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ABSTRACT  
Machine breakdown is an issue that cannot be overlooked 

when considering the performance of any scheduling model. 

This issue has resulted in the inability to meet up with the job 

due date and also increases job completion time among 

identical parallel machines.  Therefore, an efficient job 

scheduling model will take care of machine failure issues to 

obtain a good job schedule. This paper developed an efficient 

scheduling model that is robust, to handle the issues of 

machine failure and minimize the total completion time for 

job execution in identical parallel machines. The developed 

model adopted fuzzy logic technique in developing a job 

dispatcher for the identical parallel machines. The job 

dispatcher was used in determining the available machine and 

the failed machine before dispatching jobs to the individual 

parallel machines. The model was tested with fifteen identical 

parallel machines used for printing jobs in the printing press. 

The parameter used in analyzing this model includes the 

machine load balancing and machine utilization. The result 

from this model was compared with other existing model like 

first come first serve scheduling model and genetic scheduling 

model. The lowest machine utilization recorded from the 

experiment conducted using first come first serve scheduling 

model, genetic scheduling model and the developed 

scheduling model was 83.46856%, 89.57643% and 98.2949% 

respectively, which shows that the new model achieved better 

load balancing and efficient machine utilization among the 

identical parallel machines.  

Keywords 
Job scheduling model, machine breakdown, machine 

utilization, identical parallel machines and load balancing. 

1. INTRODUCTION 
Job scheduling problem subject to machine breakdown is one 

of the challenging issues in production field. Robustness and 

stability are the important measures to consider when we 

reschedule jobs [1]. Machine breakdown have lead to so many 

losses in production industries and one of its effect is the 

inability to meet the job due date. The challenges of job 

scheduling in an identical parallel machine are dealing with 

the computing resources for the number of jobs, considering 

the following factors which include complexity, dependency, 

resource starvation, load balancing and efficiency [2]. 

Utilizing dispatching rules is a well-known technique for 

taking care of scheduling issues.   The dispatching rules 

figures out what job to process straightaway. The scheduling 

problem deals with the optimal assignment of jobs to the 

identical parallel machine and orders their execution so that 

the total completion time is minimized [3]. 

Identical parallel machines are important resources that are 

generally shared by communities of users. The charge of job 

scheduling is to decide when and how each job should be 

carried out in order to exploit the system’s cumulative value 

to its owners [4]. The way in which jobs are allocated to 

machine is fundamental to realizing the high performance of 

the corresponding systems, such as minimizing mean job 

response time and maximizing machine throughput. [5] 

In general, the aim of job scheduling is to have load balancing 

among the identical parallel machines, whereas for the later 

minimization of overall execution time is the main concern 

[6]. The intention behind scheduling is to exploit the system’s 

throughput by effecting maximum number of jobs in the given 

time span. Load balance [7] is considered as a major problem 

when scheduling multiple jobs with limited resources. The 

load balance should be minimized to improve the machine 

throughput and efficiency.  

Heuristic optimization algorithm [7] is broadly used to solve a 

diversity of problems. [8]Abraham and Nath (2000) proposed 

three basic heuristics implied in nature for grid scheduling, 

namely Genetic Algorithm [9], Simulated Annealing [10] and 

Tabu Search [11], and heuristics derived by a combination of 

these three algorithms are very powerful. 

The job scheduling algorithm is considered a complex process 

because it must schedule a large number of jobs into the 

available resources [12][13]. This paper identifies a number of 

issues that may be experienced when utilizing the identical 

machine in the scenario of job scheduling, namely mapping, 

arrangement of execution, and optimal configuration of the 

identical parallel machines. [14] There is a need therefore to 

develop a model for job dispatch to conquer these issues. [15] 

The enabling strategy is the use of job scheduling plan based 

on genetic algorithm and fuzzy logic to determine these 

issues. 

