
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 9, October 2019

9

LSTM Deep Recurrent Neural Network Model for Voltage

Abnormality Detection at IoT Gateway

Jihad Qaddour
School of IT

Illinois State University

Navid Rajabi
School of IT

Illinois State University

ABSTRACT

In this paper, we have trained and tuned a Deep Neural

Network (DNN) model to extract the household’s average

voltage pattern and utilize it for predicting any potential

abnormalities using Artificial Intelligence (AI). To be more

specific, this model is a Recurrent Neural Network (RNN)

that leverages the Long Short-Term Memory (LSTM) cell as a

long-term dependency storage. The logic behind this

architecture is to enhance the performance as well as solving

the vanishing (and exploding) gradient problem of RNNs. The

main objective of this project is to detect abnormalities at the

edge (Internet of Thing (IoT) gateway) as a security-oriented

proactive approach. Therefore, after training the model with a

large-enough train part of the dataset and optimizing it after

running the test part of the dataset, the model can be placed at

the IoT gateway and recognize the future abnormalities in

Time-series voltage dataset of any given household to avoid

any potential malicious activity or damage.

General Terms

Artificial Intelligence (AI). Recurrent Neural Network (RNN).

Long Short-Term Memory (LSTM). Internet of Thing (IoT).

Deep Neural Network (DNN).

Keywords

LSTM; RNN; DNN; IoT; AI; Deep Learning.

1. INTRODUCTION
In recent years, Artificial Intelligence (AI) has been

recognized as one of the most influencing trends on a broad

spectrum of existing and/or emerging technologies/areas. The

most important aspect of AI is the attempt to help solve real-

world problems. As an instance, analyzing the patient's

medical images and providing a diagnosis with equal to

medical doctors, or even better than them. According to the

Stanford ML Group’s MURA Bone X-Ray Deep Learning

Competition, (“MURA (musculoskeletal radiographs) is a

large dataset of bone X-rays. Algorithms are tasked with

determining whether an X-ray study is normal or abnormal.”

[2]), all the six most recent developed models (including the

most recent one which is uploaded on November 6, 2018)

have proved to have a better performance than the Best

Radiologist Performance at Stanford University! This is only

one of the effective results that have been generated by DNNs

in beating human’s accuracy in performing high-level tasks.

Therefore, there is a significant positive sign which grabs our

attention to take DNNs more seriously. Therefore, we’ve

leveraged this advantage to intensify the security of smart

buildings.

 According to the references like “Smart Cities: Foundations,

Principles, and Applications” and “Security and Privacy in

Cyber-Physical Systems: Foundations, Principles, and

Applications”, load altering/manipulation and/or destabilizing

voltage attacks that mainly happens with manipulating the

voltage magnitude in form of overflow/overload that can

cause highly serious problems to the smart cities power

system, like increase in flow current (equipment damages),

out-of-range deviation of the system frequency, power

shortage (blackout/downtimes during the critical moments),

disguising the malicious control activities during the blackout,

etc. In addition, the sensitivity and fragility of IoT devices to

the sudden voltage fluctuations, out-of-range frequency

deviations, and consequently the flow current issues,

underlines the significance of conducting this research project.

The rest of the paper is organized in seven sections: Section II

covers deep recurrent neural networks; Section III presents

long short-term memory; Section IV presents proposed model.

Section V discusses dataset description. Section VI presents

model’s performance. Lastly, we have the conclusion and the

future work presented in VII.

2. DEEP RECURRENT NEURAL

NETWORK
Deep Recurrent Neural Networks (DRNN) are a subset of the

typical Deep Neural Networks (DNN) that are being used for

analyzing sequential data. In general, Feedforward Neural

Networks are the most popular type of DNNs, as shown in

Figure 1.

Figure 1. A Generic Neural Network [9]

Feedforward Neural Networks consist of three major stages,

called Feedforward, Backpropagation and Iterative Weight

Parameter Update:

A. Feedforward: In this stage, the model will be provided

with a batch of training data set and calculates the loss

function, using the actual values and the predicted

values.

