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ABSTRACT
In this paper the use of Hierarchical Finite Element Method
(HFEM) in free vibration of curved beams is explored. The
traditional Finite Element Method has been applied in dynamic
structural problems over the years, but when searching for higher
vibration frequencies a great computational effort is necessary.
In this context, two hierarchical finite element approaches are
proposed in order to achieve more accurate results than simple
FEM mesh refinement, called h refinement. The proposed HFEM
uses the Lobatto and Bardell polynomials to p refinement.
The results are compared with references found in literature.
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1. INTRODUCTION
Vibrations represent the dynamic behavior of a physical system
that can be described by a mathematical model formulated by
differential equations. The more complex the system, the more
difficult it becomes to obtain the results of the differential equations
[4]. In order to solve these differential equations an approximate
method can be employed, such as the Finite Element Method
(FEM).
The traditional FEM is widely used in the dynamic structures
analysis, but presents high errors when searching for higher
vibration frequencies. In order to improve FEM responses, two
types of refinement may be employed: the h refinement and p
refinement.
According to [3] major benefits of the hierarchical p-method are the
retention of the stiffness coefficients as the order of interpolation is
increased and the high rates of convergence possible without the
need for mesh refinement. These benefits promote a decreasing in
the computational effort involved.
The curved beam element has aroused interest in researchers for
some reasons, among them the fact that it is a very efficient element
and it provides insight into some aspects of shell element behavior
[8].

A curved beam element with 2 nodes and some alternatives of
shape functions using polynomials and trigonometric functions was
proposed in [9]. The use of high order polynomials in order to
describe the displacement fields was proposed by [5] for static
problems and by [11] for free vibration analysis of curved beams.
An application of the FEM for free vibration analysis of arch
with non-uniform cross-sectional area was presented by [13]. A
comparison of some approximate methods such as the Ritz Method,
the Rayleigh-Schmidt Method, the Galerkin Method and the Finite
Element Method for free vibration of arches using the curved beam
element was presented in [1].
Taking into account the effect of shear strain, an element with 4
degrees of freedom per node was proposed by [6] for free vibration
of thick curved beams.
A two node element and a three node element for static analysis of
thick curved beams were proposed by [10, 12].
The p-Fourier Element for free vibration analysis of thin and thick
curved beams was presented in [8] and a four node C0 finite element
for free vibration of thick curved beam with constant and variable
curvature was proposed by [16].
In this paper two elements with hierarchical p refinement are
proposed for dynamic analysis of thin curved beams.

2. HIERARCHICAL FINITE ELEMENT METHOD
In hierarchical p refinement the approximate displacements fields
response (uappro) can be written as:

uappro =

n∑
i=1

Ni ai, (1)

where Ni are the shape functions and ai are the related degrees of
freedom. Note that degrees of freedom are not necessarily related
to nodes. The approximation is hierarchical if an increase from n
to n + 1 does not change the Ni shape functions (i = 1 to n).
Two classes of shape functions are used for the displacement fields
described later.

2.1 C0 shape functions
The C0 shape functions related to the nodal degrees of freedom
are the linear Lagrange polynomials, which are described by the
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following expressions in the interval [−1, 1]:

N1 =
1− ξ
2

, (2)

N2 =
1 + ξ

2
. (3)

When these shape functions are used, the nodal degree of freedom
is the value of the function in the node (ui).
The C0 hierarchical p refinement is formulated using the Lobatto
polynomials [14], obtained by the following expressions, in the
interval [−1, 1]:

lk(x) =
1

||Lk−1||2

∫ x

−1
Lk−1(ξ) dξ (4)

||Lk−1||2 =

∫ 1

−1
L2

k−1(x) dx =

√
2

2k − 1
and k ≥ 3 (5)

where Lk are:

L0(x) = 1;

L1(x) = x;

Lk(x) =
2k − 1

k
xLk−1(x)−

k − 1

k
Lk−2

(6)

2.2 C1 shape functions
The C1 shape functions related to the nodal degrees of freedom
are the cubic Hermite polynomials, which are described by the
following expressions in the interval [−1, 1]:

N1 =
1

2
− 3

4
ξ +

1

4
ξ3, (7)

N2 =
Le

8
(1− ξ − ξ2 + ξ3), (8)

N3 =
1

2
+

3

4
ξ − 1

4
ξ3, (9)

N4 =
Le

8
(−1− ξ + ξ2 + ξ3), (10)

where Le is the element length.
When these shape functions are used, the nodal degrees of freedom
are the value of the function and the derivative of order 1 in the
node (ui and dui/dx).
The C1 hierarchical p refinement is formulated using the Bardell
polynomials [2], obtained by the following expressions, in the
interval [−1, 1]:

fr(ξ) =

r/2∑
n=0

(−1)n(2r − 2n− 7)!!

2nn!(r − 2n− 1)!
ξr−2n−1, (11)

where r!! = r (r− 2) · · · (2 or 1), 0!! = (−1)!! = 1, r/2 denotes
its own integer part, and r ≥ 5.