2. LITERATURE REVIEW  
Savas (2012) worked on non-identical parallel machine 

scheduling with fuzzy processing times using robust genetic 

algorithm and simulation. His research addresses non-

identical parallel machine scheduling problem with fuzzy 

processing times (FPMSP). The proposed GA approach yields 

good results and can explore alternative schedules providing 

the same results.[16] 

Mostafa et al. (2012) searched for an optimal solution in 

scheduling real-world problems in industrial applications, 

especially for mission time critical systems. A parallel GA 

was employed to solve flow shop scheduling issues with the 

aim of minimizing the makespan. It was found that the 

proposed parallel genetic algorithm (PPGA) considerably 
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decreased the CPU time without adversely affecting the 

makespan.[17]  

Rachhpal (2012) worked on task scheduling with genetic 

approach and task duplication technique. In his paper, 

numbers of alternative solutions and heuristics techniques 

were proposed to solve the problem. He noticed that applying 

the GA with task duplication technique enhances the 

efficiency of the task scheduling in parallel multiprocessor 

environment.[18] 

Kaleeswaran et al (2012) worked on dynamic scheduling of 

data using genetic algorithm in cloud computing. They 

discovered that task arrival was uncertain at run time in 

dynamic scheduling and allocating resources was tedious as 

several tasks arrive at the same time. Their result reduced the 

execution time in parallel processing and obtained global 

optimization.[19]  

Zubair et al. (2012) worked on tasks allocation using fuzzy 

inference in parallel and distributed system. They proposed a 

task assignment model and multi-agent distributed approach 

based on fuzzy assessment of machines and a virtual budget to 

assign tasks to processing element in a dynamic environment. 

Parallel and distributed computations were performed directly 

within the interpretive MATLAB environment. They found 

some good response time of tasks in parallel and distributed 

system.[20] 

Ali (2012) worked on fuzzy dynamic load balancing 

algorithm for homogenous distributed systems. He proposed a 

new fuzzy dynamic load balancing algorithm for homogenous 

distributed systems. The proposed algorithm utilizes fuzzy 

logic in dealing with inaccurate load information, making load 

distribution decisions, and maintaining overall system 

stability. In terms of control, they proposed a new approach 

that specifies how, when, and by which node the load 

balancing is implemented. [21] 

Mohammad and Mehdi (2013) worked on high performance 

scheduling in parallel heterogeneous multiprocessor systems 

using evolutionary algorithms. In their research, they 

introduced a method based on genetic algorithms for 

scheduling and load balancing in parallel heterogeneous 

multi-processor systems. The results of the simulations 

indicated that Genetic algorithm is better than LPT, SPT and 

FIFO. Simulation results indicate Genetic Algorithm reduces 

total response time and also it increases machine utilization. 

[22] 

Prabhjot and Amanpreet (2013) worked on implementation of 

dynamic level scheduling algorithm using genetic operators. 

In their research they implemented APN Dynamic Level 

Scheduling algorithm by using genetic operators for task 

scheduling in parallel multiprocessor system including the 

communication delays to reduce the completion time and to 

increase the throughput of the system. The parameters used 

are makespan time, processor utilization and scheduled length 

ratio. The graphs showed better results of dynamic level 

scheduling with genetic operators as compared to simple 

dynamic level scheduling algorithm.[23] 

Aparna et al (2014) worked on task scheduling in 

homogeneous multiprocessor systems using evolutionary 

techniques. Their research shows how genetic algorithms can 

be adapted to tackle this problem, considering first a single 

task network and then a number of task networks with a given 

time period. For the single network as well as for a group of 

networks treated independently in a multi-network system, the 

research shows that the average of total processing time 

decreases with respect to generations. [24] 

Leila (2014) worked on solving the Job Shop Scheduling 

problem with a Parallel and Agent-Based Local Search 

Genetic Algorithm. In his research, he presented a parallel and 

agent-based local search genetic algorithm for solving the job 

shop scheduling problem. A multi-agent system containing 

various agents each with special behavior is developed to 

implement the parallel local search genetic algorithm. 