B. Backpropagation: In this stage, the model generates the

gradient of the loss function by considering the initial

weights.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 9, October 2019

10

Figure 2. Gradient Descent Convex Optimization [8]

Considering the l(w) as the Mean Square Error (MSE)

function, the weights updates will be computed using the

following equations to reach the local minimum of the

gradient and optimize the convex [8]:

Update rule:

 η (1)

 (2)

Where ɳ is learning rate

RNNs are well-known for sequential processing and time-

series analysis. The main concept of RNNs is using a

feedback loop at each recurrent layer to store the data as a

memory for future predictions. However, the main problem is

that this architecture won’t have a high level of performance

for long-term use cases. So, RNNs suffers from the vanishing

(and exploding) gradient issue. As mentioned earlier, this

problem comes from the lack of long-term dependency saving

module. The main intuition behind the RNNs is that previous

hidden and input states, in addition to the current input values,

generate the next hidden and output values. This idea was an

advancement to the naïve idea of the initial RNNs that was

only based on generating the hidden stage using the input, and

the output stage based in the hidden layer. As mentioned

above, the main architecture of RNNs can be as the following

Figure 3.

Figure 3. RNN Principle Architecture [7]

The “x” represents the input of each step, the “h” represents

the output of each state and the result of each state will be

given to the next step. However, the RNN cannot have a

satisfactory performance in the situations that the dataset is

huge. The reason of not being efficient in those situations is

that the model is not capable of remembering the long-term

dependencies for a long period of time. As shown in Figure. 4,

when to reaches a large enough number (assuming infinity), it

cannot remember what was going on in the earliest stages as

shown in Figure 4.

Figure 4. The vanishing problem of RNN [7]

Let’s explain the vanishing/exploding gradient problem,

which is a prevalent issue in RNNs in-depth. This issue

happens when the loss function cannot reach the local

minimum, by continuous derivative computations of the

gradient descent to update the weight parameters. This

implicitly indicates that the model is not representing an

acceptable performance, since the actual values and the

predicted values are diverging, instead of converging.

Consequently, the square of their difference is evading the “0”

value (which is the absolute optimum value) after each

iteration as shown in Figure 5.

Figure 5. Vanishing gradient problem [7]

3. LONG SHORT-TERM MEMORY
The RNN’s lack of performance was the main incentive for

the AI scientists to use an LSTM cell unit in combination with

the RNN and propose the LSTM RNN model. In despite of

the RNN that used to calculate the next hidden state (h) only

based on a simple combination of the current input (x) as

follows:

 (3)

The architecture of the LSTM RNN leverages a more

complicated combination of four mini brains (sub-

mechanism) to implement the remembering, forgetting and

attention capabilities. By the definition, the long-term

memory (ltm) is called the “Cell State”.

The working memory is called the “Hidden State” (which is

like the traditional (vanilla) RNNs). The remember vector is

called the “Forget State” (in which ‘1’ means to keep and ‘0’

means to forget).

The save vector is called the “Input gate” and the focus vector

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 9, October 2019

11

is called the “Output gate”. As shown in the following

formulas, the remember, save and focus functions are

implemented using the “Sigmoid” function but the “ltm”

function has been implemented using the “Tanh” function [7].

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

According to the above-mentioned formulas of the LSTM

model, the combined architecture can be presented as the

following:

Figure 6. LSTM module’s detailed architecture [7]

4. PROPOSE MODEL
We’ve trained a DNN model which includes two LSTM

layers (including 100 neurons each), two Dropout layers, and

a Dense layer [10].

In this model, we’ve used Mean Squared Error (MSE) loss

function for computing the accuracy of the model and ADAM

for optimization. As the final layer, the Dense layer is using

the Linear activation function to generate the final output. The

architecture that has been generated by the Keras Deep

Learning framework and the Tensor Flow Backend is shown

here:

The model uses the voltage data including 5000 and splits it to

two different parts to train the model with the first part (which

is usually larger) and test the model with the other part (which

is usually smaller, and the model has not seen none of it) to

evaluate the performance of the model. Moreover, we’ve set

the model to normalize the data to achieve a better

performance.

Figure 7. Model's Abstract Architecture (Generated by

Keras Framework)

In the training part, we’ve done the whole process in one

epoch with the batch size of 32. For the loss function, we used

Mean Square Error (MSE), since it is more compatible for

predicting values than other loss functions like Cross-entropy

(which is more compatible with the situations that the model

is going to be used for binary classification).

For the learning rate (which determines the speed of updating

the weights), we utilized the Adaptive Moment (ADAM)

optimizer. The logic behind this decision was to make the

model more efficient, by letting it choose the learning rate in

an adaptive manner, instead of defining a static learning rate

for the whole process. This optimizing approach is the most

popular one for high-performance neural networks.

