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ABSTRACT 

In this paper, we have trained and tuned a Deep Neural 

Network (DNN) model to extract the household’s average 

voltage pattern and utilize it for predicting any potential 

abnormalities using Artificial Intelligence (AI). To be more 

specific, this model is a Recurrent Neural Network (RNN) 

that leverages the Long Short-Term Memory (LSTM) cell as a 

long-term dependency storage. The logic behind this 

architecture is to enhance the performance as well as solving 

the vanishing (and exploding) gradient problem of RNNs. The 

main objective of this project is to detect abnormalities at the 

edge (Internet of Thing (IoT) gateway) as a security-oriented 

proactive approach. Therefore, after training the model with a 

large-enough train part of the dataset and optimizing it after 

running the test part of the dataset, the model can be placed at 

the IoT gateway and recognize the future abnormalities in 

Time-series voltage dataset of any given household to avoid 

any potential malicious activity or damage.   

General Terms 

Artificial Intelligence (AI). Recurrent Neural Network (RNN).  

Long Short-Term Memory (LSTM). Internet of Thing (IoT). 

Deep Neural Network (DNN). 
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1. INTRODUCTION 
In recent years, Artificial Intelligence (AI) has been 

recognized as one of the most influencing trends on a broad 

spectrum of existing and/or emerging technologies/areas. The 

most important aspect of AI is the attempt to help solve real-

world problems. As an instance, analyzing the patient's 

medical images and providing a diagnosis with equal to 

medical doctors, or even better than them. According to the 

Stanford ML Group’s MURA Bone X-Ray Deep Learning 

Competition, (“MURA (musculoskeletal radiographs) is a 

large dataset of bone X-rays. Algorithms are tasked with 

determining whether an X-ray study is normal or abnormal.” 

[2]), all the six most recent developed models (including the 

most recent one which is uploaded on November 6, 2018) 

have proved to have a better performance than the Best 

Radiologist Performance at Stanford University! This is only 

one of the effective results that have been generated by DNNs 

in beating human’s accuracy in performing high-level tasks. 

Therefore, there is a significant positive sign which grabs our 

attention to take DNNs more seriously. Therefore, we’ve 

leveraged this advantage to intensify the security of smart 

buildings. 

 According to the references like “Smart Cities: Foundations, 

Principles, and Applications” and “Security and Privacy in 

Cyber-Physical Systems: Foundations, Principles, and 

Applications”, load altering/manipulation and/or destabilizing 

voltage attacks that mainly happens with manipulating the 

voltage magnitude in form of overflow/overload that can 

cause highly serious problems to the smart cities power 

system, like increase in flow current (equipment damages), 

out-of-range deviation of the system frequency, power 

shortage (blackout/downtimes during the critical moments), 

disguising the malicious control activities during the blackout, 

etc. In addition, the sensitivity and fragility of IoT devices to 

the sudden voltage fluctuations, out-of-range frequency 

deviations, and consequently the flow current issues, 

underlines the significance of conducting this research project.  

The rest of the paper is organized in seven sections: Section II 

covers deep recurrent neural networks; Section III presents 

long short-term memory; Section IV presents proposed model. 

Section V discusses dataset description. Section VI presents 

model’s performance. Lastly, we have the conclusion and the 

future work presented in VII.  

2. DEEP RECURRENT NEURAL 

NETWORK 
Deep Recurrent Neural Networks (DRNN) are a subset of the 

typical Deep Neural Networks (DNN) that are being used for 

analyzing sequential data. In general, Feedforward Neural 

Networks are the most popular type of DNNs, as shown in 

Figure 1. 

 

Figure 1. A Generic Neural Network [9] 

Feedforward Neural Networks consist of three major stages, 

called Feedforward, Backpropagation and Iterative Weight 

Parameter Update: 

A. Feedforward: In this stage, the model will be provided 

with a batch of training data set and calculates the loss 

function, using the actual values and the predicted 

values. 

