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ABSTRACT 

In this article, we have proposed an efficient Bee Colony 

Optimization method, namely Phased Bee Colony 

Optimization (PBCO) technique for solving mathematical 

functions in a multidimensional space. The search process of 

the optimization approach is directed towards a region or a 

hypercube in a multidimensional space to find a global 

optimum or near global optimum after a predefined number of 

iterations. The process in the entire search area to another 

region (new search area) surrounding the optimum value 

found so far after a few iterations and restarts the search 

process in the new region. However, the search area of the 

new region is reduced compared to previous search area. 

Thus, the search process finding advances and jumps to a new 

search space (with reduced area space) in several phases until 

the algorithm is terminated. The PBCO technique has tested 

on a set of mathematical benchmark functions with number of 

dimensions up to 100 and compared with several relevant 

optimizing approaches to evaluate the performance of the 

algorithm. It has observed that the proposed technique 

performs either better or similar to the performance of other 

optimization methods.  
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1. INTRODUCTION 
The Artificial Bee Colony (ABC) method is a metaheuristic 

population based evolutionary search algorithm for solving 

various optimization problems. The algorithm is inspired by 

the intelligent foraging behavior of honeybee swarms in 

nature. The ABC algorithm basically imitates the behavior of 

real bees searching for food. The ABC produces new solution 

according to the stochastic variance process. It is an iterative 

algorithm in which the magnitudes of the perturbation are 

important for finding new solution. The ABC has been 

applied for solving different problems like scheduling, 

timetabling, travelling salesman problem, data mining and 

clustering and many more. Apart from these, the researchers 

have always made an attempt to enhance the performance of 

the ABC optimization with or without hybridization for 

solving problems in discrete as well as continuous domains. 

Pham and Castellani [1] proposed a continuous exploitative 

neighborhood search process combined with random 

explorative search, for increasing the speed and accuracy of 

the optimization method. Zou, Chen and Zhang [2] had 

developed an improved ABC algorithm to solve 

multiobjective optimization problems. Akbari, Mohammadi 

and Ziarati [3] developed a novel bee swarm optimization 

algorithm to solve numerical function optimization. Aydin, 

Liao, Oca and Stutzle [4] modified the ABC by making the 

population growth over time to improve the performance of 

algorithm. Zhang [5] used this algorithm to solve the job shop 

scheduling problem. Yildih [6] proposed an approach with 

ABC algorithm for optimal selection of cutting parameters in 

multipass turning operation. Karaboga and Ozturk [7] applied 

ABC technique in the application of clustering.We have 

proposed a new technique based on the ABC algorithm for 

solving mathematical optimization problems in both discrete 

and continuous domains. The name of proposed algorithm is 

Phased Bee Colony Optimization (PBCO). The search in 

PBCO advances in multiple phases depending on the quality 

of nectar in the flower patches in a particular region of search 

space where the best quality of nectar till found after the end 

of a few number of iterations in each phase. In PBCO the 

search always jumps to a new region (i.e. the neighboring 

hypercube in a multidimensional space) with same number of 

bees. However, the space of new search area is smaller than 

the previous (hypercubic) search area as shown in Fig. 1. The 

reduction of search space is done along all dimensions. We 

have compared our proposed method with some relevant 

optimization techniques testing on a set of standard 

benchmark functions with problem dimensions upto 100.   

The rest of the paper is organized as follows. Section II 

describes the algorithms of simple ABC and PBCO 

techniques. It also discusses the search space partitioning 

process with progress of search. The experimental results 

along with discussion are provided in Section III. Section IV 

concludes the paper. 

2. FUNCTION OPTIMIZATION USING 

ABC 
A global optimization problem can generally be formulated as 

a pair (S, f) where  S ⊆ Rn  is a bounded set on  Rn  and f: S 

⟼ R is an n- dimensional real- valued function. The objective 

of the problem is to find a point opt ∈ S on Rn   such that (xt) 

is a global optimum on S. We have to find xt ∈ S according to 

the following equations for minimization or maximization 

problems, respectively:  

 ∀x ⊆  s ∶ (xt) f x  

 ∀x ⊆  s ∶ (xt) f x  

where f may not be a continuous function but it must be 

bounded. 