After defining the above-mentioned parameters and functions,

we defined and LSTM layer as the second layer of the model

(since the first layer is the input layer with a single input

dimension, which is the voltage value from or dataset). Right

after the first LSTM layer, we’ve put a Dropout layer. The

Dropout is a useful to technique to preserve the model from

being overfitted.

The overfitting phenomena happens when the model is being

trained using too much data during the training. Consequently,

the model won’t demonstrate a descent performance on the

test data, which is completely new to the model.

So, it is highly important in professional Deep Learning

models to prevent this phenomenon by using the Dropout

layer after each main layer.

The Dropout function spread the weight to different neurons

to prevent relying too much on certain specific neurons. This

strategy is repeated for the fourth and the fifth layer as well

(LSTM and Dropout architecture). Finally, it is designed as a

dense layer as the linear output stage using one neuron.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 9, October 2019

12

5. DATASET DESCRIPTION
For training and testing the model, we’ve used a 1-min

captured dataset of households power consumption from the

“data.world” repository (which is a subset of a larger dataset

at UC Irvine Machine Learning Repository) and used the

“Voltage” column for prediction [3, 4]. We’ve defined 0.85 as

the training-testing split.

So, since we used 5000 records in total, around 4300 records

were used for training and around 700 records for testing the

model performance. We also normalized the data by scaling it

down. The following plot represents a sample of the raw data

for a single day minute-average voltage:

Figure 8. The voltage dataset

6. MODEL’S PERFORMANCE
After running the model, the results were beyond our

expectation, since as it can be seen in the Figure 9, the

predicted data and the actual data are very close together

visually. However, the model can become even much better

by using relatively larger datasets and Transfer Learning

approaches.

Figure 9. Model’s Performance on the Test Dataset

Also, the model’s acceptable performance can be proved by

looking at the output results from the TensorFlow framework,

after the model’s execution using the test dataset. As can be

seen in the following figure, the output of the Mean Squared

Error (MSE) function is 5.3405e-05 in scientific e notation

format, which is equal to 0.000053405 in real number format.

As we know from the definition that:

MSE =

 (10)

In which the predicted values and demonstrates the

actual values. Therefore, an ideal model should equal to 0.

Consequently, our model is performing pretty well with

reference to the calculated MSE value (Figure 10).

Figure 10. Tensor flow backend log

7. CONCLUSION
To recapitulate, we trained and tuned a Deep Learning model

to enhance the security of the Internet of Things (IoT) using a

different perspective. The initial incentive for conducting this

research project stems from the significance of the IoT

security, and the technical hardware/power limitations in

proposing robust security solutions for the IoT. So, we came

up with the idea to use the Time-Series Analysis (Sequential

Data Analysis) to recognize the pattern of the voltage level of

the households. According to the reliable references [5,6], the

voltage level tampering is a devastating type of attack that can

be done for various malicious activities in Smart Cities, since

the flow current of all the electronic devices depend on the

input voltage level. Therefore, we developed an optimized

LSTM RNN to learn the pattern using around 4300 records of

1-minute interval voltage level and test our model with the

other 700 records of unseen data, to predict the values using

the model and compare them with the actual data. Fortunately,

based on the mentioned statistics in the body of the paper, our

model was highly successful, because of the proximity of our

loss function output to the zero. This model is not only useful

for the voltage abnormality detection, but also can be used for

pattern recognition in other areas of IoT that are dealing with

streams of data. However, any changes to the use case of the

model requires descent amount of optimizations, since

several parameters with different correlations are involved in

the outcome of the model, which is measured by the loss

function. In terms of future works and suggestions to enhance

the model, we can mention the following key points:

● Scaling up the model’s scope by adding more complexity

factors and increase the dimensionality of the dataset to

cover more attributes of Smart Cities datasets.

● Increasing the volume of the dataset which will increase

the model’s performance since we’ve done the

experiment on a subset of the dataset to prove the

feasibility.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No. 9, October 2019

13

8. REFERENCES
[1] Understanding LSTM Networks, Recurrent Neural

Networks, Posted on August 27, 2015,

http://colah.github.io/posts/2015-08-Understanding-

LSTMs/.

