
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

5

Network Resource Management Optimization for SDN

based on Statistical Approach

Mohammed Najm Abdullah
Department of Computer

Engineering
University of Technology,

Baghdad, Iraq

Afrah Salman Dawood
Department of Computer

Engineering
University of Technology,

Baghdad, Iraq

Ali Kamal Taqi
Department of Computer

Engineering
University of Technology,

Baghdad, Iraq

ABSTRACT

Software-Defined Networking (SDN) is a new networking

scheme in network technologies in which the data plane and

network plane are separated. It can be considered as an

umbrella including numerous sorts of network topologies, such

as linear, minimal, tree, datacenter topologies and several

others, proposed principally to solve problems of diverse

nature of applications and different demands for resource

management and performance. Where traditional networks

would utilize a specific machine, for example, a firewall or

load balancer, a Software-Defined Networking conveys an

application that uses the controller (like OpenDaylight,

Floodlight, OVS, etc.) to oversee information plane conduct.

SDN can be implemented on Mininet emulator or NS3

simulator, which are both Linux basis but can also be

implemented on other operating systems.

One of important tools in network simulation is Fast Network

Simulation Setup (FNSS); which is very useful toolchain that

provides the ability of parsing different topologies from

datasets or generating them artificially and implement a

complete simulation scenario. FNSS supports different

programming languages and network simulators using suitable

APIs in the target simulator.

In this paper, we proposed a solution to increase the

performance of datacenter network topology implemented in

python programming language on FNSS toolchain with

Mininet emulator. The proposed solution is based on Linear

Least Squares method to set different capacities to links based

on average delays. This solution has been implemented and

tested on two types of SND controllers which are OVS

controller and Floodlight controller. Thus, a comparison based

on these results has raised between these two controllers. In

general, we choose video steaming application played on VLC

media player to evaluate our solution. The results show that, as

an average, the bandwidth increased from 953Kbps- 1.3Mbps

between two hosts to 8.7Mbps- 13.9Mbps according to iperf

command. The delay has been reduced in 89.6% in OVS

controller and in 87.16% in Floodlight controller.

Keywords
Software-Defined Networking (SDN), Fast Network

Simulation Setup (FNSS), resource management, OVS

Controller, Floodlight Controller, Mininet, Least Square

Solution, Datacenter topology.

1. INTRODUCTION
In the last years, Software-Defined Networking attract the

attention of both commercial and academic fields since it can

be considered as a key improvement in network environments.

As mentioned earlier, the main facility of SDN is the

separation of data plane and control plane [4]. Software-

Defined Networking (SDN) alludes to a method for sorting out

computer network implementation. SDN permits the network

to be virtualized, giving more noteworthy control and support

to traffic engineering [5]. Computer networks today can be

seen particularly to accomplish application requirements

efficiently: the data plane, the control plane, and the

management plane.

The data plane, also known as the forwarding plane, which is

related with the hardware devices is responsible for handling

incoming packets [5]. The control plane. The control plane and

management plane avail the data plane, bears the traffic that

the network exists to carry. The management plane is

responsible for coordinating the interaction between the control

plane and the data plane [5]. All three planes are accomplished

in the firmware of routers and switches. SDN decouples these

planes by eliminating the control plane from the network

hardware and implements it in software on a special controller,

which can be thought of as the brain of the network. This

implementation enables programmatic access, and accordingly,

makes network management much more flexible.

Implementing the control plane in software and eliminating it

from the control plane allows and dynamic access and

administration and allows efficient management to network

resources; since network administrator can change switches’

rules without the need to manually configure each switch in the

network. Management and admin plane are responsible on

setting up the network resources and allows researchers to

optimize these resources and improve the efficiency of the

network.

In this paper, we propose a procedure to enhance Quality-of-

Service (QoS) requirements of Software-Defined Networking

(SDN) by parsing implemented solution and topology in

python file from FNSS to Mininet. We show the difference

between two types of controllers according to this procedure.

We also show the difference in quality and delay on chosen

video streamed through VLC media player. The rest of the

paper is organized as follows: section II describes basic

concepts of the main topics in this paper. We introduced some

of researches related to resource management in section III.