2.1 Conventional ABC Algorithm 
Artificial Bee Colony (ABC) algorithm has been proposed by 

Karaboga in 2005 for optimizing the solutions of different 

problems [8]. ABC algorithm introduces principle of 

optimization inspired from the foraging behavior of a bee 

colony. According to ABC algorithm, there are three 

categories of artificial bees, known as employed bees, 

onlooker bees and scout bees. Colony consists of equal 

numbers of employed bees and onlooker bees. Employed bees 

search the food in the food source bounded with search space 

and after that sharing of food information with onlooker bees 
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has done. Onlooker bee’s tries to select possibly the best food 

sources from those discovered by the employed bees, and then 

further search for foods around the selected food source. Bees 

whose food sources get abandoned got changed from 

employed bees to Scout bees, assigned with new random food 

source [8, 9, and 10]. The simple ABC is a global 

optimization method, which used for solving various 

optimization problems [1 – 7]. The ABC algorithm 

represented algorithmically as follows.  

1. Initialize the population of solutions (Xi,j) in search 

space and , here denotes lower limit and upper limit 

of search space and i,j here denotes lower limit and 

upper limit of search space. 

2. Evaluate the population 

3. Repeat 

4. Produce new solutions (Ui,j) in the neighborhood of 

Xi,j and evaluate.Ui,j = Xi,j+ Oi,j (Xi,j – Xk,j) , where 

k= solution in the neighborhood of I andO= random 

number in the range [-1,1]. 

5. Greedy selection process will be applied in the 

selection between Xi,j and Ui,j . 

6. Calculate value (         of solutions followed 

by the calculation of probability (     where 

      

 

   
    

            

  

   
    

     
 
 

                   

7. Greedy selection is again applied and the abandoned 

solution is determined, if exists and it is replaced by the 

new randomly produced solution. 

8. Memorize the best food source found so far until 

requirements has met. 

9. Stop 

2.2 Optimization using PBCO 
We  have  modified  the  simple  ABC technique  into  a  

phased  ABC  approach  by directing  the  search  towards  the  

area where  the  possibility  of  best  result  is maximum  and  

reducing  the  search  space accordig  to  the  user’s  choice.  

The repetitive reduction of the search area in a 2-D  space  is  

described  in  the  following section. Initially,  the  PBCO  

algorithm  starts searching to find the optimum value in the 

entire search space. The search process then runs for a certain 

number of iterations (say, Ik) and gives the best possible 

solutions after the completion of Ik iterations. The search 

process is directed towards the area where closed to optimum 

solution is reached after a few iterations in each phase. The 

PBCO iterates executes  iteratively  in  multiple phases and in 

each phase, we find the area i n which the best optimum value 

lies. The search  space  is  reduced  to corresponding area 

along all dimensions. Once the optimization methods 

completes Ik  the  best  solution  and  the position of that 

solution is also calculated in the search space. The space 

where the best solution  is  achieved  is  reduced  along  all 
dimensions (discussed in detail in Section II C).  The  bee  

population  is  regenerated  in that  reduced  search  space.  

The  PBCO approach  restarts in the new search area and 

continues again for  Ik times before it is transferred to another 

new search space considering the best solution approaching 

the optimum. The PBCO finally terminates after the 

completion of Imax iterations. 

Algorithmic representation of the PABC technique 

1. Initialize the population of bees, other parameters and 

iteration I=1. 

2. Create solutions for all bees. 

3. Find the area where the best solution lies of current 

phase. 

4. Redefine the search space surrounding the area where the 

best solution achieved and regenerate the population of 

bees following the elitist model. 

5. Move the search to the new search space (See Fig. 1) 

which is smaller in size than the previous search space 

and restart the search process. 

6. Increment I= I + Ik . If I ≤ Imax, then go to step 2. 

7. Stop. 

2.3 Search space reduction and 

transferring of the PBCO method 
In Fig. 1, we have shown the search space reduction after 

every (=5, say) iterations in three stages and the shifting of 

PBCO to the new space at each stage in 2-D space. The search 

continued for i.e.  5 times after generating the population of 

bees. The points in the small box of search space ABCD (Fig. 