[2] Stanfordgroup,RrajPurkar, Jul2,2018,https://stanfordmlgr

oup.github.io/competitions/mura/

[3] J.Ortiz,“HouseholdPowerConsumption,”https://data.worl

d/databeats/household-power-consumption.

[4] G. Hebrail, “Individual household electric power

consumption Data Set,” Aug 30, 2012,

https://archive.ics.uci.edu/ml/datasets/individual+househ

old+electric+power+consumption.

[5] J. L. Reyes-Ortiz, D. Anguita, A. Ghio, L. Oneto, and X.

Parra , “Human Activity Recognition Using Smartphones

Data,April2013,Set”https://books.google.com/books?id=

MtkoDwAAQBAJ&lpg=PP1&dq=Smart%20Cities%3A

%20Foundations%2C%20Principles%2C%20and%20Ap

plications&pg=PP1#v=onepage&q=Smart%20Cities:%2

0Foundations,%20Principles,%20and%20Applications&

f=false.

[6] Googlebook,https://books.google.com/books?id=qEkzD

wAAQBAJ&lpg=PP1&pg=PP1#v=onepage&q&f=false.

[7] LSTM_Networks/LSTM Demo.ipynb, “Generating Text

using an LSTM Network (No libraries),” Aug 7,

2017, https://github.com/llSourcell/LSTM_Networks/blo

b/master/LSTM%20Demo.ipynb.

[8] T. Mitchell, A. Singh, “Machine Learning,” Carnegie

MellonUniversity,2011,http://www.cs.cmu.edu/~aarti/Cl

ass/10601/slides/Nnets_11_3_2011.pdf.

[9] S. D. Ali, “The Evolution and Core Concepts of Deep

Learning & Neural Networks,” August

2016,https://www.analyticsvidhya.com/blog/2016/08/evo

lution-core-concepts-deep-learning-neural-networks/.

[10] LSTM prediction using Neural Networks, Jan 25,

2018,https://github.com/jaungiers/LSTM-Neural-

Network-for-Time-Series-Prediction.

IJCATM : www.ijcaonline.org

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/stanfordmlgroup/stanfordmlgroup.github.io/commits?author=rajpurkar
https://data.world/databeats
https://books.google.com/books?id=MtkoDwAAQBAJ&lpg=PP1&dq=Smart%20Cities%3A%20Foundations%2C%20Principles%2C%20and%20Applications&pg=PP1#v=onepage&q=Smart%20Cities:%20Foundations,%20Principles,%20and%20Applications&f=false
https://books.google.com/books?id=MtkoDwAAQBAJ&lpg=PP1&dq=Smart%20Cities%3A%20Foundations%2C%20Principles%2C%20and%20Applications&pg=PP1#v=onepage&q=Smart%20Cities:%20Foundations,%20Principles,%20and%20Applications&f=false
https://books.google.com/books?id=MtkoDwAAQBAJ&lpg=PP1&dq=Smart%20Cities%3A%20Foundations%2C%20Principles%2C%20and%20Applications&pg=PP1#v=onepage&q=Smart%20Cities:%20Foundations,%20Principles,%20and%20Applications&f=false
https://books.google.com/books?id=MtkoDwAAQBAJ&lpg=PP1&dq=Smart%20Cities%3A%20Foundations%2C%20Principles%2C%20and%20Applications&pg=PP1#v=onepage&q=Smart%20Cities:%20Foundations,%20Principles,%20and%20Applications&f=false
https://books.google.com/books?id=MtkoDwAAQBAJ&lpg=PP1&dq=Smart%20Cities%3A%20Foundations%2C%20Principles%2C%20and%20Applications&pg=PP1#v=onepage&q=Smart%20Cities:%20Foundations,%20Principles,%20and%20Applications&f=false
https://books.google.com/books?id=MtkoDwAAQBAJ&lpg=PP1&dq=Smart%20Cities%3A%20Foundations%2C%20Principles%2C%20and%20Applications&pg=PP1#v=onepage&q=Smart%20Cities:%20Foundations,%20Principles,%20and%20Applications&f=false
https://github.com/llSourcell/LSTM_Networks
http://www.cs.cmu.edu/~tom
http://www.cs.cmu.edu/~aarti
http://www.cs.cmu.edu/~aarti/Class/10601/slides/Nnets_11_3_2011.pdf
http://www.cs.cmu.edu/~aarti/Class/10601/slides/Nnets_11_3_2011.pdf