Benchmark instances are used to investigate the performance 

of the proposed approach. The results show that the proposed 

agent-based parallel local search genetic algorithm improves 

the efficiency.[25] 

Selvi (2014) worked on multi objective optimization problems 

on identical parallel machine scheduling using genetic 

algorithms. He attempted to solve scheduling problems 

involving identical parallel machines, where the objective is 

to optimize the multi-objective scheduling problems using 

Genetic algorithms. The major contribution of present work 

lies in proposing mathematical models using Genetic 

algorithms to optimize major objectives and to study the 

effectiveness of these algorithms for small and large size 

problems.[26] 

Zeinab and Seyed (2014) worked on novel decentralized 

fuzzy-based approach for grid job.  They followed the 

identification of grid scheduling with the help of fuzzy theory 

and sought to present a new method for grid scheduling with 

respect to exiting obstacles. The results of the experiments 

show the efficiency of the proposed method in terms of 

makespan and standard deviation of the load of clusters. [27] 

Rachhpal (2014) worked on task scheduling in parallel 

systems using genetic algorithm. In his work, genetic 

algorithm based on the principles of evolution to obtain an 

optimal solution for task scheduling is developed. Genetic 

algorithm was based on three operators: Natural Selection, 

Crossover and Mutation. The simulation results prove that the 

method proposed generates better results. [28] 

Seyed et al. (2015) looked at fuzzy genetic algorithm for 

scheduling of handling/storage equipment in automated 

container terminals. They designed a Fuzzy Logic Controller 

(FLC) to improve the performance of a GA in optimization of 

integrated scheduling of handling/storage equipment in 

automated container terminals. The FLC controls crossover 

and mutation rates of the GA during its generations, which are 

the main control parameters of the GA to avoid the premature 

convergence. The numerical results for the small size test 

cases solved by using the proposed fuzzy genetic algorithm 

showed that solutions found by this algorithm are 2.5% better 

than the solutions found by the GA. [29] 

3. MATERIALS AND METHODS 
In order to solve the issue of complexity in handling machine 

failure faced by the existing system, we proposed a fuzzy 

model for scheduling job among identical parallel machine 

systems. The proposed system has a set of n jobs, N = {1, 2, ... 

n} to be processed on m parallel machines. M = {1,2, ..., m} 

within a time window [ri, di]. A job j will be processed by the 

suitable machine m. All the machines have the same speed 

(Vi) and can process only one job at a time. The processing 

time of job j on machine m is denoted by P(m, j). The model 

is designed to minimize the total tardiness time and total 

completion time (makespan), also to give attention to jobs 

with early due date. The new system boolean variable X (i, j) 

which determines whether job j is processed by machine i(if 
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x(i, j) = 1) or not (if x(i, j) = 0).  The system works efficiently 

based on the assumptions listed in 3.1 

3.1 Principal Assumptions  
In order to minimize the total tardiness time of scheduling 

grouped jobs in the identical parallel machines, the optimal 

solution satisfies the following conditions: 

1. No machine can process more than one operation at 

a time. 

2. Each operation, once started, must be performed till 

completion except the case of machine failure issue. 

3. A job is an entity, i.e. Job cannot represent many 

individual parts, and will not be processed by more 

than one machine at a time. 

4. Each operation must be completed before any other 

operation can begin. 

5. Time intervals for processing are independent of the 

order in which operations are performed. 

6. There can be only the same type of machine for the 

processing. 

7. A job is processed as soon as possible subject to 

ordering requirements. 

8. All jobs are known and are ready to start processing 

before the period under consideration begins. 

9. The time required to transfer jobs between machines 

is negligible. 

3.2 Determining machine failure and 

availability  
The system uses these assumptions listed in 3.1 to develop a 

fuzzy model for job dispatch in identical parallel machines.  

The job dispatcher performs fuzzy reasoning jobs considering 

the job waiting time and machine availability in order to know 

which job to be dispatched to the individual machines.  The 

fuzzification module receives the crisp numeric values as 

input, process them and map them into fuzzy membership 

function values. The fuzzy engine is responsible for 

processing all determined membership function values using 

fuzzy sets’, with fuzzy rule base to identify the most suitable 

fuzzy output. However, the defuzzification module is 

responsible for converting the fuzzy output into a numeric 

output suitable for the environment decision and control 

situation. The fuzzy inference system determines the 

membership function for the job waiting time and machine 

availability which will be used in job allocation to the 

identical parallel systems.  

