’ calculations and

communicates with fuzzy rule base to identify the most

suitable fuzzy output. However, the defuzzification module is

responsible for converting the fuzzy output into a numeric

output suitable for the environment decision and control

situation. The fuzzy inference system determines the

membership function for the job waiting time, the earliest due

date and the job processing time which will be used in job

allocation to the parallel machine.

3.3.1 Fuzzy Input/Output Specifications
The Fuzzy input/output variables are used for job dispatching

and it is assumed to be the base for the dispatching rule. The

fuzzy I/O specification is presented in Table 3. There are two

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

15

input variables and one output. The output is the effect of the

result of input states.

3.3.2 Fuzzification.
The fuzzification is the process of transforming a crisp value

into a fuzzy set, so that it can be used and processed by fuzzy

inference mechanism. The inputs and output of the design as

specified in Table 3 are assigned linguistic variables and some

degrees of membership. For input one (the job due date) the

corresponding range is close (0.0, 0.4), Distance (0.5, 1.0).

For input two (the job waiting time) the corresponding range

is short (0.0, 0.3), average (0.4, 0.6) and long (0.7, 1.0).

Tables 3. Fuzzy variables (Input/Output Specifications)

INPUT OUTPUT

Due Date

(DD)
Waiting

Time (WT)
Processing

Time (PT)
Job Priority

(JP)

Close (C) Short (S) Very Short

(VS)

Very Low

(VL)

Distant(D) Average

(A)

Short (S) Low (L)

 Long (L) Medium (M) Medium (M)

 Long (L) High (H)

Very Long

(VL)

Very High

(VH)

For input three (the job processing time), the corresponding

range is very short (0.0, 0.1), short (0.2, 0.3), medium (0.4,

0.5), long (0.6, 0.8) and very long (0.9, 1.0). The levels for

output (the job priority) are very low 0.0, low 0.25, medium

0.50, High 0.75 and very high 1.0.

3.3.3 Fuzzy Rules for job allocation
The rules are formulated using a series of if-then statements,

combined with AND/OR operators. For instance, if the job

due date is close AND the job waiting time is long AND the

job processing time very short, then job should be very high.

With three inputs, each having 10 membership functions, we

have 2 * 3 * 5 = 30 rules as showed in table 3.2.

R1: If the job due date is close AND the job waiting time is

Short AND the job processing time is very short

THEN the job priority is high.

R3: If the job due date is close AND the job waiting time is

long AND the job processing time is very short THEN

the job priority is very high.

R7: If the job due date is close AND the job waiting time is

Short AND the job processing time is very short

THEN the job priority is high.

R11: If the job due date is close AND the job waiting

time is Short AND the job processing time is medium

THEN the job priority is high.

R17: If the job due date is distant AND the job waiting

time is average AND the job processing time is very

short THEN the job priority is medium.

R22: If the job due date is distant AND the job waiting

time is Short AND the job processing time is medium

THEN the job priority is low.

R27: If the job due date is distant AND the job waiting

time is long AND the job processing time is long THEN

the job priority is low.

R30: If the job due date is distant AND the job waiting

time is long AND the job processing time is very long

THEN the job priority is low.

Table 4: The Fuzzy Rule Base

No Due Date

(DD)
Waiting

Time

(WT)

Processing

Time (PT)
Job

Priority

(JP)

1 Close (C) Short (S) Very Short

(VS)

High (H)

2 Close (C) Average

(A)

Very Short

(VS)

High (H)

3 Close (C) Long (L) Very Short

(VS)

Very High

(VH)

4 Close (C) Short (S) Short (S) High (H)

5 Close (C) Average

(A)

Short (S) High (H)

6 Close (C) Long (L) Short (S) Very High

(VH)

7 Close (C) Short (S) Medium (M) High (H)

8 Close (C) Average

(A)

Medium (M) High (H)

9 Close (C) Long (L) Medium (M) High (H)

10 Close (C) Short (S) Long (L) Medium

(M)

11 Close (C) Average

(A)

Long (L) Medium

(M)