1(a)) show the assumed best values of first stage. Similarly, 

the best optimum value of 2nd and 3rd stage are also shown by 

boxing the points as shown in Fig. 1(b) and Fig. 1(c). The 

remaining three best values also depicted in FIG. 1 showing 

various phases. The best solutions in phase 1 (Fig. 1(a)) are 

boxed in EFGH. The area (search space) of acquiring this 

solution redefined in the following way. We reduce the search 

space by a specific percentage (say, u%) along all dimensions. 

In Fig, 1(b), the new search space has shown only. Along the 

coordinate axis, the length of AB and DC is reduced by u% 

such that it adjusted to the new search space named EFGH, as 

shown in Fig. 1(a). The PBCO method restarts the search 

process at stage 2 with a new population of bees following the 

elitist model. In the space EFGH, let us consider the search 

finds two best values (as boxed in IJKL) out of five iterations 

and each of the remaining three iterations lie at other positions 

as shown in Fig. 1(b). Similar to stage 1, the search area 

corresponding to the positions of best values of stage 2 

redefined as previously described. In the final stage i.e.  Stage 

3, the newly defined search space that is smaller (compared to 

the area of EFGH) is denoted by IJKL. The search restarts in 

the space IJKL. Similar to the previous phases, we find the 

best solutions in the next five iterations. The best solution at 

the end stage 3 has shown by a small box (Fig. 1(c)). Thus, 

the point (boxed in Fig. 1(c)) becomes the global or near- 

global optimum solution of the problem at the end of final 

stage or at the end of the pre-specified number of iterations 

(which in this case is 15). 
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Fig. 1(a) 

Partitioning of space and best solution of first five iterations 

(1-5) at phase 1. 

 

Fig. 1(b) 

Partitioning newly defined search space and best solutions of 

next five iterations at phase 2. 

Best solution of last five iterations and extraction of global or 

near-global optimum solution at final stage. 

 

Fig. 1(c) 

Fig. 1 Reduction of search space and transferring of the 

PBCO technique in 3 phases.  

3. EXPERIMENTAL STUDIES 
The performance of the PBCO technique on a set of 20 

mathematical functions evaluated in two parts. In the first 

part, we have compared the results of PBCO with several 

other relevant optimization algorithms to establish it as an 

efficient optimization algorithm. In the second part, we have 

optimized functions F2 – F15 to show the effectiveness of the 

proposed method in optimizing problems with higher 

dimensions (up to 100). We have considered the set of 20 

standard benchmark functions taken from [20], which has 

listed in Table 1. The results of the optimization methods 

except the PBCO in Table 3 have also taken from [20]. The 

functions F1 – F20 are a combination of unimodal and 

multimodal functions. The functions F16 – F20 are low 

dimensional compared to other functions (F1 – F15) (see 

Tables 1 and 2). Table 2 depicts the basic parameters of the 

tested functions (F1 – F20). 

3.1 Parameter Setup. 
In the experiment, we have considered that the population 

size of bees is µ (= 50) until the end of the proposed 

optimization algorithm. For each function in Table 1, the 

algorithm PBCO ran 50 times and the average of the 

optimum results of 50 runs tabulated in Table 3 for the PBCO 

method. The dimension of the function has denoted by n as 

described in Table 2 for each function. We have run the 

PBCO technique for I iterations to calculate the optimum 

value in each phase (hypercube) for directing the search in 

redefined search space for the next phase. The new search 

space is generated by reducing u% of the length along all 

dimensions of the previous search space (see Figs. 1(a) – 

1(c)). For all tested functions in Table 1, we have considered 

the value of I to be 10 and the value of u is set to 25. If the 

value of I is increased towards the higher side of the range, 

the search process slows down i.e. more number of iterations 

are required to converge (by the algorithm). On the other 

hand, if u is set to a high value (more than 25), the algorithm 

(PBCO) may not converge to a global or near – global 

optimum solution since the optimization method may have 

the possibility to miss the global or near – global optimum 

due to fast reduction of the search space after repetitive I 

iterations. In the experiment, we have tried to maintain the 

values of I and u within the range such that the PBCO 

approach converges faster to the global optimum for all the 

functions in Table 1. 