The fuzzy sets for job waiting time depends on how long a 

particular job has to wait to be dispatched , the waiting time 

fuzzy values are giving as Short, Average, and Long. The 

machine availability depends on the state of the processing 

machines; machine availability fuzzy values are given as free, 

busy and failed. 

3.2.1 Fuzzy Input/Output Specifications 
The fuzzy input/output variables are used for job dispatching 

and it is assumed to be the base for the dispatching rule. The 

fuzzy I/O specification is presented in Table 1. There are two 

input variables and one output. The output is the effect of the 

result of input states. 

 

3.2.2 Fuzzification 
Fuzzification is the process of transforming a crisp value into 

a fuzzy set so that it can be used and processed by fuzzy 

inference mechanism. The inputs and output of the design as 

specified in Table 1 are assigned linguistic variables and some 

degrees of membership. For input one (the job waiting time), 

the corresponding range is short (0.0, 0.3), average (0.4, 0.6) 

and long (0.7, 1.0).  For input two (machine availability), the 

corresponding value is failed = 0.0, many free = 0.25, two free 

= 0.5, one free = 0.75 and all busy = 1.0.  The levels for 

output (job allocation) are retrieve job and send to next 

available device = 0.0, wait = 0.5, and allocate = 1.0. The 

fuzzy variables for this proposed model include the following: 

Machine availability (MA) = {One Free (OF), Two Free 

(TF), Many Free (MF), All Busy (AB), Failed (F)}. 

Waiting Time (WT) = {Short (S), Average (A), Long (L)}. 

Job Allocation (JA) = {Allocate (A), Wait (W), Retrieve and 

Send to Available Machine (RSAM)} 

 

Figure 1.  Job dispatching system. 

Figure 1 shows the diagrammatic representation of job 

dispatching system. It handles the current schedule, the past 

scheduling and current waiting queue. Here we have two 

different rule selections, which include the rules for job 

allocation and rules for machine availability. These rules are 

used to take decisions on job allocation, machine failure, and 

machine availability decisions. In machine failure decisions, 

the unexecuted job will be reallocated to the next available 

machine. Job allocation decisions are used in allocating jobs 

to the parallel machine. 
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Table 1: Fuzzy variables (Input/Output Specifications) 

INPUT OUTPUT 

Machine 

availability (MA) 

Waiting 

Time (WT) 

Job Allocation (JA) 

One Free (OF) 

Two Free (TF) 

Many Free (MF) 

All Busy (AB) 

Failed (F) 

Short (S) 

Average (A) 

Long (L) 

Allocate (A) 

Wait  (W) 

Retrieve and Send to  

Available Machine 

(RSAM)  

 

3.2.3 Fuzzy Rules for machine availability. 
The rules are formulated using a series of if-then statements, 

combined with AND/OR operators. For instance, if one 

device is free AND the job waiting time is small THEN job 

allocation should wait.  With two inputs having eight 

membership functions, we have 5 * 3 = 15 rules as showed in 

table 2.  

R1:  If MA = OF, and WT = S then JA = W 

R2:  If MA = OF, and WT = A then JA = W 

R3:  If MA = OF, and WT = L then JA = A 

R4:  If MA = TF, and WT = S then JA = W 

R5:  If MA = TF, and WT = A then JA = A 

R6:  If MA = TF, and WT = L then JA = A 

R7:  If MA = MF, and WT = S then JA = A 

R8:  If MA = MF, and WT = A then JA = A 

R9:  If MA = MF, and WT = L then JA = A 

R10:  If MA = AB, and WT = S then JA = W 

R11:  If MA = AB, and WT = A then JA = W 

R12:  If MA = AB, and WT = L then JA = W 

R13:  If MA = F, and WT = S then JA = RSAM 

R14:  If MA = F, and WT = A then JA = RASM 

R15:  If MA = F, and WT = L then JA = RASM 

Table 2: The Fuzzy Rule Base Table 

No Device 

Availability 

(DA) 

