Abstract

The significance & stature of the P vs NP problem is so imperative that even the failed attempts at proof have furnished unprecedented breakthroughs and valuable insights. While the scientists and researchers do not expect the problem to be solved in foreseeable future, the P vs NP question has been the harbinger of advancement of the theory of computation and complexity theory in particular. Multitude of research papers have been published on number of topics which have begged numerous accolades and awards. This paper presents and highlights a non-technical review of series of complex mathematical research and enlists the notable awards & advances from each subsequent effort. The paper also presents the limitations of existing and proposed techniques and highlights the direction of active future research towards P vs NP solution.

References

1. A. M. Turing, On computable numbers with an application to the entscheidungs problem,

5. A. Tarski, tr J.H. Woodger, The Concept of Truth in Formalized Languages, Logic, Semantics, Metamathematics, Hackett, 1983

15. L. Levin, Universal search problems, Problemy Peredachi Informatsii, 9(3), 1973

17. Laszlo Babai, Graph Isomorphism in Quasipolynomial Time I: The "Local Certificates Algorithm", Combinatorics and Theoretical Computer Science seminar, 2015

24. L. Babai, L. Fortnow, C. Lund, Non-deterministic exponential time has two-prover
30. M. Ajtai,
31. 1
32. 1
33. .
37. AA. Razborov, Lower bounds on the size of bounded depth networks over a complete basis with logical addition, trans. in Math. notes of the Academy of Sciences of the USSR 41, 1987.
49. J. Hartmanis, and J. Hopcroft, Independence results in computer science, ACM SIGACT News 8, no. 4,1976.

60. Hemaspaandra L., SIGACT News Complexity Theory Column 74, Dept. of Computer Science, University of Rochester, 2012.

Index Terms

Computer Science

Information Sciences

Keywords

P vs NP, Cryptography, Complexity theory, P vs NP attempts and limitations, Geometric complexity theory, quantum computing, One-way function, incompleteness theorem.