12 Close (C) Long (L) Long (L) High (H)

13 Close (C) Short (S) Very Long

(VL)

Medium

(M)

14 Close (C) Average

(A)

Very Long

(VL)

Medium

(M)

15 Close (C) Long (L) Very Long

(VL)

Medium

(M)

16 Distance

(D)

Short (S) Very Short

(VS)

Medium

(M)

17 Distance

(D)

Average

(A)

Very Short

(VS)

Medium

(M)

18 Distance

(D)

Long (L) Very Short

(VS)

High (H)

19 Distance

(D)

Short (S) Short (S) Medium

(M)

20 Distance

(D)

Average

(A)

Short (S) Medium

(M)

21 Distance

(D)

Long (L) Short (S) Medium

(M)

22 Distance

(D)

Short (S) Medium (M) Low (L)

23 Distance

(D)

Average

(A)

Medium (M) Low (L)

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

16

24 Distance

(D)

Long (L) Medium (M) Medium

(M)

25 Distance

(D)

Short (S) Long (L) Very Low

(VL)

26 Distance

(D)

Average

(A)

Long (L) Low (L)

27 Distance

(D)

Long (L) Long (L) Low (L)

28 Distance

(D)

Short (S) Very Long

(VL)

Very Low

(VL)

29 Distance

(D)

Average

(A)

Very Long

(VL)

Low (L)

30 Distance

(D)

Long (L) Very Long

(VL)

Low (L)

Using the values for each of the linguistic variable we have

Very low = 0.0, low = 0.25, Medium =0.50, High =0.75, Very

High = 1.00.

3.3.4 Defuzzification
The transformation from a fuzzy set to a crisp value is called

defuzzification. The CoG is adopted in this study for

defuzzification because its computational complexity is

relatively high.

Where Nq is the number of quantization used to discretize

membership function μB0(y) of the fuzzy output B0. μB0(y)

is the degree of membership and yq are elements of the set.

Crisp Output = {Sum (Membership Degree * Singleton

Position)}/(Membership degree). For instance, with the output

membership degree, Very low = 0.0, low = 0.25, Medium

=0.50, High =0.75, Very High = 1.00 then the crisp value

will be Crisp Output =

(0.1*0.00)+(0.3*0.25)+(0.9*0.50)+(0.6*0.75)+(0*1.00)/0.1+0

.3 +0.9+0.6+0) = 0.51 for this result the job priority is

medium.

4. EXPERIMENT AND RESULTS
Figure 2 shows machine failure handling in parallel machines

for the case of one failed machine using the new job

scheduling model. The figure shows the result of an

experiment with four available machines which are meant to

handle forty four loaded jobs. During the time of processing,

it was noticed that one of the parallel machine (Hp LaserJet

P2050 Series PCL6) that has jobs allocated to it went offline.

It can be seen from the figure that the job allocated to the

failed machine (Hp LaserJet P2050 Series PCL6) was

reallocated to the three online machines (Hp LaserJet P2015

PCL6, Microsoft XPS Document Writer and Fax). In this way

the system handles the issue of machine failure.

 Figure 3 shows machine failure handling in parallel machines

for the case of two failed machine using the new job

scheduling model. The figure shows the result of an

experiment with five available machines which are meant to

handle forty four loaded jobs. During the time of processing,

it was noticed that two of the parallel machines (Hp LaserJet

P2050 Series PCL6 and Hp LaserJet P2200 Series PCL5) that

has jobs allocated to them went offline. It can be seen from

the figure that the job allocated to the failed machine (Hp

LaserJet P2050 Series PCL6 and Hp LaserJet P2200 Series

PCL5) was reallocated to the three online machines (Hp

LaserJet P2015 PCL6, Microsoft XPS Document Writer and

Fax). In this way the system handles the issue of machine

failure.