B. Backpropagation: In this stage, the model generates the 

gradient of the loss function by considering the initial 

weights. 
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Figure 2. Gradient Descent Convex Optimization [8] 

Considering the l(w) as the Mean Square Error (MSE) 

function, the weights updates will be computed using the 

following equations to reach the local minimum of the 

gradient and optimize the convex [8]: 

Update rule:  

    η        (1) 

   
     

      
   
  

     

   
        (2) 

Where ɳ is learning rate  

RNNs are well-known for sequential processing and time-

series analysis. The main concept of RNNs is using a 

feedback loop at each recurrent layer to store the data as a 

memory for future predictions. However, the main problem is 

that this architecture won’t have a high level of performance 

for long-term use cases. So, RNNs suffers from the vanishing 

(and exploding) gradient issue. As mentioned earlier, this 

problem comes from the lack of long-term dependency saving 

module. The main intuition behind the RNNs is that previous 

hidden and input states, in addition to the current input values, 

generate the next hidden and output values. This idea was an 

advancement to the naïve idea of the initial RNNs that was 

only based on generating the hidden stage using the input, and 

the output stage based in the hidden layer. As mentioned 

above, the main architecture of RNNs can be as the following 

Figure 3. 

 

Figure 3. RNN Principle Architecture [7] 

The “x” represents the input of each step, the “h” represents 

the output of each state and the result of each state will be 

given to the next step. However, the RNN cannot have a 

satisfactory performance in the situations that the dataset is 

huge. The reason of not being efficient in those situations is 

that the model is not capable of remembering the long-term 

dependencies for a long period of time. As shown in Figure. 4, 

when to reaches a large enough number (assuming infinity), it 

cannot remember what was going on in the earliest stages as 

shown in Figure 4.  

 

Figure 4. The vanishing problem of RNN [7] 

Let’s explain the vanishing/exploding gradient problem, 

which is a prevalent issue in RNNs in-depth. This issue 

happens when the loss function cannot reach the local 

minimum, by continuous derivative computations of the 

gradient descent to update the weight parameters. This 

implicitly indicates that the model is not representing an 

acceptable performance, since the actual values and the 

predicted values are diverging, instead of converging. 

Consequently, the square of their difference is evading the “0” 

value (which is the absolute optimum value) after each 

iteration as shown in Figure 5. 

 

Figure 5. Vanishing gradient problem [7] 

3. LONG SHORT-TERM MEMORY  
The RNN’s lack of performance was the main incentive for 

the AI scientists to use an LSTM cell unit in combination with 

the RNN and propose the LSTM RNN model. In despite of 

the RNN that used to calculate the next hidden state (h) only 

based on a simple combination of the current input (x) as 

follows: 

                          (3) 

The architecture of the LSTM RNN leverages a more 

complicated combination of four mini brains (sub-

mechanism) to implement the remembering, forgetting and 

attention capabilities. By the definition, the long-term 

memory (ltm) is called the “Cell State”.  

The working memory is called the “Hidden State” (which is 

like the traditional (vanilla) RNNs). The remember vector is 

called the “Forget State” (in which ‘1’ means to keep and ‘0’ 

means to forget).  

The save vector is called the “Input gate” and the focus vector 
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is called the “Output gate”. As shown in the following 

formulas, the remember, save and focus functions are 

implemented using the “Sigmoid” function but the “ltm” 

function has been implemented using the “Tanh” function [7]. 

                                    
      (4) 

                                                       (5) 

                                        (6) 

                                    (7) 

                                     (8) 

    
                                   (9) 

According to the above-mentioned formulas of the LSTM 

model, the combined architecture can be presented as the 

following: 

 

Figure 6. LSTM module’s detailed architecture [7] 

4. PROPOSE MODEL  
We’ve trained a DNN model which includes two LSTM 

layers (including 100 neurons each), two Dropout layers, and 

a Dense layer [10].  

In this model, we’ve used Mean Squared Error (MSE) loss 

function for computing the accuracy of the model and ADAM 

for optimization. As the final layer, the Dense layer is using 

the Linear activation function to generate the final output. The 

architecture that has been generated by the Keras Deep 

Learning framework and the Tensor Flow Backend is shown 

here: 

The model uses the voltage data including 5000 and splits it to 

two different parts to train the model with the first part (which 

is usually larger) and test the model with the other part (which 

is usually smaller, and the model has not seen none of it) to 

evaluate the performance of the model. Moreover, we’ve set 

the model to normalize the data to achieve a better 

performance.  

 

Figure 7. Model's Abstract Architecture (Generated by 

Keras Framework) 

In the training part, we’ve done the whole process in one 

epoch with the batch size of 32. For the loss function, we used 

Mean Square Error (MSE), since it is more compatible for 

predicting values than other loss functions like Cross-entropy 

(which is more compatible with the situations that the model 

is going to be used for binary classification).  