Job Waiting 

Time(JWT) 

Job Allocation 

(JA) 

1 One Free (OF) Short (S) Wait (W) 

2 One Free (OF) Average (A) Wait (W) 

3 One Free (OF) Long (L) Allocate  (A) 

4 Two Free (OF) Short (S) Wait (W) 

5 Two Free (OF) Average (A) Allocate  (A) 

6 Two Free (OF) Long (L) Allocate  (A) 

7 Many Free 

(MF) 

Short (S) Allocate  (A) 

8 Many Free Average (A) Allocate  (A) 

(MF) 

9 Many Free 

(MF) 

Long (L) Allocate (A) 

10 All Busy (AB) Short (S) Wait (W) 

11 All Busy (AB) Average (A) Wait (W) 

12 All Busy (AB) Long (L) Wait (W) 

13 Failed (F) Short (S) Retrieve and Send 

to  Available 

Machine(RSAM)  

14 Failed (F) Average (A) Retrieve and Send 

to  Available 

Machine(RSAM)  

15 Failed (F) Long (L) Retrieve and Send 

to  Available 

Machine(RSAM)  

 

3.2.4 Defuzzification 
The transformation from a fuzzy set to a crisp value is called 

defuzzification. The CoG is adopted in this study for 

defuzzification because its computational complexity is 

relatively high.  

        
          

  

   

        
  

   

 

Where Nq is the number of quantization used to discretize 

membership function μB0(   ) of the fuzzy output B0. 

μB0(  ) is the degree of membership and yq are elements of 

the set.  

Crisp Output = {Sum (Membership Degree * Singleton 

Position)}/(Membership degree). For instance with the output 

membership degree, are retrieving job and send to next 

available device = 0.0, wait = 0.5, allocate = 1.0 then the crisp 

value will be Crisp Output = (0.1*0.00)+ 

(0.5*0.50)+(1.0*1.00)/(0.0+0.5 +0.1) = 0.83 for this result 

therefore system allocates job. 

3.3 Determining the job allocation 
The job dispatcher performs fuzzy reasoning on the jobs, 

considering the job waiting time, the job due date and the job 

processing time in order to know the jobs to be dispatched to 

the individual parallel machines.  The fuzzification module 

will receive the crisp numeric values as input, process them 

and map them into fuzzy membership function values. The 

fuzzy engine is responsible for processing all calculated 

membership function values using fuzzy sets’ calculations and 

communicates with fuzzy rule base to identify the most 

suitable fuzzy output. However, the defuzzification module is 

responsible for converting the fuzzy output into a numeric 

output suitable for the environment decision and control 

situation. The fuzzy inference system determines the 

membership function for the job waiting time, the earliest due 

date and the job processing time which will be used in job 

allocation to the parallel machine.  

3.3.1 Fuzzy Input/Output Specifications 
The Fuzzy input/output variables are used for job dispatching 

and it is assumed to be the base for the dispatching rule. The 

fuzzy I/O specification is presented in Table 3. There are two 
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input variables and one output. The output is the effect of the 

result of input states. 

3.3.2 Fuzzification. 
The fuzzification is the process of transforming a crisp value 

into a fuzzy set, so that it can be used and processed by fuzzy 

inference mechanism. The inputs and output of the design as 

specified in Table 3 are assigned linguistic variables and some 

degrees of membership. For input one (the job due date) the 

corresponding range is close (0.0, 0.4), Distance (0.5, 1.0). 

For input two (the job waiting time) the corresponding range 

is short (0.0, 0.3), average (0.4, 0.6) and long (0.7, 1.0).  