Figure 4 shows machine failure handling in parallel machines

for the case of four failed machine using the new job

scheduling model. The figure shows the result of an

experiment with seven available machines which are meant to

handle forty four loaded jobs. During the time of processing,

it was noticed that four of the parallel machines (Hp LaserJet

P2050 Series PCL6, Hp LaserJet P2050 Series PCL6(Copy

1), Hp LaserJet P2300 Series PS and Hp LaserJet P2200

Series PCL5) that has jobs allocated to them went offline. It

can be seen from the figure that the job allocated to the failed

machine (Hp LaserJet P2050 Series PCL6, Hp LaserJet

P2050 Series PCL6(Copy 1), Hp LaserJet P2300 Series PS

and Hp LaserJet P2200 Series PCL5) was reallocated to the

three online machines (Hp LaserJet P2015 PCL6, Microsoft

XPS Document Writer and Fax). In this way the system

handles the issue of machine failure.

Figure 2: Handling machine failure in parallel machines (a

case one machine failure) using the new job scheduling

model.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

17

Figure 3: Handling machine failure in parallel machines (a

case two machine failure) using the new job scheduling

model.

Figure 4: Handling machine failure in parallel machines (a

case of four machine failures) using the new job

scheduling model.

The new system was implemented to automatically generate

the schedule for all the jobs uploaded in the system. This

system generates values from the jobs uploaded to it and the

value includes the job processing time and job waiting time.
The generated jobs for testing this new model have the

following characteristics:

a. Size of uploaded job ranges from 200 to 1200 jobs

with an interval of 100 jobs.

b. For the new model only one job enters the system at

a time.

c. The processing time for each job is a random

number between 1 min and 4mins.

d. Number of machines used was fifteen for all the

sizes of problems.

The developed model was used in the parallel machine

environment. The result generated from the proposed system

was compared with the result of other job scheduling

algorithm like First Come First Serve (FCFS) scheduling

model and genetic scheduling model. Three parameters are

considered to evaluate the performance of the three different

scheduling approaches. These parameters include the

completion time, load balancing, and resource utilization.

The schedule length, average execution time, load balance and

utilization can be computed from the generated result from the

three tested scheduling models using the formula below:

 h h SL = { _ ()}

Machine Utilization

Total no of machines

Table 5: Analysis of the Machine Utilization from the

Examined Job Scheduling Algorithms.

Number of

jobs

uploaded

Machine

Utilization

of the

FCFS

model

Machine

Utilization

of the GA

model

Machine

Utilization

of the new

model

200 83.46856% 89.57643% 98.2949%

300 81.87373% 90.79829% 98.6242%

400 85.45337% 90.76897% 99.0809%

500 84.57333% 91.50129% 99.1427%

600 88.09853% 94.90810% 99.2724%

700 89.92511% 95.63038% 99.4752%

800 90.91589% 95.80733% 99.4821%

900 91.68562% 95.65761% 98.9530%

1000 91.94647% 96.21440% 99.5082%

1100 93.33333% 97.23967% 99.4891%

1200 94.60927% 97.32404% 99.4525%

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

18

Figure 5: Graphical analysis of the machine utilization

from the examined job scheduling algorithms.

Table 5: The analysis of the device utilization from the

examined job scheduling algorithms. From the Table, we can

observe the number of uploaded jobs alongside of the

machine utilization for the FCFS model, the GA model, the

new model. It can be seen from the result that when 300 jobs

were uploaded the machine utilization for the new model, GA

and FCFS models were 98.294%, 89.57643% and 83.46856%

respectively. When 1300 jobs were uploaded the machine

utilization for the new model, GA and FCFS models were

99.4525%, 97.32404% and 94.60927% respectively. This

shows that the new model achieved high machine utilization

when compared with other existing models.

Figure 5 shows graphical analysis of the machine utilization

from the examined job scheduling algorithms. From the

graph, it can be observed that the new model achieved better

resource utilization that the FCFS model and the GA model;

this shows that the new system achieved high machine

utilization when compared with other existing models.

5. CONCLUSION
This paper has shown efficient job dispatching model that

decreases the total time for jobs execution in identical parallel

machine system. It is an effective job scheduling model that

takes care of the different issues to obtain a good job

schedule. The model was able to handle complexity issue in

machine breakdown and some of these failures occurred even

after jobs have been assigned to the individual machine. The

system also considers the due date of the individual job,

which is an advantage when compared with existing systems.