Table 1. Functions tested for optimization 
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F20=                        
  

     
    where 

                            

         
  [10 3 17 3.5 1.7 8],[0.05,10,17,0.1,8,14],[3 3.5 1.7 

10 17 8],[17 8 0.05 10 0.1 14] 

          [0.1312 0.1696 0.5569 0.0124 0.8283 

0.5886],[0.2329 0.4135 0.8307 0.3736 0.1004 

0.9991],[0.2348 0.1415 0.3522 0.2883 0.3047 

0.6650],[0.4047 0.8828 0.8732 0.5743 0.1091 0.0381] 

 

 

Table 2. Basic parameters of the tested functions 

Func. Search Space Dimension(n) Optimal value 

F1 [-500,500]n 30 -12569.5 

F2 [-5.12,5.12]n 30 0 

F3 [-32,32]n 30 0 

F4 [-600,600]n 30 0 

F5 [-50,50]n 30 0 

F6 [-50,50]n 30 0 

F7 [0,π]n 100 -99.2784 

F8 [-π,π]n 100 0 

F9 [-5,5]n 100 -78.33236 

F10 [-5,10]n 100 0 

F11 [-100,100]n 30 0 

F12 [-1.28,1.28]n 30 0 

F13 [-10,10]n 30 0 

F14 [-100,100]n 30 0 

F15 [-100,100]n 30 0 

F16 [-5,5]n 2 -1.0316285 

F17 [-5,10],[0,15] 2 0.398 

F18 [-2,2]n 2 3 

F19 [-5,-5]n 4 0.0003075 

F20 [0,1]n 6 -3.32 

 

Table 3. Comparative results of PBCO with relevant 

optimization algorithms 

Fun. Algo. M.F.E Gmin S.D 

F1 ALEP 

FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

150,000 

900,000 

302,116 

655,895 

287,365 

8300 

3900 

-11469.2 

-12554.5 

-12569.453 

-5461.826 

-12569.454 

-12569.48 

-12569.48 

58.2 

52.6 

6.447×10-4 

275.15 

4.831×10-4 

1.953×10-2 

1.126×10-4 

F2 ALEP 

FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

150,000 

500,000 

224,710 

305,899 

223,803 

19,650 

4,480 

5.85 

4.6×10-2 

0 

121.7575 

2.103×10-18 

0 

1.19080×10-14 

2.07 

1.2×10-2 

0 

7.7572 

3.359×10-18 

0 

1.191×10-14 

F3 ALEP 

FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

150,000 

150,000 

112,421 

121,435 

105,926 

30,550 

6,325 

1.9×10-2 

1.8×10-2 

4.440×10-16 

2.5993 

3.274×10-16 

3.641×10-14 

6.32397×10-12 

1.0×10-3 

2.1×10-2 

3.989×10-17 

9.425×10-2 

3.001×10-17 

4.47×10-14 

3.236×10-14 

F4 ALEP 

FEP 

OGA/Q 

150,000 

200,000 

134,000 

2.4×10-2 

1.6×10-2 

0 

2.8×10-2 

2.2×10-2 

0 



International Journal of Computer Applications (0975 – 8887) 