Tables 3. Fuzzy variables (Input/Output Specifications) 

INPUT OUTPUT 

Due Date 

(DD) 
Waiting 

Time (WT) 
Processing 

Time (PT) 
Job Priority 

(JP) 

Close (C) Short (S) Very Short 

(VS) 

Very Low 

(VL) 

Distant(D) Average 

(A) 

Short (S) Low (L) 

 Long (L) Medium (M) Medium (M) 

 Long  (L) High (H) 

Very Long 

(VL) 

Very High 

(VH) 

 

For input three (the job processing time), the corresponding 

range is very short (0.0, 0.1), short (0.2, 0.3), medium (0.4, 

0.5), long (0.6, 0.8) and very long (0.9, 1.0). The levels for 

output (the job priority) are very low 0.0, low 0.25, medium 

0.50, High 0.75 and very high 1.0. 

3.3.3 Fuzzy Rules for job allocation 
The rules are formulated using a series of if-then statements, 

combined with AND/OR operators. For instance, if the job 

due date is close AND the job waiting time is long AND the 

job processing time very short, then job should be very high. 

With three inputs, each having 10 membership functions, we 

have 2 * 3 * 5 = 30 rules as showed in table 3.2.  

R1:  If the job due date is close AND the job waiting time is 

Short AND the job processing time is very     short 

THEN the job priority is high. 

R3:  If the job due date is close AND the job waiting time is 

long AND the job processing time is very short THEN 

the job priority is very high. 

R7:  If the job due date is close AND the job waiting time is 

Short AND the job processing time is very     short 

THEN the job priority is high. 

R11:  If the job due date is close AND the job waiting 

time is Short AND the job processing time is medium 

THEN the job priority is high. 

R17:  If the job due date is distant AND the job waiting 

time is average AND the job processing time is very 

short THEN the job priority is medium. 

R22:  If the job due date is distant AND the job waiting 

time is Short AND the job processing time is medium 

THEN the job priority is low. 

R27:  If the job due date is distant AND the job waiting 

time is long AND the job processing time is long THEN 

the job priority is low. 

R30:  If the job due date is distant AND the job waiting 

time is long AND the job processing time is very long 

THEN the job priority is low. 

Table 4: The Fuzzy Rule Base 

No Due Date 

(DD) 
Waiting 

Time 

(WT) 

Processing 

Time (PT) 
Job 

Priority 

(JP) 

1 Close (C) Short (S) Very Short 

(VS) 

High (H) 

2 Close (C) Average 

(A) 

Very Short 

(VS) 

High (H) 

3 Close (C) Long (L) Very Short 

(VS) 

Very High 

(VH) 

4 Close (C) Short (S) Short (S) High (H) 

5 Close (C) Average 

(A) 

Short (S) High (H) 

6 Close (C) Long (L) Short (S) Very High 

(VH) 

7 Close (C) Short (S) Medium (M) High (H) 

8 Close (C) Average 

(A) 

Medium (M) High (H) 

9 Close (C) Long (L) Medium (M) High (H) 

10 Close (C) Short (S) Long (L) Medium 

(M) 

11 Close (C) Average 

(A) 

Long (L) Medium 

(M) 

12 Close (C) Long (L) Long (L) High (H) 

13 Close (C) Short (S) Very Long 

(VL) 

Medium 

(M) 

14 Close (C) Average 

(A) 

Very Long 

(VL) 

Medium 

(M) 

15 Close (C) Long (L) Very Long 

(VL) 

Medium 

(M) 

16 Distance 

(D) 

Short (S) Very Short 

(VS) 

Medium 

(M) 

17 Distance 

(D) 

Average 

(A) 

Very Short 

(VS) 

Medium 

(M) 

18 Distance 

(D) 

Long (L) Very Short 

(VS) 

High (H) 

19 Distance 

(D) 

Short (S) Short (S) Medium 

(M) 

20 Distance 

(D) 

Average 

(A) 

Short (S) Medium 

(M) 

21 Distance 

(D) 

Long (L) Short (S) Medium 

(M) 

22 Distance 

(D) 

Short (S) Medium (M) Low (L) 

23 Distance 

(D) 

Average 

(A) 

Medium (M) Low (L) 
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24 Distance 

(D) 

Long (L) Medium (M) Medium 

(M) 

25 Distance 

(D) 

Short (S) Long (L) Very Low 

(VL) 

26 Distance 

(D) 

Average 

(A) 

Long (L) Low (L) 

27 Distance 

(D) 

Long (L) Long (L) Low (L) 

28 Distance 

(D) 

Short (S) Very Long 

(VL) 

Very Low 

(VL) 

29 Distance 

(D) 

Average 

(A) 

Very Long 

(VL) 

Low (L) 

30 Distance 

(D) 

Long (L) Very Long 

(VL) 

Low (L) 

 

Using the values for each of the linguistic variable we have 

Very low = 0.0, low = 0.25, Medium =0.50, High =0.75, Very 

High = 1.00. 