For the learning rate (which determines the speed of updating 

the weights), we utilized the Adaptive Moment (ADAM) 

optimizer. The logic behind this decision was to make the 

model more efficient, by letting it choose the learning rate in 

an adaptive manner, instead of defining a static learning rate 

for the whole process. This optimizing approach is the most 

popular one for high-performance neural networks.  

After defining the above-mentioned parameters and functions, 

we defined and LSTM layer as the second layer of the model 

(since the first layer is the input layer with a single input 

dimension, which is the voltage value from or dataset). Right 

after the first LSTM layer, we’ve put a Dropout layer. The 

Dropout is a useful to technique to preserve the model from 

being overfitted.  

The overfitting phenomena happens when the model is being 

trained using too much data during the training. Consequently, 

the model won’t demonstrate a descent performance on the 

test data, which is completely new to the model.  

So, it is highly important in professional Deep Learning 

models to prevent this phenomenon by using the Dropout 

layer after each main layer.  

The Dropout function spread the weight to different neurons 

to prevent relying too much on certain specific neurons. This 

strategy is repeated for the fourth and the fifth layer as well 

(LSTM and Dropout architecture). Finally, it is designed as a 

dense layer as the linear output stage using one neuron. 
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5. DATASET DESCRIPTION  
For training and testing the model, we’ve used a 1-min 

captured dataset of households power consumption from the 

“data.world” repository (which is a subset of a larger dataset 

at UC Irvine Machine Learning Repository) and used the 

“Voltage” column for prediction [3, 4]. We’ve defined 0.85 as 

the training-testing split.  

So, since we used 5000 records in total, around 4300 records 

were used for training and around 700 records for testing the 

model performance. We also normalized the data by scaling it 

down. The following plot represents a sample of the raw data 

for a single day minute-average voltage: 

 

Figure 8. The voltage dataset 

6. MODEL’S PERFORMANCE   
After running the model, the results were beyond our 

expectation, since as it can be seen in the Figure 9, the 

predicted data and the actual data are very close together 

visually. However, the model can become even much better 

by using relatively larger datasets and Transfer Learning 

approaches. 

 

Figure 9. Model’s Performance on the Test Dataset 

Also, the model’s acceptable performance can be proved by 

looking at the output results from the TensorFlow framework, 

after the model’s execution using the test dataset. As can be 

seen in the following figure, the output of the Mean Squared 

Error (MSE) function is 5.3405e-05 in scientific e notation 

format, which is equal to 0.000053405 in real number format. 

As we know from the definition that:  

MSE = 
 

 
    
          

         (10)  

In which the  predicted values and demonstrates the 

actual values. Therefore, an ideal model should equal to 0. 

Consequently, our model is performing pretty well with 

reference to the calculated MSE value (Figure 10). 

 

Figure 10. Tensor flow backend log 

7. CONCLUSION  
To recapitulate, we trained and tuned a Deep Learning model 

to enhance the security of the Internet of Things (IoT) using a 

different perspective. The initial incentive for conducting this 

research project stems from the significance of the IoT 

security, and the technical hardware/power limitations in 

proposing robust security solutions for the IoT. So, we came 

up with the idea to use the Time-Series Analysis (Sequential 

Data Analysis) to recognize the pattern of the voltage level of 

the households. According to the reliable references [5,6], the 

voltage level tampering is a devastating type of attack that can 

be done for various malicious activities in Smart Cities, since 

the flow current of all the electronic devices depend on the 

input voltage level. Therefore, we developed an optimized 

LSTM RNN to learn the pattern using around 4300 records of 

1-minute interval voltage level and test our model with the 

other 700 records of unseen data, to predict the values using 

the model and compare them with the actual data. Fortunately, 

based on the mentioned statistics in the body of the paper, our 

model was highly successful, because of the proximity of our 

loss function output to the zero. This model is not only useful 

for the voltage abnormality detection, but also can be used for 

pattern recognition in other areas of IoT that are dealing with 

streams of data. However, any changes to the use case of the 

model requires descent amount of optimizations, since 

several parameters with different correlations are involved in 

the outcome of the model, which is measured by the loss 

function. In terms of future works and suggestions to enhance 

the model, we can mention the following key points: 

● Scaling up the model’s scope by adding more complexity 

factors and increase the dimensionality of the dataset to 

cover more attributes of Smart Cities datasets. 

● Increasing the volume of the dataset which will increase 

the model’s performance since we’ve done the 

experiment on a subset of the dataset to prove the 

feasibility. 
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