
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 14, May 2019

56

Graph based Hybrid Assessment System for

Programming Assignments

Soundous Zougari
LTI Laboratory,

National School of Applied
Sciences Tangier, Morocco

Mariam Tanana
LTI Laboratory,

National School of Applied
Sciences Tangier, Morocco

Abdelouahid Lyhyaoui
LTI Laboratory,

National School of Applied
Sciences Tangier, Morocco

ABSTRACT
Programming is a practical process; students need to write a

lot of programs in order to master it. However, with large

number of students, the assessment of programming exercises

leads to extensive workload for teachers making it difficult for

instructors to provide constructive and corrective feedback or

even additional help when the students need it. In this work,

we address the issue of automatic assessment for

programming assignments. The goal of which is to provide

immediate grading and comprehensible feedback to the

learners, while taking some of the workload burden off the

teachers. This paper proposes a system combining results

from dynamic and static analysis to ensure a reliable and

objective evaluation job. While dynamic analysis is based on

unit testing framework, the static analysis will quantify the

structural similarity between students’ programs and the

solutions provided by the teacher. In order to perform such

comparison, a suitable program representation and an

adequate similarity measure will be presented.

General Terms

Graph based assessment, CFG graph representation, graph

similarity, grading system.

Keywords

Programming assessment, dynamic analysis, static analysis,

CFG similarity measure, automated grading.

1. INTRODUCTION
Computer science is a discipline that is being taught to an

increasingly broad audience. This audience is extremely

disparate and manifests various needs: high schools students,

university students but also professionals continuing

education and training of computer science. According to

recent studies, learning to program brings enormous benefits

for life [1],[2]. Besides improving one’s problem-solving

abilities, it help acquiring useful traits like perseverance,

precision, focus, … and last but not least, it transform us from

technology passive consumers into active producers which is

incredibly empowering.

As a matter of fact, no student can become a programmer

overnight because such learning requires proper guidance as

well as consistent practice with the programming

exercises. The comments and feedback from teachers about the

mistakes they made are crucial to acquire adequate skills in

programming and enhance their knowledge.

However, due to the large number of students enrolled in such

courses, instructors find themselves rapidly overloaded.

Indeed, manually tracking errors for every student’s program

is difficult and time-consuming. As a consequence, the delay

between the time of submitting the student code for a problem

and its feedback is also increased. Moreover, manual

assessment of student coding is prone to errors or omissions

due to the fatigue and the repetitive nature of the task [3].

Automatic assessment systems are also of particular interest in

the context of e-learning [4]. Indeed, when the learning

process is mediated by a web-based learning system, the delay

on providing feedback may lead to student's frustration or

course abandonment. Therefore, fast and reliable automated

assessments are particularly desirable. To address these

issues, researchers have been focusing on automating the

process of assessing learners’ productions. The first reference

comes from Hollingsworth who published on the subject in

1960 [5]. The idea spread quickly and numerous assessment

systems have been developed [6][7][8]. Unfortunately, these

systems are neither generic nor configurable and most of them

are not available to the general public, which is why we seek

to develop an assessment system.

In this context, we propose a reliable and objective method of

assessing learners’ productions that not only will reduce the

workload for teachers but also provide instant grades and

useful feedbacks to students throughout their learning process.

Concerning the practical domain, it was opted for introductory

programming courses for several reasons. Besides the fact that

these courses are the core of any engineer's training, this is a

domain where assessment is of a great complexity, mainly

because it is characterized by the multitude of solutions to a

given problem.

The remainder of the paper is organized as follows: section 2

describes the proposed hybrid approach merging results from

two program analysis methods. Afterwards, the 3rd section

proposes a suitable program representation whereas the 4th

section addresses the programs similarity issue. Finally,

Section 5 gives conclusions and discusses about the future

research.

2. PROPOSED ASSESSMENT METHOD
The validation of computer programs is a crucial part in the

cycle of their development. Two verification and validation

techniques have stood out in recent years: dynamic analysis

and static analysis. The main difference between these two

approaches is that the dynamic analysis requires the execution

of the program to check its accuracy, unlike the static analysis

that examines a program without executing it. In a previous

work, it was deduced that the strengths and weaknesses of the

dynamic and static approaches are complementary [9].

Therefore, an original combination of these two techniques

was proposed. In this combination, the dynamic analysis

reports errors at runtime, whereas the static analysis evaluates

the structural properties of the programs. Figure 1 resumes the

assessment approach. The student’ proposed solution go

through all the process even if it generates errors from the

start.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 14, May 2019

57

Fig 1: Proposed assessment approach.

To perform dynamic analysis, students’ programs are run

through a set of data, and afterwards their outputs are

compared to the predefined answers. The approach is

described in more detail in a previous paper where it was

suggested the use of xUnit, a dedicated framework to

automate and conduct tests in a given language [9].