The proposed solution and the algorithm is shown in section

IV, section V contains simulated results, section VI shows

performance evaluation, and finally, section I includes

conclusion.

2. BASICS CONCEPTS
This section provides an overview of the basic concepts and

terms used in this paper. Mininet simulation, FNSS toolchain,

and Floodlight and OVS controllers will be explained briefly.

A. Mininet
It is a software emulator used to run SDN topologies with a

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

6

suitable controller [14]. As known emulator is hardware or

software that enables one computer system (called the host) to

behave like another computer system (called the guest).

Though Mininet emulator supports research, development,

learning, testing, etc. Adaptability, appropriateness,

intelligence, versatility, sensible, and impart capable models to

different teammates are some of attributes that guide the

formation of Mininet.

B. OVS Controller [15]
Open Virtual Switch is a generation quality, multilayer virtual

switch authorized under the open source Apache 2.0 permit. It

is intended to empower huge system robotization through

automatic expansion, while as yet supporting standard

administration interfaces and conventions (e.g. NetFlow,

sFlow, IPFIX, RSPAN, CLI, LACP, 802.1ag). Open vSwitch

can operate both as a software-based network switch running

within the virtual machine (VM) hypervisors, and as the

control stack for dedicated switching hardware; as a result, it

has been ported to multiple virtualization platforms, switching

chipsets, and networking hardware accelerators. OVS

controller is the default switch running with Mininet emulator.

C. FNSS [1]
It is a toolchain (i.e. a set of programming tools that is used to

perform a complex software development tasks or to create a

software product) that allows network researchers to facilitate

the process of setting up the network experiment scenario. The

quintessence library provides all the susceptibility to beget the

suitable experiment scenario. The transformers allow

researchers to export scenarios produced with the quintessence

library to NS-2, NS-3, Mininet, Omnet++, Auton etkit, etc.

The scenario is composed of network model and workload.

Figure 1 describes the scenario more clearly. After completing

the topology configuration, the scenario is released to FNSS to

be accomplished and prevailed in the preferred target

simulator.

D. Floodlight Controller [18]
Floodlight Controller is a SDN Controller introduced by Big

Switch Networks that works with the OpenFlow convention to

arrange activity streams in an SDN environment. It can be

invaluable for designers, since it offers them the capacity to

effectively adjust programming and create applications and is

composed in Java programming language. It has the

representational state Transfer application program interfaces

(REST APIs) that make it less demanding to program interf ace

with the item, and the Floodlight site offers coding cases that

guide designers in building the item.

Fig. 1: The Components of FNSS Scenario

3. RELATED WORK
As resource management is a very important factor in any

system, software defined networking researchers tried to improve

these networks and evaluate the performance of these networks.

Reference [7] was the first step towards stringent QoS

requirements and manage the handoff between different network

technologies, e.g., Wi-Fi and WiMAX. The suggested model

provides an optimal results to be implemented on the campus

networks. Reference [8] provided an overview to investigate

possible enhancements and solutions to enable SDN as future

network paradigm. A complete solution was provided to increase

the robustness of Ethernet IP networks to the level of carrier-

grade and industrial networks with the application of a link-based

protection scheme and optimal routing algorithm, combined into

a Software Designed Networking solution. Reference [9]

summarized resource management mechanisms provided by

available SDN approaches based on OpenFlow and exemplary

evaluates implementation prospects and challenges. A Ph.D.

dissertation in [10] proposed a complete secure SDN architecture

that used multiple controllers to confirm the update of flow tables

in each switch. The presented results have demonstrated some

effectiveness to improve SDN by resource optimizations. The

authors in [11] presented the simulation experiment to validate

the performance of their framework. Furthermore, they deployed

this framework into their physical testbed to proof the feasibility

and expandability. Experiment results had shown that an

effectively improve on QoS can be achieved for various services

using their framework. The paper in [12], proposed a dynamic

resource management scheme called EnterpriseVisor engine that

managed the distribution of network resources among slices. The

authors in [13] presented an SDN-based Wi-Fi data offloading

and load balancing algorithms and analyzed the performance of

the proposed algorithms under realistic load conditions.