Volume 177 – No. 8, October 2019 

25 

M-L 

LEA 

GACO 

PBCO 

151,281 

130,498 

9,950 

4,475 

1.1894×10-1 

6.104×10-16 

0 

3.08999×10-12 

1.040×10-2 

2.513×10-17 

1.1841×10-2 

1.598×10-14 

F5 ALEP 

FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

150,000 

150,000 

134,556 

146,209 

132,642 

16,900 

6,175 

6.0×10-6 

9.2×10-6 

6.019×10-6 

2.105×10-1 

2.482×10-6 

1.571×10-32 

2.65491×10-16 

1.0×10-6 

3.6×10-6 

1.159×10-6 

3.609×10-2 

2.276×10-6 

1.570×10-32 

2.655×10-16 

F6 ALEP 

FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

150,000 

150,000 

134,143 

147,928 

130,213 

18,550 

8,670 

9.8×10-5 

1.6×10-4 

1.869×10-4 

1.50534 

1.734×10-4 

1.3497×10-32 

8.2983×10-15 

1.2×10-5 

7.3×10-5 

2.615×10-5 

2.25564 

1.205×10-4 

1.350×10-32 

8.298×10-15 

F7 OGA/Q 

M-L 

LEA 

GACO 

PBCO 

302,773 

329,087 

289,863 

9,250 

3,975 

-92.83 

-23.97544 

-93.01 

-99.26889 

-99.26889 

2.626×10-2 

6.2875×10-1 

2.314×10-2 

6.279×10-1 

2.165×10-2 

F8 OGA/Q 

M-L 

LEA 

GACO 

PBCO 

190,031 

221,547 

189,427 

3,350 

1,580 

4.672×10-7 

2.58778×104 

1.627×10-6 

1.7886×10-7 

3.341×10-10 

1.293×10-7 

1.73975×103 

6.527×10-7 

2.38×10-7 

1.42×10-10 

F9 OGA/Q 

M-L 

LEA 

GACO 

PBCO 

245,930 

251,199 

243,895 

8,550 

3,750 

-78.300029 

-35.80995 

-78.310 

-78.332275 

-78.33233 

6.288×10-3 

8.9146×10-1 

6.127×10-3 

9.223×10-5 

3.245×10-6 

F10 OGA/Q 

M-L 

LEA 

GACO 

PBCO 

167,863 

137,100 

168,910 

15,450 

6,500 

7.520×10-1 

2935.93 

5.609×10-1 

0 

3.421×10-13 

1.140×10-1 

134.8186 

1.078×10-1 

1.776×10-13 

3.421×10-13 

F11 ALEP 

FEP 

OGA/Q 

M-L 

150,000 

150,000 

112,559 

162,010 

6.32×10-4 

5.7×10-4 

0 

3.19123 

7.6×10-5 

1.3×10-4 

0 

2.9463×10-1 

LEA 

GACO 

PBCO 

110,674 

49,650 

18,840 

4.727×10-16 

0 

6.703×10-14 

6.218×10-17 

0 

6.703×10-14 

F12 OGA/Q 

M-L 

LEA 

GACO 

PBCO 

112,982 

124,982 

111,093 

6,350 

2,550 

6.301×10-3 

1.703986 

5.136×10-3 

6.518×10-5 

7.660×10-12 

4.069×10-4 

5.2155×10-1 

4.432×10-4 

7.6622×10-4 

5.763×10-12 

F13 FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

200,000 

112,612 

120,176 

110,031 

42,350 

19,280 

8.1×10-3 

0 

9.74160 

4.247×10-19 

7.816×10-20 

4.495×10-15 

7.7×10-4 

0 

4.6376×10-1 

4.236×10-19 

8.336×10-20 

1.23×10-17 

F14 ALEP 

FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

150,000 

500,000 

112,576 

155,783 

110,604 

379,600 

35,600 

4.185×10-2 

1.6×10-2 

0 

2.21994 

6.783×10-18 

2.512×10-20 

7.427×10-15 

5.969×10-2 

1.4×10-2 

0 

5.0449×10-1 

5.429×10-18 

3.316×10-20 

7.427×10-15 

F15 FEP 

OGA/Q 

M-L 

LEA 

GACO 

PBCO 

500,000 

112,893 

125,439 

111,105 

28,750 

2,610 

3.0×10-1 

0 

5.5755×10-1 

2.683×10-16 

1.834×10-17 

5.412×10-14 

5.0×10-1 

0 

3.9968×10-2 

6.257×10-17 

1.681×10-17 

5.23×10-15 

F16 ALEP 

FEP 

M-L 

LEA 

GACO 

PBCO 

3,000 

10,000 

13,592 

10,823 

7,050 

400 

-1.031 

-1.03 

-1.02662 

-1.03108 

-1.031628 

-1.031628 

0.00 

4.9×10-7 

5.265×10-3 

3.364×10-7 

1.050×10-8 

1.029×10-9 