The result generated from the experiment conducted in the

course of this research has shown that the system achieves

load balancing among the individual machine and high

machine utilization, thereby minimizes the total job execution

time. This paper has developed an enhanced model for job

dispatch in identical parallel machines. This model has the

capacity to handle the issue of machine breakdown, which is

prevalent in the existing model during job execution in

identical parallel machine.

6. REFERENCES
[1] Di-hua Sun, Wei He, Lin-Jiang Zheng and Xiao-yong

Liao (2014), Scheduling flexible job shop problem

subject to machine breakdown with game theory, 52

(13).

[2] Rachhpal S (2016), An Optimized Task Duplication

Based Scheduling in Parallel System, I.J. Intelligent

Systems and Applications, 8, 26-37

[3] Jasbir S and S. Gurvinder (2012), Task Scheduling using

Performance Effective Genetic Algorithm for Parallel

Heterogeneous System, International Journal of

Computer Science and Telecommunications 3(3); 233

– 245.

[4] Weinberg J , (2002), "Job Scheduling on Parallel

Systems", Job Scheduling Strategies for Parallel

Processing, 5 (1), 67-73.

[5] Neelu S and S Sampada (2012), Task Scheduling Using

Compact Genetic Algorithm for Heterogeneous System,

International Journal of Advanced Research in

Computer Engineering & Technology, ISSN: 2278 –

1323, 1(3); 218- 221

[6] Karthick K. U. (2011), “A Dynamic Load Balancing

Algorithm in Computational Grid Using Fair

Scheduling”, IJCSI International Journal of Computer

Science Issues, 8(5), 1- 11, .

[7] Lei Z., C. Yuehui, S. Runyuan, J. Shan and Y. Bo,

(2006) "A Task Scheduling Algorithm Based on PSO for

Grid Computing", IEEE, 2 (1), 26-34.

[8] Abraham, R. B. and B. Nath. (2000), Nature's Heuristics

for Scheduling Jobs on Computational Grids, The 8th

IEEE International Conference on Advanced Computing

and Communications (ADCOM 2000), 5(3), 45-52,.

[9] Song S., Y. Kwok and K. Hwang, (2005). "Security-

Driven Heuristics and A Fast Genetic Algorithm for

Trusted Grid Job Scheduling", IEEE International

Parallel and Distributed Processing, 4(2), 65-74.

[10] Orosz J.E and S. H. Jacobson. (2002) , Analysis of static

simulated annealing algorithm, Journal of Optimization

theory and Applications, 4(2), 165-182,.

[11] Braun R., H. Siegel., N. Beck, L. Boloni., M

Maheswaran, A. Reuther, J. Robertson., M. Theys, B.

Yao ,D Hensgen. and R. Freund.,(2001), “A

Comparison of Eleven Static Heuristics for Mapping a

Class of Independent Tasks onto Heterogeneous

Distributed Computing Systems”, Journal of Parallel and

Distributed Computing, 61: 810-837,

[12] Rajakumar S., V.P Arunachalam, and Selladurai V.,

(2006), Workflow balancing in parallel machine

scheduling with precedence constraints using genetic

algorithm, Journal of Manufacturing Technology

Management, 17(2), 20-34.

[13] Safwat A. H and A. O Fatma (2016) Genetic-Based

Task Scheduling Algorithm in Cloud Computing

Environment, (IJACSA) International Journal of

Advanced Computer Science and Applications, 7 (4). 112

– 122

[14] Ramkumar R., A. Tamilarasi and T. Devi, (2011). Multi

Criteria Job Shop Schedule Using Fuzzy Logic Control

for Multiple Machines Multiple Jobs, International

Journal of Computer Theory and Engineering, 3(2), 282-

286

0

20

40

60

80

100

120
2

0
0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

Machine
Utilization
of the FCFS
model

Machine
Utilization
of the GA
model

Machine
Utilization
of the new
model

https://www.tandfonline.com/toc/tprs20/52/13
https://www.emeraldinsight.com/doi/full/10.1108/17410380610642296
https://www.emeraldinsight.com/doi/full/10.1108/17410380610642296
https://www.emeraldinsight.com/doi/full/10.1108/17410380610642296
https://www.emeraldinsight.com/loi/jmtm
https://www.emeraldinsight.com/loi/jmtm
https://www.emeraldinsight.com/toc/jmtm/17/2