Reference [19], investigated and tested the multi-path chunked

video streaming with the Open vSwitch (OVS)-enabled Mininet-

emulated network testbed. The results demonstrated that multi-

path video streaming method can be gainfully applied in the

network when the capacity of the main path alone is not enough

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

7

to carry the whole incoming packets of video stream and the

employed chunk splitting ratio decomposes the incoming packet

rate to match the capacity of available paths. The thesis in [20]

focused on implementing an optimized frame work that can

provide end-to-end QoS guarantee in large scale multi-service

provider network.

In summary, we can conclude that our work is one of the first

researches that attempts to optimize resource management using

both Mininet and FNSS simulators. Although references [19] and

[20] are the nearest to our implementation. Our proposal

enhances capacity, bandwidth, and delay through transportation

of packets.

4. PROPOSED SOLUTION AND

ALGORITHM
 The resource management problem considered in this paper

can be described as follows. Let G (E, L) be a graph of a

datacenter topology implemented in python programming

language under PULP basis and run in Mininet as a Software-

Defined Network with OVS controller. Where,
 represents vertices and
represents edges of the proposed topology. Edges have capacities

belonging to the set . The goal is to find

suitable capacity for each link in the topology regarding the

primary delay of the link. Increasing the capacity of the link

results in an increased bandwidth of the path which in turn

reduces the delay of the path between two hosts.

The issue is that when increase packet size there are more delays.

Though, there must be some correlation between the amount of

the capacity assigned to the link and packet size. Based on this

assumption, the proposed solution is to presume an Integer Linear

Programming proposition (ILP) that attempts to identify a list of

capacities C assigned to links based on packet size according to

statistical regression approach. Regression analysis is a statistical

process for estimating the relationships among variables.

The basic idea of the method of least squares is easy to

understand. In this work, we based on formulating the least

square estimation [17] according to collected data (e.g. delay and

bandwidth) from datacenter network topology.

Table 1: Measured Data before Enhancement

X 1 10 1 10 1 10

Y 14.1

22

14.5

06

381.

568

45.1

37

1036.

240

110.

644

 (1)

The above linear equation [17] is going to be the base of our

solution.

 (2)

We need to solve

 (3)

 (4)

Where represents b and represents m. The final equation

used in the implementation will be as follows:

 (5)

Where represents the capacity associated with the link
according to the average delay of that link, . This ILP has been

implemented on FNSS in python function using PULP library.

The proposed solution has been implemented in simulators

according to the following algorithm.

Step 1. Import all necessary libraries (i.e. Mininet,

FNSS, PULP, and networkx) in python file

Step 2. Implement suitable datacenter topology.

Step 3. Set edge leaf and core edge links of the

topology.

Step 4. Set the weights of the topology.

Step 5. Set the units of the delay to ‘ms’.

Step 6. Get the values of delay.

Step 7. Set the capacity of each link according to eq. 5.

Step 8. Set link loads of the topology.

Step 9. Draw the topology with nx library.

Step 10. Export the topology to Mininet

Step 11. Run the topology and test the performance.

5. SIMULATED RESULTS
The proposed algorithm above has been implemented using

Mininet emulator, python package, networkx library, PULP

library, and FNSS. We implement it with both OVS and

Floodlight controllers. The complete graph topology

implemented with OVS controller can be displayed in networkx

python core library only as shown in Figure 2. The complete

graph topology implemented with Floodlight controller can be

displayed in both networkx python core library as well as on

Floodlight Web UI which shows more flexible graphs.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

8

Fig. 2: Plotting the Topology

Fig.3: Exporting FNSS scenario to Mininet [16].

In this paper, the preferred target simulator to be used in FNSS is

the Mininet, since SDN is the main core of the tests and it is hold

with Mininet emulator. Figure 3 shows a block diagram of this

exportation process.

All these software are implemented on Dell Inspiron 5559, Intel

Core i5, 4GB RAM, 500GB hard drive, and Ubuntu 16.04

operating system. For measuring the performance of the

proposition in section IV, we implement our proposed solution

on three topologies of datacenter networks, which are

two_tier_topology, three_tier_topology, and fat_tree_topology.