3.3.4 Defuzzification 
The transformation from a fuzzy set to a crisp value is called 

defuzzification. The CoG is adopted in this study for 

defuzzification because its computational complexity is 

relatively high.  

        
          

  

   

        
  

   

 

Where Nq is the number of quantization used to discretize 

membership function μB0(y) of the fuzzy output B0. μB0(y) 

is the degree of membership and yq are elements of the set.  

Crisp Output = {Sum (Membership Degree * Singleton 

Position)}/(Membership degree). For instance, with the output 

membership degree, Very low = 0.0,  low = 0.25,  Medium 

=0.50,  High =0.75,  Very High = 1.00  then the crisp value 

will be  Crisp Output = 

(0.1*0.00)+(0.3*0.25)+(0.9*0.50)+(0.6*0.75)+(0*1.00)/0.1+0

.3 +0.9+0.6+0) = 0.51 for this result the job priority is 

medium. 

4. EXPERIMENT AND RESULTS 
Figure 2  shows machine failure handling in parallel machines 

for the case of one failed machine using the new job 

scheduling model. The figure shows the result of an 

experiment with four available machines which are meant to 

handle forty four loaded jobs. During the time of processing, 

it was noticed that one of the parallel machine (Hp LaserJet 

P2050 Series PCL6) that has jobs allocated to it went offline.  

It can be seen from the figure that the job allocated to the 

failed machine (Hp LaserJet P2050 Series PCL6) was 

reallocated to the three online machines (Hp LaserJet P2015 

PCL6, Microsoft XPS Document Writer and Fax). In this way 

the system handles the issue of machine failure. 

 Figure 3 shows machine failure handling in parallel machines 

for the case of two failed machine using the new job 

scheduling model. The figure shows the result of an 

experiment with five available machines which are meant to 

handle forty four loaded jobs. During the time of processing, 

it was noticed that two of the parallel machines (Hp LaserJet 

P2050 Series PCL6 and Hp LaserJet P2200 Series PCL5) that 

has jobs allocated to them went offline.  It can be seen from 

the figure that the job allocated to the failed machine (Hp 

LaserJet P2050 Series PCL6 and Hp LaserJet P2200 Series 

PCL5) was reallocated to the three online machines (Hp 

LaserJet P2015 PCL6, Microsoft XPS Document Writer and 

Fax). In this way the system handles the issue of machine 

failure.  

Figure 4 shows machine failure handling in parallel machines 

for the case of four failed machine using the new job 

scheduling model. The figure shows the result of an 

experiment with seven available machines which are meant to 

handle forty four loaded jobs. During the time of processing, 

it was noticed that four of the parallel machines (Hp LaserJet 

P2050 Series PCL6,  Hp LaserJet P2050 Series PCL6(Copy 

1), Hp LaserJet P2300 Series PS and Hp LaserJet P2200 

Series PCL5) that has jobs allocated to them went offline.  It 

can be seen from the figure that the job allocated to the failed 

machine (Hp LaserJet P2050 Series PCL6,  Hp LaserJet 

P2050 Series PCL6(Copy 1), Hp LaserJet P2300 Series PS 

and Hp LaserJet P2200 Series PCL5) was reallocated to the 

three online machines (Hp LaserJet P2015 PCL6, Microsoft 

XPS Document Writer and Fax). In this way the system 

handles the issue of machine failure. 

 

Figure 2: Handling machine failure in parallel machines (a 

case one machine failure) using the new job scheduling 

model. 
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Figure 3: Handling machine failure in parallel machines (a 

case two machine failure) using the new job scheduling 

model. 