On the other hand, to evaluate the structural properties of the

programs (static analysis), the similarity degree is measured

by comparing the assessed program to programs belonging to

the solution space provided by the teacher or expert. A

solution space is a set of paths representing the different

possible approaches for the same exercise. It can contain the

correct solutions as well as the incorrect ones. It is made by an

expert and has deemed pedagogically interesting approaches.

If a match is found; similarity measure is superior to a

threshold defined by the teacher, the student’s program will be

graded automatically, or else the program is submitted to the

teacher for manual assessment. In the last case, the students’

solution can be added to the solution space if it is judged

pedagogically interesting or a recurrent incorrect

solution. This approach will gradually decrease human

intervention.

This method requires two steps; the passage through the

graphical representation of the compared programs, which is

addressed in section 3 and a similarity or a matching process.

More details are given in section 4.

3. PROGRAM’S GRAPHICAL

REPRESENTATION
Since the intention is to assess students’ productions in

introductory programming courses, the programs are

represented with control flow graphs. The Control Flow

Graph (CFG) is a directed graph where each node represents a

basic block i.e. a straight-line piece of code without any jumps

or jump targets; jump targets start a block, and jumps end a

block. Directed edges are used to represent jumps in

the control flow. It highlights loops, conditional statements

and branches. A path in this graph represents a program

implementation scenario.

The program illustrated in Figure 2, is used to provide an

example for control flow graphs. This is a simple program

that initializes two variables x and y, and executes 2

commands repeatedly in the while loop until y is greater than

or equal to 10.

Fig 2: Program example.

It is noteworthy that in the flow control approach, the focus is

on the sequencing of operations in a process. Control flow

graphs are used as models to describe the structure of

computer programs. They are used both for static analysis

[10] and as a model for program coverage. Therefore, it’s a

suitable representation for structural comparison. However,

other types of graphs will not be definitively excluded

because they can be interesting for future modifications in the

proposed system.

The program corresponding CFG is displayed in Figure 3.

Fig 3: Control Flow Graph.

This research call for a quantitative measure of the ‘similarity’

of two programs; student proposed solution and teacher’s

solutions.

T

Entry

x = 0 y = 1 y < 10 ? printf (x) printf (y)

y = y * 2 x = x + 1

F

voidmain() {

int x = 0;

int y = 1;

while (y < 10) {

y = y * 2;

x = x + 1;

}

printf(“%d”,x);

 printf(“%d”,y);}

SM ≥ ST

SM : Similarity measure
ST : Similarity threshold

Student’s

solution

Dynamic

analysis

Graph

transformation

 Graph matching
- similarity measure -

Errors at runtime

Solution
space

Teacher’s
solutions

No match
 found

Match

 found

Manual

assessment
Grading

SM < ST

https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Control_flow

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 14, May 2019

58

Once the Control Flow Graphs are extracted from the

programs, the similarity measurement becomes a graph

problem.

First, let’s briefly introduce some notion of the graphs, which

will recur throughout the next section.

4. PROGRAM’S GRAPH SIMILARITY

AND GRADING

4.1 Graph Similarity Measure
Graph similarity has numerous applications in diverse fields

(such as social networks [11], image processing [12],

biological networks [13], chemical compounds, computer

vision,…), and therefore there is a number of proposed

algorithms and measures devoted to the graph similarity

problem. The proposed techniques can be classified into three

main categories: edit distance/graph isomorphism, feature

extraction, and iterative methods. A short overview of

similarity measures for graphs can be found in [14][15][16].

Choice of a similarity measure to be used in some context is

often guided by its usefulness in practice. Since there is a need

of a graph similarity method that uses as parameters the labels

of the nodes, the direction of the edges and the number of the

common edges, it was opted for a specific similarity measure

for graph nodes called neighbor matching. This method has

properties relevant for our needs that other measures lack

[17].

In this section will be outlined a graph similarity measure that

uses the structural similarity of local neighborhoods to derive

pairwise similarity scores for the nodes of two different

graphs. More precise definition will be given ahead, but first,

a brief definition for some notion of the graphs, which will be

needed throughout this section.

4.1.1 Definitions
1. A directed graph G = (V, E) is defined by its set of

nodes V and its set of edges E. There is an edge

between two nodes i and j if (i, j) ∈ E. The node i is

an in-neighbor of node j and the node j is an out-

neighbor of the node i if (i, j) ∈ E. An in-degree

id(i) of the node i is the number of in-neighbors of i,

and an out-degree od(i) of the node i is the number

of out-neighbors of i.

2. The similarity measure s is a function s: D1 × D2

→ R where D1 and D2 are possibly equal sets of

objects and R being a real number between 0 and 1

that captures intuition well; a higher value of

similarity measure should imply a higher similarity

in some intuitive sense.

3. Similarity measure over the nodes of two graphs can

be represented by a similarity matrix X = [xij] of

dimension |VA| × |VB| with the element xij denoting

a similarity of the nodes i ∈ VA and j ∈ VB.