We test this implementation on video stream with VLC media

player. The properties of the tested video are of 360x240 pixels

(i.e. 2.00 MByte) of 26 second and 720x480 pixels (i.e. 5.00

MByte) of 30 second. It should be noted that we implement our

proposal based on using only one controller (i.e. we did not use

multiple controllers).

First of all, we will show the simulation results of OVS

controller. This controller can support tier topologies with one

core only according to the available hardware resources. The

topologies of the implementation are shown in Figure 4. We test

three lengths of ping packets on each of these topologies;

1KBytes, 24KBytes, and 64.4KBytes. For each packet length,

the test has been done for 10 packets and results before and after

implementation are shown in Tables 1, 2, and 3.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

9

Fig. 4: Implemented Network Topologies

Table 1: OVS Simulation Results of Three Tier Datacenter

Topology

Packet Size

Average Delay in (ms)

Before Using The Proposed

Solution

After Using The Proposed

Solution

1 Kbyte 17.712 8.78

24 Kbyte 385.549 41.409

64.4 Kbyte 1037.191 100.038

Table 2: OVS Simulation Results of Two Tier Datacenter

Topology

Packet Size

Average Delay in (ms)

Before Using The Proposed

Solution

After Using The Proposed

Solution

1 Kbyte 8.831 9.048

24 Kbyte 371.503 41.283

64.4 Kbyte 1025.229 100.157

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

10

Table 3: OVS Simulation Results of Fat Tree Datacenter

Topology

Packet Size

Average Delay in (ms)

Before Using The Proposed

Solution

After Using The

Proposed Solution

1 Kbyte 12.962 22.19

24 Kbyte 375.67 57.92

64.4 Kbyte 1029.848 120.411

Secondly, we will show the simulation results of Floodlight

controller. This controller can support multi-core tier topologies.

The topologies’ implementation are shown in Figures 5, 6, and

7. We use the same suggestions of the first case; Tables 4, 5, and

6 shows almost same results. We can conclude that the larger the

packet size the more efficient results and the smaller delay

values we get, and vice versa.

Fig. 5: Two Tier Datacenter Topologies using Floodlight

Controller

Table 4: Simulation Results for Two Tier Datacenter

Topology Using Floodlight Controller

Packet Size

Average Delay in (ms)

Before Using The

Proposed Solution

After Using The

Proposed Solution

1 Kbyte 19.721 15.614

24 Kbyte 370.901 55.522

64.4 Kbyte 1038.980 113.702

Fig. 6: Three Tier Datacenter Topologies using Floodlight

Controller

Table 5: Simulation Results for Three Tier Datacenter

Topology Using Floodlight Controller

Packet Size

Average Delay in (ms)

Before Using The Proposed

Solution

After Using The

Proposed Solution

1 Kbyte 23.689 17.679

24 Kbyte 388.254 57.226

64.4 Kbyte 1044.579 120.094

Fig. 7: Fat Tree Datacenter Topologies using Floodlight

Controller

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

11

Table 6: Simulation Results for Fat Tree Datacenter

Topology Using Floodlight Controller

Packet Size

Average Delay in (ms)

Before Using The Proposed

Solution

After Using The

Proposed Solution

1 Kbyte 17.544 16.943

24 Kbyte 389.022 50.973

64.4 Kbyte 1047.974 109.233

6. PERFORMANCE EVALUATION
From simulated results in section V, we can show the

performance evaluation of the three datacenter topologies for

both SDN controllers.

The performance of OVS controller can be described in Figures

8, 9, and 10. We can see the improvement percentage of

reducing the delay in 89.6%. As a result of decreasing delay, the

bandwidth increased from 950 Mbps- 1.82 Mbps to 10.7 Mbps-

13.5 Mbps after optimization.

The performance of Floodlight controller can be shown in

Figures 11, 12, and 13. We can see the percentage of reducing

the delay in 87.16%. As a result of decreasing the delay, the

bandwidth increased from 952Kbps- 1.7Mbps to 9.6Mbps-

11.3Mbps after optimization. The efficiency of our solution can

be shown on played video streams in Figures 14 and 15.