F17 FEP 

M-L 

LEA 

GACO 

PBCO 

10,000 

12,703, 

10,538, 

2,900 

520 

0.398 

0.403297 

0.398 

0.39806762 

0.398 

1.5×10-7 

8.832×10-3 

2.652×10-8 

7.939×10-5 

3.673×10-8 

F18 ALEP 

FEP 

M-L 

LEA 

3,000 

10,000 

16,325 

11,721 

3.000 

3.02 

3.048855 

3.00003 

0.000 

1.1×10-1 

6.037×10-2 

6.248×10-5 
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GACO 

PBCO 

5,300 

3,000 

3.0000 

3.000025 

0 

0 

F19 FEP 

M-L 

LEA 

GACO 

PBCO 

400,000 

186,768 

55,714 

12,850 

2,500 

5.0×10-4 

1.344×10-3 

3.512×10-4 

6.802×10-4 

0.0003075 

3.2×10-4 

2.977×10-4 

7.361×10-5 

3.978×10-4 

0 

F20 FEP 

M-L 

LEA 

GACO 

PBCO 

20,000 

92,516 

28,428 

4,250 

840 

-3.27 

-3.12696 

-3.301 

-3.3194523 

-3.32 

5.9×10-2 

6.739×10-2 

7.832×10-3 

5.061×10-4 

0 

 

a. M.F.E denotes the average number of function 

evaluations to reach the optimum value 

b. Gmin indicates the mean of the best value found in 

the last generation of 50 runs. 

c. S.D stands for Standard Deviation 

Table 4. Results of PBCO for the functions with 100 

dimensions 

Func. Algo. M.F.E Gmin S.D 

F2 GACO 

PBCO 

20,600 

5,180 

0 

3.870×10-13 

0 

3.870×10-13 

F3 GACO 

PBCO 

30,150 

7,325 

1.358×10-13 

6.3239×10-12 

1.58×10-13 

6.3239×10-12 

F4 GACO 

PBCO 

12,950 

4,625 

0 

1.9809×10-14 

0 

1.980×10-14 

F5 GACO 

PBCO 

17,850 

6,625 

4.7116×10-33 

3.4379×10-16 

4.7116×10-33 

3.4379×10-16 

F6 GACO 

PBCO 

18,550 

8,370 

1.3497×10-32 

4.3298×10-15 

1.3497×10-32 

4.3841×10-15 

F7 GACO 

PBCO 

9,250 

3,975 

-99.26889 

-99.26893 

6.279×10-1 

2.165×10-2 

F8 GACO 

PBCO 

3,350 

1,580 

1.788×10-7 

3.3412×10-10 

2.384×10-7 

1.42×10-10 

F9 GACO 

PBCO 

8,550 

3,750 

-78.332275 

-78.33233 

9.2238×10-5 

3.245×10-6 

F10 GACO 

PBCO 

15,450 

6,500 

0 

3.4214×10-13 

1.776×10-13 

3.4214×10-13 

F11 GACO 

PBCO 

50,800 

19,170 

0 

6.4037×10-14 

0 

6.7037×10-14 

F12 GACO 

PBCO 

29,650 

4,575 

2.861×10-5 

3.8765×10-10 

10.746×10-4 

5.763×10-12 

F13 GACO 

PBCO 

42,100 

18,240 

1.08×10-19 

4.4954×10-15 

3.14×10-19 

2.34×10-17 

F14 GACO 

PBCO 

829,450 

45,150 

22.659 

2.4276×10-6 

28.9189 

1.3243×10-7 

F15 GACO 

PBCO 

24,900 

3,840 

4.417×10-18 

9.7651×10-14 

1.177×10-7 

4.298×10-13 

 

3.2 Results on Function Optimization 
We have tested and compared the performance of the PBCO 

technique with some optimization approaches and the results 

have shown in the Table 3. Table 4 shows the optimum value 

achieved by the PBCO method for the function F2 – F15 when 

their dimensions increased to 100. The benchmark functions 

listed in Table 1 has tested on various other optimization 

techniques. Among them, ALEP (Adaptive Levy Evolutionary 

Programming) [16] uses evolutionary programming with 

adaptive Levy mutation in order to generate an offspring for 

each new generation. It has also noted in [16] that the non-

adaptive algorithm can never outperform ALEP. The OGA/Q 

(Orthogonal Genetic Algorithm with Quantization) [17] uses 

an orthogonal design to construct a crossover operator. 

