International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.6, November 2017

Design and Simulation of Optimal Range Scheduling
Algorithm

Jay Mohta

School of Engineering and Applied Sciences,
Ahmedabad University
Ahmedabad, India 380009

ABSTRACT

Disk Scheduling is performed by operating system to schedule 10
requests arriving for disk. Disk system performance can be im-
proved by dynamically scheduling and ordering the pending re-
quests in the queue. Past analysis of the algorithms is experimental
on certain datasets and not guaranteeing the optimal performance.
In this paper, author proposes a disk scheduling algorithm which
aims at reducing the seek time. Then the proposed algorithm is
compared with conventional scheduling algorithms and simulated
evidences are provided in the paper. Our results show that the pro-
posed algorithm will improve the performance of disk by reducing
the average seek time and thereby providing a faster disk subsys-
tem.

Keywords

Operating System, Disk Scheduling, Optimization, Complexity
Analysis

1. INTRODUCTION

In operating system, many processes generates read/write request
for disk records and sometimes the process make requests faster
than they are serviced by moving the head which results in queues
being built up. Disk scheduling is also called IO scheduling. It is
important because of the following reasons:

(1) Multiple IO request may arrive by different process and only
one request could be served at a given point of time. Thus other
request needs to wait in a queue.

(2) Two or more request may be far from each other so can result
in greater disk arm movement.

(3) Hard drives are one of the slowest parts of computer system so
needs to be accessed efficiently.

There are various types of delays associated with disk scheduling
and they are listed as follows:[[1]]

(1) Seek Time: Seek time is the time taken to locate the disk arm
to a specified track where the data is to be read or write.

(2) Rotational Latency: Rotational Latency is the time taken by
the desired sector of disk to rotate into a position so that it can
access the read/write heads.

(3) Transfer Time: Transfer time is the time to transfer the data.

Suraj Patel
School of Engineering and Applied Sciences,
Ahmedabad University
Ahmedabad, India 380009

(4) Disk Access Time = Seek Time + Rotational Latency + Trans-
fer Time

(5) Disk Response Time: Response Time is the average of time
spent by a request waiting to perform its I/O operation.

The goal is to minimize the disk response time so as to serve the
request faster. The proposed algorithm provides the best disk re-
sponse time compared to traditional scheduling algorithms.
Section 2 of the paper describes the traditional disk scheduling al-
gorithms. Section 3 provides the Optimal Disk Scheduling algo-
rithm proposed by the author. In Section 4 the author proposed disk
scheduling algorithm is compared with traditional algorithms and
there performance is analysed on random datasets. Section 5 sum-
marizes the work done and suggests future research work.

2. CONVENTIONAL SCHEDULING ALGORITHM
(2]

The following are the few well known conventional scheduling al-
gorithms:

2.1 First In First Out (FIFO)

This algorithm serves the requests in the manner of their arrival.
The first request is queued and served first and so on. The farther
the location of the request, the higher the seek time will be.

2.2 Shortest Seek Time First (SSTF)

In SSTF, requests having shortest seek time are executed first. So,
the seek time of every request is calculated in advance in queue and
then they are scheduled according to their calculated seek time. As
a result, the request near the disk arm will get executed first. SSTF
is certainly an improvement over FCFS as it decreases the average
response time and increases the throughput of system.

2.3 SCAN

In this algorithm, the disk head moves in a particular direction serv-
ing all the requests and after reaching the end of the disk reverses
its direction serving all the requests in a reverse direction.

24 LOOK

It is similar to the SCAN disk scheduling algorithm except the dif-
ference that the disk arm in spite of going to the end of the disk



goes only to the last request to be serviced in front of the head and
then reverses its direction from there only.

2.5 CSCAN

In SCAN algorithm, the disk arm again scans the path that has been
scanned, after reversing its direction. So, it may be possible that too
many requests are waiting at the other end or there may be zero or
few requests pending at the scanned area.