3. CURVED BEAM ELEMENT
In the thin curved beam element the extensional strain (ε), the
rotation (φ) and the change of curvature (χ) are described in terms

of the displacements and their derivatives according to classical
thin shell theory, as shown in the following expressions [5, 11, 8, 7]:

ε =
du

ds
+
w

R
, (12)

φ =
u

R
− dw

ds
, (13)

χ =
1

R

du

ds
− d2w

ds2
, (14)

whereR is the radius of the curved beam, u andw are the tangential
and normal components of the displacement at s, respectively, and
s is the curvilinear coordinate, as represented in Figure 1.

s

z

h
R

θ

Middle Surface
wi

ui

Fig. 1. Curved beam geometry.

The strain energy (U ) and kinetic energy (T ) expressions are
written as:

U =
1

2

∫ Le

0

(EAε2 +E I χ2) ds , (15)

T =
1

2

∫ Le

0

ρA (u̇2 + ẇ2) ds , (16)

where E is the Young’s modulus, A is the cross-sectional area,
I is the moment of inertia and ρ is the material density. The
displacements fields can be written as:

u =
∑

Pi ui and w =
∑

Qi wi , (17)

where Pi and Qi are the shape functions related to u and w,
respectively, and ui and wi are the degrees of freedom also related
to u and w, respectively.
Let {q} be a vector containing the degrees of freedom related to u
and w in the form:

{q} =



u1

...
un

w1

...
wn


(18)

and let {NP } be a vector formed by the shape functions Pi and
{NQ} a vector formed by the shape functions Qi:
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{NP } =


P1

P2

...
Pn

 and {NQ} =


Q1

Q2

...
Qn

 (19)

and still

{NP } =


NP

0
...
0

 e {NQ} =


0
...
0
NQ

 (20)

so that {NP } and {NQ} have the same dimension and that it is
equal to {q} dimension. Then displacement can be described fields
as:

u = {NP }
T
{q} and w = {NQ}

T
{q} (21)

The Lagrangian for free vibration is then written as:

L = T − U =
1

2

(
{q̇}T [M ] {q̇} − {q}T [K] {q}

)
(22)

Minimizing the energy functional of Equation (22) the motion
equation for undamped free vibration of thin curved beam elements
becomes:

[M ] {q̈}+ [K] {q} = 0 (23)

where, the elementary stiffness and mass matrices are written as:

[K]e =

∫ L

0

{z}T
[
EA 0
0 E I

]
{z} ds (24)

[M ]e =

∫ L

0

ρA

{
NP

NQ

}T {
NP

NQ

}
ds (25)

with:

{z} =


dNP

ds
+
NQ

R

1

R

dNP

ds
−
d2NQ

ds2

 (26)

3.1 Hierarchical curved beam elements
The first hierarchical finite element proposed for curved beams uses
the C0 shape functions for describe the axial displacement (u) and
the C1 shape functions for describe the radial displacement (w).
This element is called HFEM 1 and have 2 nodes and 3 nodal

degrees of freedom

(
ui, wi and

dwi

ds

)
per node.

The second hierarchical finite element proposed for curved beams
uses the C1 shape functions for describe both the displacement
fields. This element is called HFEM 2 and have 2 nodes and 4

nodal degrees of freedom

(
ui, wi,

dui

ds
and

dwi

ds

)
per node. The

two proposed HFEM are also described in Table 1.

Table 1. HFEM proposed elements

Element Displacement Shape Functions
Hierarchical
p refinement

HFEM 1
u C0 Lobatto

w C1 Bardell

HFEM 2
u C1 Bardell

w C1 Bardell

4. NUMERICAL RESULTS
In order to evaluate the results obtained by the hierarchical
finite elements proposed, some models are analyzed for their
validation. The results are compared with analytical solution or
other numerical solutions found in literature.

4.1 Ring’s model
Given that the analytical solution for ring is available in literature
[15] and taking advantage of the ring’s symmetry one quarter of the
ring is modeled, as shown in Figure 2.

R

R

Fig. 2. Ring and one quarter of the ring scheme.

Given that only a quarter of the ring is modeled only the even
frequencies of the full ring are obtained. The modeled ring has the
following properties: cross-section 0.9525mm x 0.9525mm, radius
of curvature of 0.3048m, material density of 1827.44 kg/m3 and
Young’s modulus of 1.31 × 1011 N/m2.
The first performed tests are convergence tests for the first
frequencies of the ring. The results are compared with elements
THIN01 and THIN11 [8] and the convergence tests are shown in
Figures 3, 4, 5 and 6.
In order to evaluate the error the following expression was used:

error =

∣∣∣∣ωappro − ωanaly

ωanaly

∣∣∣∣ 100%, (27)

where ωappro is the frequency obtained numerically and ωanaly is
the analytical frequency given by [15].
The convergence tests show that, mainly, for the first two
frequencies the HFEM presents more accurate results in almost
all the graphic area. For the last two frequencies, at the beginning
of the graph the THIN01 and THIN11 elements present more
accurate results, but at the end of the graph the HFEM presents
more accurate results as well. Among the two proposed HFEM
approaches, both have similar convergence rates.
The next presented result is the Mass matrix condition number also
compared with THIN01 and THIN11 [8]. For the condition number,
the lower its value the more numerically stable the system to be
solved. The Mass matrix condition number is presented in Figure
7.
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Fig. 3. Convergence of the second frequency of the ring.
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Fig. 4. Convergence of the fourth frequency of the ring.
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Fig. 5. Convergence of the sixth frequency of the ring.