 

Figure 4: Handling machine failure in parallel machines (a 

case of four machine failures) using the new job 

scheduling model. 

The new system was implemented to automatically generate 

the schedule for all the jobs uploaded in the system. This 

system generates values from the jobs uploaded to it and the 

value includes the job processing time and job waiting time. 
The generated jobs for testing this new model have the 

following characteristics: 

 

a. Size of uploaded job ranges from 200 to 1200 jobs 

with an interval of 100 jobs. 

b. For the new model only one job enters the system at 

a time. 

c. The processing time for each job is a random 

number between 1 min and 4mins. 

d. Number of machines used was fifteen for all the 

sizes of problems. 

The developed model was used in the parallel machine 

environment. The result  generated from the proposed system 

was compared with the result of other job scheduling 

algorithm like First Come First Serve (FCFS) scheduling 

model and genetic scheduling model. Three parameters are 

considered to evaluate the performance of the three different 

scheduling approaches. These parameters include the 

completion time, load balancing, and resource utilization. 

The schedule length, average execution time, load balance and 

utilization can be computed from the generated result from the 

three tested scheduling models using the formula below: 

  h           h SL =     { _     (  )}  

Machine Utilization 

   
                      

                         
 

 

             

   

 

Total no of machines 

Table 5:  Analysis of the Machine Utilization from the 

Examined Job Scheduling Algorithms. 

Number of 

jobs 

uploaded 

Machine  

Utilization 

of the 

FCFS 

model 

Machine 

Utilization 

of the GA 

model 

Machine 

Utilization 

of the new 

model 

 

200 83.46856% 89.57643% 98.2949% 

300 81.87373% 90.79829% 98.6242% 

400 85.45337% 90.76897% 99.0809% 

500 84.57333% 91.50129% 99.1427% 

600 88.09853% 94.90810% 99.2724% 

700 89.92511% 95.63038% 99.4752% 

800 90.91589% 95.80733% 99.4821% 

900 91.68562% 95.65761% 98.9530% 

1000 91.94647% 96.21440% 99.5082% 

1100 93.33333% 97.23967% 99.4891% 

1200 94.60927% 97.32404% 99.4525% 
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Figure 5: Graphical analysis of the machine utilization 

from the examined job scheduling algorithms. 

Table 5: The analysis of the device utilization from the 

examined job scheduling algorithms. From the Table, we can 

observe the number of uploaded jobs alongside of the 

machine utilization for the FCFS model, the GA model, the 

new model. It can be seen from the result that when 300 jobs 

were uploaded the machine utilization for the new model, GA 

and FCFS models were 98.294%, 89.57643% and 83.46856% 

respectively. When 1300 jobs were uploaded the machine 

utilization for the new model, GA and FCFS models were 

99.4525%, 97.32404% and 94.60927% respectively. This 

shows that the new model achieved high machine utilization 

when compared with other existing models. 

Figure 5 shows graphical analysis of the machine utilization 

from the examined job scheduling algorithms. From the 

graph, it can be observed that the new model achieved better 

resource utilization that the FCFS model and the GA model; 

this shows that the new system achieved high machine 

utilization when compared with other existing models. 

5. CONCLUSION  
This paper has shown efficient job dispatching model that 

decreases the total time for jobs execution in identical parallel 

machine system. It is an effective job scheduling model that 

takes care of the different issues to obtain a good job 

schedule. The model was able to handle complexity issue in 

machine breakdown and some of these failures occurred even 

after jobs have been assigned to the individual machine.  The 

system also considers the due date of the individual job, 

which is an advantage when compared with existing systems. 

The result generated from the experiment conducted in the 

course of this research has shown that the system achieves 

load balancing among the individual machine and high 

machine utilization, thereby minimizes the total job execution 

time.  This paper has developed an enhanced model for job 

dispatch in identical parallel machines.  This model has the 

capacity to handle the issue of machine breakdown, which is 

prevalent in the existing model during job execution in 

identical parallel machine. 
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