Another evolutionary approach based method; FEP (Fast 

Evolutionary Programming) [18] uses evolutionary 

programming with Cauchy mutation to generate an offspring 

for each new generation. Hong and Quan [19] proposed a 

theoretical approach called the mean-value-level-set method 

(M-L method) by improving the mean of the objective 

function value on the level set. Wang and Dang [20] designed 

the LEA (Level-set Evolutionary Algorithm) for global 

optimization with Latin squares. Its application leads to an 

effective crossover operator. Table 3 contains the results of 

various optimization methods along with that of the PBCO 

technique. We can see from Table 3 that for high dimensional 

functions (F1 –F15), the proposed method PBCO performs 

better than or similar to the other optimization techniques. The 

PBCO also reaches the global or near-global optimum faster 

than the other optimization approaches. For F14, the PBCO 

algorithm reaches the global optimum solution if we set the 

value of u to 10 for search space reduction in multiple stages. 

Hence in case of F14, the proposed method takes longer 

compared to other techniques (except FEP) to achieve the best 

solution. For the remaining low dimensional functions (F16 – 

F20) in Table 3, it has noticed that the proposed method 

(PBCO) can reach the global or near-global optimum. 

However, the PBCO approach takes more time (in terms of 

mean function evaluation) to reach the global optimum for 

functions F16 and F18 compared to the optimization technique 
ALEP.  Finally, it has observed that the PBCO technique 

performs either better or similar for most of the benchmark 

functions (F1 –F20) in terms of achieving the global or near-

global optimum in lesser time compared to the other 

optimization methods. 

We  have  further  tested  the  functions  F2 –F15  with  100 

dimensions  (see  Table  4)  to evaluate  the  effectiveness  of 

the  proposed method  to  achieve  the  global  optimum  for 

Problems with higher dimensionality.  We have  not 

considered  the  other  functions (except  F2  –  F15)  since  

the  optimum  value would  be  different  for  them  with  

higher dimensions  and  we  had  no  gold  standard for  the 

others.  It  was  noted  that the PBCO approach  can  reach the 

global  or  near-global  optimum  easily  without  spending 

much time compared to the timings for the functions  F2  –  
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F15  with  30  dimensions  as shown in Table 4. However for 

F14 with 100 dimensions,  the  technique  cannot  achieve the  

global  optimum  but  it  is  near  to  the global  optimum  

value. Here, we have used u=10 but it still cannot fully 

converge to near-global optimum.  In  Table  4  also,  we have  

provided  comparative  results  on  the set  of  functions  with  

higher  dimensionally (100). finally, it is concluded that the 

PBCO achieves the global or near-global optimum value 

efficiently for all functions with low and high (30 and 100) 

dimensionality.  

4. CONCLUSION 
The  PBCO  method  performs  better  than other  relevant  

optimization  techniques  for the  mathematical  functions  

with  30 dimensions  as  observed  by  the  results  in Table 3. 

In case of F14, we have considered u=10 so that the proposed 

technique converges to the global optimum.  It is observed  

(for  dimension  =  30)  that  the PBCO  algorithm  converges  

to  the  global optimum,  but  is  slower  than  the  other 

optimization techniques except FEP for F14. For  low  

dimensional  functions  (F16  –  F20), the  proposed  method  

performs  better    in achieving  the  global  or  near-global 

optimum  but  is  slower  (in  terms  of  mean function  

evaluation)  for  F16  and  F18 compared to ALEP. We have 

also evaluated the performance of the PBCO approach for the 

mathematical functions F2 – F15 with 100 dimensions.  It  is  

noticed  that  the proposed  method  can  reach  the  global  or 

near-global  optimum  smoothly  as  it reached  for the  same  

set  of functions  with 30  dimensions.  However, the PBCO 

approach cannot reach the near-global optimum for F14, even 

if we set the value of u to 10. 

5. REFERENCES 
[1] DT Pham and MCastellani The Bees Algorithm: 

modelling foraging behaviour to solve continuous 

optimization problems, PROCEEDINGS OF THE 

INSTITUTION OF MECHANICAL ENGINEERS 

PART C JOURNAL OF NGINEERING SCIENCE 

1989-1996 (VOLS 203-210) · DECEMBER 2009. 

[2] Wenping Zou, Yunlong Zhu, Hanning Chen, and Beiwei 

Zhang Solving Multiobjective Optimization Problems 

Using Artificial Bee Colony Algorithm , Hindawi 

Publishing Corporation Discrete Dynamics in Nature and 

Society Volume 2011, Article ID 569784. 