Regarding the Mass matrix condition number, the THIN01 and
THIN11 [8] elements present lower results and therefore are
better compared to the proposed HFEMs. The proposed HFEMs
condition numbers are quite similar, although HFEM 1 has slightly
lower values.
Since the vibration modes are rarely found in the literature, the
first three vibration modes obtained with HFEM 1 are presented
in Figures 8, 9 and 10, which are very similar to those obtained
with HFEM 2.
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Fig. 6. Convergence of the eighth frequency of the ring.
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Fig. 7. Mass matrix condition number.
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Fig. 8. Second vibration mode of the ring.

4.2 Pinned-pinned arch model
The second model analyzed is a pinned-pinned arch, as shown in
Figure 11.
The arch is modeled with two configurations: the first one has the
relation between radius of curvature (R) and gyration radious (r)
of 25 and for the second one the relation is 140. The results are
obtained as a function of the adimensional parameter (Cn) given
by:

Cn = ωn L
2
e

√
ρA

E I
, (28)
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Fig. 9. Fourth vibration mode of the ring.
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Fig. 10. Sixth vibration mode of the ring.

R

Fig. 11. Pinned-Pinned arch scheme.

where ωn are the natural frequencies and Le is the arch length.
The results of the proposed HFEM elements with 1 finite element
are compared with the results found in [11] using the FEM with 8
finite elements with 4 nodal degrees of freedom and 1 non nodal
degree of freedom, totalizing 44 degrees of freedom. The results
are presented in Tables 2, 3, 4 and 5.
Firstly, the two proposed HFEMs present more accurate results
than the reference solution even with a lower number of degrees
of freedom for both arch configurations.

Table 2. Results of the six first parameters with
R/r = 25 for HFEM 1.

Mode
HFEM 1 [11]

14 d.o.f. 22 d.o.f. 30 d.o.f. 44 d.o.f.

1 33.95282 33.59056 33.59056 33.60

2 53.46808 53.41262 53.41262 53.42

3 90.12195 88.13527 88.13509 88.25

4 131.97712 129.94683 129.94226 130.72

5 174.91138 159.57218 159.52233 160.28

6 253.46729 236.71086 235.99315 239.16

Table 3. Results of the six first parameters with
R/r = 25 for HFEM 2.

Mode
HFEM 2 [11]

14 d.o.f. 22 d.o.f. 30 d.o.f. 44 d.o.f.

1 33.71414 33.59056 33.59056 33.60

2 53.46808 53.41262 53.41262 53.42

3 90.12195 88.13527 88.13509 88.25

4 134.33172 129.94683 129.94226 130.72

5 253.46729 159.57218 159.52234 160.28

6 269.43616 236.71086 235.99315 239.16

Table 4. Results of the six first parameters with
R/r = 140 for HFEM 1.

Mode
HFEM 1 [11]

14 d.o.f. 22 d.o.f. 30 d.o.f. 44 d.o.f.

1 37.06534 33.94930 33.94926 33.95

2 89.57846 79.62225 79.62141 79.73

3 315.30585 152.79327 152.06064 152.68

4 326.71114 235.28169 233.62636 235.77

5 569.55576 339.38050 337.70081 338.44

6 749.12055 387.25564 349.13637 355.52

Table 5. Results of the six first parameters with
R/r = 140 for HFEM 2.

Mode
HFEM 2 [11]

14 d.o.f. 22 d.o.f. 30 d.o.f. 44 d.o.f.

1 34.07940 33.94926 33.94926 33.95

2 89.57846 79.62225 79.62141 79.73

3 265.76061 152.25252 152.06060 152.68

4 326.71114 235.28169 233.62636 235.77

5 569.55576 339.38050 337.70081 338.44

6 767.41295 395.17663 349.13830 355.52

Comparing the results of HFEM 1 with HFEM 2, it can be observed
that, in general, HFEM 1 presents more accurate results mainly for
the higher frequencies.
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5. CONCLUSION
In this paper two Hierarchical finite elements for thin curved beams
were proposed, called HFEM 1 and HFEM 2.
Both the proposed elements presents more accurate results and
better convergence rates compared with references solutions found
in literature.
In Figure 7 the elements THIN01 and THIN11 presents better mass
matrix condition numbers compared with HFEM 1 and HFEM 2,
but the condition numbers of the proposed HFEM are not high
enough to cause numerical instabilities.
Comparing HFEM 1 with HFEM 2 both have very similar
convergence rates, but HFEM 1 seems to present more accurate
results at higher frequencies.
Finally, the two finite hierarchical elements proposed are quite
accurate and have good numerical stability.
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