Fig. 8: Performance Evaluation for Three Tier Datacenter

Topology Using OVS Controller

Fig. 9: Performance Evaluation for Two Tier

Datacenter Topology Using OVS Controller

Fig. 10: Performance Evaluation for Fat Tree

Datacenter Topology Using OVS Controller

Fig. 11: Performance Evaluation for Two Tier

Datacenter Topology Using Floodlight Controller

17.712

385.549

1037.191

8.78

41.409
100.038

0

200

400

600

800

1000

1200

1 Kbyte 24 Kbyte 64.4 Kbyte

D
el

ay
 in

 (
m

s)

Packet Size

Three Tier Datacenter Topology

Without
Using
Proposed
Solution

Using
Proposed
Solution

8.831

371.503

1025.229

9.048

41.283
100.157

0

200

400

600

800

1000

1200

1 Kbyte 24 Kbyte 64.4 Kbyte

D
el

ay
 in

 (
m

s)

Packet Size

Two Tier Datacenter Topology

12.962

375.67

1029.848

22.19

57.92
120.411

0

200

400

600

800

1000

1200

1 Kbyte 24 Kbyte 64.4 Kbyte

D
el

ay
 in

 (
m

s)

Packet Size

Fat Tree Datacenter Topology

Without
Using
Proposed
Solution
Using
Proposed
Solution

19.721

370.901

1038.98

15.614

55.522
113.702

0

200

400

600

800

1000

1200

1 Kbyte 24 Kbyte 64.4 Kbyte

D
el

ay
 in

 (
m

s)

Packet Size

Two Tier Datacenter Topology

Without
Using
Proposed
Solution

Using
Proposed
Solution

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

12

Fig. 12: Performance Evaluation for Three Tier

Datacenter Topology Using Floodlight Controller

Fig. 13: Performance Evaluation for Fat Tree

Datacenter Topology Using Floodlight Controller

Fig. 14: Efficiency of Video Streaming Before Using the

Proposed Solution

Fig. 15: Efficiency of Video Streaming After Using the

Proposed Solution

7. CONCLUSION
The Mininet, FNSS, networkx, PULP, and (OVS or Floodlight)

controller platforms has been merged to provide full network

scenario with performance evaluation results. This network

scenario has been tested with ping and iperf commands on three

datacenter topologies for two video streams of 2.00 MByte and

5.00 Mbyte transmitted between selected hosts and played on

VLC media player with both OVS and Floodlight controllers.

From these results, we can conclude that the difference between

two tier and three tier topologies is indiscernible and delays in

both has been reduced as much as possible where as in fat tree,

delays has not been reduced to minimum since fat tree topology

is less efficient and thus two and three tier topologies are most

widely used topologies in datacenter networks. We also can

conclude that the larger the packet length in ping command the

more efficient results and the smaller delay values we get, and

vice versa.

From previous results, a difference between OVS and Floodlight

controllers arise. We can see that OVS controller, which is the

default Mininet controller can be used more efficiently for light

topologies, whereas Floodlight controller can be used for more

complex topologies; thus it can be said that Floodlight controller

can maintain sustainability over OVS controller. Moreover,

Floodlight controller has more suitable graphics and display than

that in OVS controller.

8. REFERENCES
[1] L. Saino, C. Cocora, and G. Pavlou, A Toolchain for

Simplifying Network Simulation Setup, in Proceedings of

the 6th International ICST Conference on Simulation Tools

and Techniques (SIMUTOOLS '13), Cannes, France, March

2013.

[2] L. Saino, C. Cocora, and G. Pavlou, A Toolchain for

Simplifying Network Simulation Setup, SIMUTools 2013

March 5–7, Cannes, France, Copyright 2013 ICST, ISBN.

[3] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou,

Adaptive Resource Management and Control in Software

Defined Networks, IEEE transactions on network and

service management, vol. 12, no. 1, march 2015.

[4] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou,

On the Placement of Management and Control

Functionality in Software Defined Networks, CNSM

ManSDN/NFV paper, @2015 IFIP.