[3] Reza Akbari, Alireza Mohammadi, Koorush Ziarati A 

novel bee swarm optimization algorithm for numerical 

function optimization , Department of Computer Science 

and Engineering, Shiraz University, Shiraz, Iran.  

[4] Dogan  Aydn, Tianjun Liao, Marco A. Montes de Oca, 

Thomas St•utzleI Improving Performance via Population 

Growth and Local Search: The Case of the Artificial Bee 

Colony Algorithm , IRIDIA  Technical Report Series 

Technical Report No. TR/IRIDIA/2011-015 August 

2011.  

[5] Rui  Zhang, An Artificial Bee Colony Algorithm Based 

on Problem Data Properties for Scheduling Job Shops , 

School of Economics and Management, Nanchang 

University, Nanchang 330031, PR China  

[6] Ali R. Yildiz, Optimization of cutting parameters in 

multi-pass turning using artificial bee colony-based 

approach , Bursa Technical University, Department of 

Mechanical Engineering, Bursa, Turkey  

[7] Dervis Karaboga, Celal Ozturk∗, A novel clustering 

approach: Artificial Bee Colony (ABC) algorithm , 

Erciyes University, Intelligent Systems Research Group, 

Department of Computer Engineering, Kayseri, Turkey  

[8] S.A.M. Fahad, M.E.El-Hawary, Overview of Artificial 

Bee Colony (ABC) algo-rithm and its applications , in: 

Proceedings of IEEE Conference on Systems, 2012, 

pp.1–6.  

[9] D.  Karaboga, An idea based on honey bee swarm for 

numerical optimization , TechnicalReport-TR06, 

ErciyesUniversity Kayseri, Turkey, 2005, pp.1–10  

[10] Y. Xin -She, Engineering Optimization: An Introduction 

with Metaheuristic Applications , Wiley.com, Hoboken, 

NJ, 2010.  

[11] Dervis  Karaboga · Bahriye Basturk, A powerful and 

efficient algorithm for numerical function optimization: 

artificial bee colony (ABC) algorithm , © Springer 

Science+Business Media B.V. 2007  

[12] Efr´en Mezura-Montes_ and Omar CetinaDo ´ı guez, 

Empirical Analysis of a Modified Artificial Bee Colony 

for Constrained Numerical Optimization , Laboratorio 

Nacional de Informatics Avanade (LANIA A.C.) 

R´ebsamen 80, Centro, Xalapa, Veracruz, 91000, 

MEXICO  

[13] Miloš Nikolic´ , Duša Teodorovic, Empirical study of the 

Bee Colony Optimization (BCO) algorithm , Faculty of 

Transport and Traffic Engineering, University of 

Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia  

[14] Bai Li a, Ya Li b,n, Ligang Gong, Protein secondary 

structure optimization using an improved artificial bee 

colony algorithm based on AB off-lattice model , 

Engineering Applications of Artificial  Intelligence  

[15] Chin Soon Chong, Malcolm Yoke Hean Low, Appa Iyer 

Sivakumar, Kheng Leng Gay, A BEE COLONY 

OPTIMIZATION ALGORITHM TO JOB SHOP 

SCHEDULING , Proceedings of the 2006 Winter 

Simulation Conference  

[16] C. Y.  Lee and X. Yao, Evolutionary programming using 

mutations based on the levy probability distribution, 

IEEE Trans. Evol. Comput. , vol. 8, no. 1, pp. 1-13, Feb. 

2004  

[17] Y. W. Leung and Y. P. Wang, An orthogonal genetic 

algorithm with quantization for global numerical 

optimization, IEEE Trans. Evol. Comput., vol. 5, no. 1, 

pp. 41-53, Feb 2001  

[18] X. Yao, Y.Liu, and G. Lin, Evolutionary programming 

made faster, IEEE Trans. Evol. Comput., vol. 3, no. 2, 

pp. 82-102, July 1999  

[19] C. S. Hong and Z Quan, 1988. Integeral  global 

optimization: Theory implementation and application . 

SpringerVerlag, Berlin, Germany  

[20] Y. Wang and C. Dang, An evolutionary algorithm for 

global optimization based on Level-set evolution and 

Latin squares IEEE Trans. On Evol. Comput., vol. 11, 

no. 5, October 2007, pp. 579-595  

IJCATM : www.ijcaonline.org 