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 48, March 2020

19

[15] Rachhpal S (2014),Task Scheduling in Parallel Systems

using Genetic Algorithm, International Journal of

Computer Applications, 108(16); 0975 – 8887

[16] Savas B (2012), Non-Identical Parallel Machine

Scheduling With Fuzzy Processing Times Using Robust

Genetic Algorithm And Simulation, International

Journal of Innovative Computing, Information and

Control ICIC International ISSN 1349-4198, 8(1), 221 –

234

[17] Mostafa R. M and H. A. A. Medhat (2011), Hybrid

Algorithm for Multiprocessor Task Scheduling, IJCSI

International Journal of Computer Science Issues, 8(3),

14- 23,

[18] Rachhpal S (2012),Task Scheduling With Genetic

Approach and Task Duplication Technique,

International Journal of Computer Applications &

Information Technology 1(1); 1-11

[19] Kaleeswaran A, V Ramasamy and P. Vivekanandan,

(2013). Dynamic Scheduling of Data Using Genetic

Algorithm In Cloud Computing, International Journal of

Advances in Engineering & Technology,. ISSN: 2231-

1963, 327, 5(2), 327-334.

[20] Zubair K, S. Ravender and A. Jahangir, (2012), Tasks

Allocation Using Fuzzy Inference In Parallel And

Distributed System, Journal Of Information And

Operations Management, E-Issn: 0976-7762, 3(2); 322-

326.

[21] Ali M. A, (2012), A Fuzzy Dynamic Load Balancing

Algorithm for Homogenous Distributed Systems,

International Journal of Computer, Electrical,

Automation, Control and Information Engineering 6 (1);

1 - 11,

[22] Mohammad S. G and E Mehdi (2013), High

Performance Scheduling in Parallel Heterogeneous

Multiprocessor Systems Using Evolutionary Algorithms,

I.J. Intelligent Systems and Applications.2(1) 22 – 34

[23] Prabhjot K, and K. Amanpreet (2013), Implementation

of Dynamic Level Scheduling Algorithm using Genetic

Operators, International Journal of Application or

Innovation in Engineering & Management (IJAIEM),

ISSN 2319 – 4847, 2 (7); 388 - 397.

[24] Aparna V, V. Ramesh and U. P Sapna, (2014), Task

Scheduling in Homogeneous Multiprocessor Systems

Using Evolutionary Techniques, International Journal of

Emerging Technology and Advanced Engineering, ISSN

2250-2459,4(2);77 – 86

[25] Leila A, (2014), Solving The Job Shop Scheduling

Problem With A Parallel And Agent-Based Local Search

Genetic Algorithm, Journal Of Theoretical And Applied

Information Technology, Issn: 1992-8645, 62(.2); 1958-

1969

[26] Selvi. V (2014), Multi Objective Optimization Problems

On Identical Parallel Machine Scheduling Using Genetic

Algorithms, International Journal on Recent Researches

in Science, Engineering & Technology, 2 (7) 112 - 122,

[27] Zeinab K. and J. M. Seyed, (2014), A Novel

Decentralized Fuzzy Based Approach for Grid Job,

Journal of Telecommunication, Electronic and Computer

Engineering, , ISSN: 2180 - 1843 6 (1); 1-12

[28] Nirmala H and H A Girijamma (2014), Fuzzy

Scheduling Algorithm for Real –Time multiprocessor

system, International Journal of Scientific & Engineering

Research, 5(7); 2229-5518.

[29] Seyed M. H,and H. T. Sai, (2015), A Fuzzy Genetic

Algorithm for Scheduling of Handling/Storage

Equipment in Automated Container Terminals, IACSIT

International Journal of Engineering and Technology,

7(6); 234- 245

IJCATM : www.ijcaonline.org