[5] P. A. Morreale, J. M. Anderson, Software Defined

23.689

388.254

1044.579

17.679

57.226
120.094

0

200

400

600

800

1000

1200

1 Kbyte 24 Kbyte 64.4 Kbyte

D
el

ay
 in

 (
m

s)

Packet Size

Three Tier Datacenter Topology

17.544

389.022

1047.974

16.943

50.973
109.233

0

200

400

600

800

1000

1200

1 Kbyte 24 Kbyte 64.4 Kbyte

D
el

ay
 in

 (
m

s)

Packet Size

Fat Tree Datacenter Topology

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.6, November 2017

13

Networking: Design and Deployment, © 2015 by Taylor &

Francis Group, LLC.

[6] R. Mijumbi, J. Serrat, J. R.-Loyolay, N. Boutenz, F. D.

Turckz and S. Latre´, Dynamic Resource Management in

SDN-based Virtualized Networks, ManSDN/NFV Full

Paper, ISBN 978-3-901882-67-8, 10th CNSM and

Workshop ©2014 IFIP.

[7] F. Ongaro, Enhancing Quality Of Service In Software-

Defined Networks, Department of Computer Science and

Engineering Master Degree in Computer Engineering,

2013-2014.

[8] B.J Asten, Increasing Robustness Of Software-Defined

Networks, Fast Recovery Using Link Failure Detection and

Optimal Routing Schemes, master of science thesis,

Network Architectures and Services Group, Delft

University of Technology, 2014.

[9] T. Zinner, M. Jarschel, A. Blenk, F. Wamser, and W.

Kellerer, Dynamic Application-Aware Resource

Management Using Software-Defined Networking:

Implementation Prospects And Challenges, funded by the

BMBF (Project ID 16BP12308), © 2014 IEEE.

[10] H. Li, Resource Optimizations in Software Defined

Networking, Graduate Department of Computer and

Information Systems University of Aizu, Ph.D. 2015.

[11] C. Xu, B. Chen, and H. Qian, Quality of Service

Guaranteed Resource Management Dynamically in

Software Defined Network, Journal of Communications

Vol. 10, No. 11, November 2015.

[12] J. CHEN, Y. MA, H. KUO, C. YANG, AND W. HUNG,

Software-Defined Network Virtualization Platform for

Enterprise Network Resource Management, IEEE

transactions on Emerging Topics in Computing, Date of

Publication 22 September 2015; date of current version 8

June 2016. Digital Object Identi_er

10.1109/TETC.2015.2478757.

[13] X. Duan, A. M. Akhtar, and X. Wang, Software-Defined

Networking-Based Resource Management: Data Offloading

with Load Balancing in 5g HetNet, Duan et al. EURASIP

Journal on Wireless Communications and Networking

(2015) 2015:181.

[14] A.S. Dawood, M.N. Abdullah, A Survey and a

Comparative Study on Software-Defined Networking,

International Research Journal of Computer Science

(IRJCS) ISSN: 2393-9842, issue 08, Volume 3 (August

2016).

[15] http://openvswitch.org/

[16] L. Saino, Fast Network Simulation Setup, Lab 1: AIMS

conference 2014, Communications and Information

Systems Group, Department of Electrical and Electronics

Engineering, University College London.

[17] D. Cherney, T. Denton, and A. Waldron, Linear Algebra,

Edited by Katrina Glaeser, Rohit Thomas and Travis

Scrimshaw First Edition. Davis California, 2013.

[18] https://www.sdxcentral.com/sdn/definitions/sdn-

controllers/open-source-sdn-controllers/what-is-floodlight-

controller/

[19] P. M. Thet, P. Panwaree, and C. Aswakul, Design and

Functionality Test of Chunked Video Streaming Over

Emulated Multi-Path OpenFlow Network, ResearchGate,

Conference Paper · June 2015.

[20] B. Sumanth, Designing an Openflow Controller for Data

Delivery with End-to-End QoS Over Software Defined

Networks, Master of Technology, in Department of

Computer Science and Engineering Indian Institute of

Technology, Kharagpur, May 2016.

IJCATM : www.ijcaonline.org