2.6 Median Range Scheduling Algorithm (MRSA) [3]

The main aim of this algorithm is to reduce the seek time by
minimizing the number of head movement. In this algorithm, the
requests are sorted and then if the head pointer is in the median
range, the query having the least seek time of the median range
is served first and then the algorithm proceeds to serve the next
nearest requests. If the head pointer is not in median range then,
the first or last request, whichever requires less seek time is served
first and then the algorithm proceeds to serve the requests in as-
cending or descending order. The algorithm is described as follows:

MR([] = List Containing Median Range
lowMR = First Element of MR
HighMR = Last Element of MR

n = Number of Request to be served
HP = Head Pointer

A[] = Array containing the requests

(1) sort(A) in ascending order
(2) if(nis odd)
MR[] = Elements in A indexed from (3 — 1,5 + 1)
else
MR[] = Elements in A indexed from (3 — 1,%)

(3) if(HP > lowMR & HP < HighMR )
pos = Index Corresponding to lowest seek time value
in MR[]
if(pos<2)
serve(A) from left to right
else
serve(A) from right to left

(4) else if(HP<lowMR)
serve(A) from left to right

(5) else
serve(A) from right to left

3. OPTIMAL RANGE DISK SCHEDULING

The main aim of all the algorithms described above is to reduce the
seek time. The algorithm proposed here performs better than all
the conventional disk scheduling algorithms mentioned above. The
functioning of the algorithm is similar to median range scheduling.
The difference here is, we look at the first and the last element of
the sorted array and move to the side which minimizes the seek
distance i.e. we move from left to right or right to left depending
on which direction gives minimum seek distance from HP. Thus
this algorithm is able to perform better than MRSA. The algorithm
is described as follows:

A[] = list containing all the request to be served
n = number of requests
HP = Head Pointer location

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.6, November 2017

midindex = 3

dir = Defining the final direction of the head pointer
for the requests to be served. if(dir = 1) then move
right to left else left to right.

currptr = 0 (current pointer location)

seekdist(a,b) = absolute difference between a and b

(1) sort(A)
(2) if(seekdist(HP,A[currptr])<seekdist(HP,A[n-currptr-1]))

dir=0 /Iserve from left to right
break
(3) if(seekdist(HP,A[n-currptr-1] >seekdist(HP,A[currptr]))
dir=1 /Iserve from right to left
break

(4) Increase Current Pointer by 1(currptr = currptr + 1).
(5) Repeat steps 2 to 4 until currptr < midindex.
(6) Serve the request based on the value of dir.

(7) exit.

4. RESULT AND PERFORMANCE ANALYSIS
4.1 Assumptions and Parameters

All the request are independent of each other and have the same
priority. The request are initially stored in a queue and all cases are
considered ideal in nature. The goal of our algorithm is to reduce
the head movements which means to minimize the average seek
time.

4.2 Performance Evaluation

Suppose the disk has 200 tracks numbered from 1 to 200. Consider
a disk queue which is array A in our algorithm as follows:

Disk Drives: 200 Cylinders

Sequence: 60,90,135,155,25,180,190,160,200

Head Pointer: 100
Total Head movements is given as follows:

n
S
3

»
8

>
3

Requests
N & 2 ® 3 N B
S 8 83 8 8 8 8

o

N
w
IS

5 6 7 8 9 10
Time Instances

Fig. 1. FIFO

FIFO=(140-60)+(90-60)+(135-90)+(155-135)+(155-25)+(180-
25)+ (190-180)+(190-160)+(200-160)=540



Requests

)
3

SSTF=(140-135)+(155-135)+(160-155)+(180-160)+(190-180)+

N
8
s

=
3

=
3

=
3

]
3

=]
3

SSTF

@
3

IS
8

n
3

o

Time Instances

Fig.2. SSTF

(200-190)+(200-90)+(90-60)+(60-25)=245

2 3 4 5 6 7 8 9 10

Requests
5
8

SCAN

35

60

7 8 9 10 "

Time Instances

Fig.3. SCAN

SCAN=(140-90)+(90-60)+(60-25)+(25-0)+(135-0)+(155-135)+
(160-155)+(180-160)+(190-180)+(200-190)=340

Requests

LOOK =(140-90)+(90-60)+(60-25)+(135-25)+(155-135)+ (160-

LOOK

3

5

4

60

5 6 7 8 9 10
Time Instances

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.6, November 2017

CSCAN

Requests
5]
8

35

Time Instances

Fig.5. CSCAN

CSCAN=(140-90)+(90-60)+(60-25)+(25-0)+(200-0)+(200-
135)+(155-135)+(160-155)+(180-160)+(190-180)+(200-

190)=540

MRSA

Requests

5 6 7
Time Instances

Fig. 6. MRSA

MRSA=(140-25)+(60-25)+(90-60)+(135-90)+(155-135)+(160-
155) +(180-160)+(185-180)+(190-185)+(200-190)=290

200

N
=1
S

OPTIMAL DISK SCHEDULING

Requests
5 o ®» 2 N B B
& 3 8 8 8 &8 38 8

[
S

o

1 2 3

4 5 6
Time Instances

7

Fig. 4. LOOK

155)+(180-160)+(190-180)+(200-190)=290

Fig. 7. Optimal Disk Scheduling

ODS=(200-140)+(200-190)+(190-180)+(180-160)+(160-155)
+(155-135)+(135-90)+(90-60)+(60-25)=235



Total Head Movement
600 T T T

540

FIFO SSTF SCAN LOOK CSCAN MRSA ODS

Fig. 8. Total Head Movement

0 60 Average Seek Tigge

50

40 37.7778

32.2222

sor 27.2022

26.1111

20

FIFO SSTF SCAN LOOK CSCAN MRSA ODS

Fig. 9. Average Seek Time

It is observed from the empirical results shown above that ODS is
better than all the traditional disk scheduling algortihms. These are
the adavantages of ODS:

(1) Itis very easy to implement. It provides a time complexity of
O(n = log(n))

(2) The algorithm always leads to optimal scheduling providing
the least seek time.

5. CONCLUSION

In this paper, the author proposes a new disk scheduling algorithm
which performs better than all the traditional disk scheduling al-
gorithm. The average seek time has been improved compared to
traditional algorithms. This algorithm can be implemented on real
time system and has applications, in the fields of operating systems,
distributed computing, heterogeneous systems, cluster computing,
computational models and multi criteria analysis. The algorithm
described in the paper is off-line algorithm, to use this algorithm
for real time disk scheduling we need to make it online so that it
can process the query in online manner. However, if the request

International Journal of Computer Applications (0975 - 8887)
Volume 177 - No.6, November 2017

pattern is known apriori the proposed algorithm will produce best
results.

6. REFERENCES

[1] B.L. Worthington, G. R. Ganger, and Y. N. Patt, Scheduling al-
gorithms for modern disk drives,. in ACM SIGMETRICS Per-
formance Evaluation Review, vol. 22, no. 1. ACM, 1994, pp.
241 to 251.

[2] M. Y. Javed and I. Khan, Simulation and performance compar-
ison of four disk scheduling algorithms,. in TENCON 2000.
Proceedings, vol. 2. IEEE, 2000, pp. 10 to 15.

[3] J Vachhani and Y. Turakhia, Design and Performance Evalua-
tion of Median Range Scheduling Algorithm,. in International
Journal of Computer Application Volume 172 No4 (August
2017).



	Introduction
	CONVENTIONAL SCHEDULING ALGORITHM PAR2
	First In First Out (FIFO)
	Shortest Seek Time First (SSTF)
	SCAN
	LOOK
	CSCAN
	Median Range Scheduling Algorithm (MRSA) PAR3

	Optimal Range Disk Scheduling 
	RESULT AND PERFORMANCE ANALYSIS
	Assumptions and Parameters
	Performance Evaluation

	Conclusion
	References