4. Let A and B be two finite sets of arbitrary elements.

A matching of elements of sets A and B is a set of

pairs M = {(i, j)|i ∈ A, j ∈ B} such that no element

of one set is paired with more than one element of

the other set. For the matching M we define

enumeration functions f : {1, 2, . . . k} → A and g :

{1, 2, . . . k} → B such that M ={(f(l), g(l))|l = 1, 2,

. . . , k} where k = |M|.

4.1.2 Similarity graph algorithm
The algorithm that is proposed in this paper is based on

N.Mladen [17] research paper. It derives from the neighbor

matching technique. The mentioned algorithm relies on the

simple following concept: two nodes i ∈ GA and j ∈ GB are

considered to be similar if neighbor nodes of i can be matched

to similar neighbor nodes of j, hence the name neighbor

matching.

First, it iteratively measures the similarity of nodes in the

students’ and teacher’ graphs and finally calculates one

similarity score using that similarity measures. Followings are

the equations that are used to calculate the similarity of nodes

and we will explain what will happen in each one:

Where

And

The first equation (1) will calculate the similarity of ith node

of graph GA and jth node of graph GB in (k+1) iterations. As

might be seen, we need to calculate s(i,j)in and s(i,j)out in (k+1)

iterations first. s(i,j)in is the in degree similarity of node i in

GA and j in GB. s(i,j)out is the out degree similarity of node i in

GA and j in GB.
 and

 are the enumeration functions of

the optimal matching of in-neighbors for nodes i and j, and

analogously for
 and

 .

In the equations (2), in the case when:

 = =0

 or = out = 0

We have:

The initial similarity values
 are set to 1 for each i and j.

After initializing the in-degree and out-degree similarity

matrices, the similarity matrix is initialized using those two

matrices.

Afterwards comes the iteration and calculation of each node

similarity until the similarity scores converge. To check that, a

value called epsilon (a chosen precision) is used and the

following termination condition:

The similarity matrix [xij] reflects the similarities of two

graphs GA and GB nodes.

The similarity of the graphs can be defined as the weight of

the optimal matching of nodes from GA and GB divided by the

number of matched nodes [17].

(2)

(1)

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 14, May 2019

59

In order to give student’s a grade, a feedback that not only

students easily understand but also is mandatory for the

achievement of the course, we will use the obtained similarity

information in the automated grading.

The similarity value, a number between 0 and 1, can be

considered as an intuitive feedback [18]. In fact, the feedback

could be that:

 The solution is dissimilar (0-0.5),

 The solution is roughly similar (0.5-0.7),

 The solution is similar (0.7-0.9),

 The solution is very similar or corresponds to one of

the teachers’ solutions (0.9-1).

4.2 Grading
The most common problem when managing large numbers of

students in programming classes is the grading. Grading

environments include document flow, grading itself and

record keeping. Document flow includes distribution of

assignments, programs submission, and the return of graded

programs with feedback. The assessment system presented in

this paper will automate the grading process with little to no

human intervention.

Generally, the grades are expressed at a scale from 0 to 20.

There may be different grading settings depending on aims of

the exercise and goals of teachers. As mentioned above, the

focus is on introductory programming courses, therefore the

teacher expect from students to write working programs and

use the aspects covered in the course and/or the requirements

specified in the exercise. In fact, a program producing a right

output may not meet the programming specification. For

example, the students are required to implement a program

that outputs ten characters ‘*’ by using an iteration structure.

However, some students use ten output statements instead of

an iteration structure.

As mentioned earlier in this paper, even if a student fails to

provide a working program that gives correct results for given

test cases (static analysis), his solution will be further

examined through dynamic analysis. However, the student

will be penalized for the problems that prevent the program

from compiling, running, or passing a test case.

In this case, two penalty parameters were added to the grading

model P1 and P2.

The first grading penalty P1 is used when the teacher wants to

evaluate if a program is working (compiling, running or test

cases). Whereas the second penalty parameter calculates how

close is a solution to the teacher solution.

The proposed grade is a linear combination of different scores

measured for the student’s solution, which provide an

equation of the following form:

 (3)

Where

G is the automated grade,

x1 is the weighted sum of the automated testing cases passed.

It is expressed in the interval [0, 1],

 - x2 is the maximal value of similarity between the student’s

solution and the teacher solutions, also in the [0,1] range.

It should be noted that different choices for the coefficients P1

and P2 could be proposed as long as P1+P2=20. However, it is

preferable to let the teacher tune the coefficients P1 and P2 so

that the behavior of the predictive model corresponds to the

teacher’s grading style and the exercise goals.

4.3 Feedback
Immediate and corrective feedback is vital in the learning

process. It is especially important for novice programmers to

not only know whether their programs are correct, but also the

details about the errors, to help point them in the right

direction. Based on the feedback, they can become aware of

their difficulties and what they need to further study and

improve [19].

Through the dynamic testing, the information is gathered then

displayed for the student once the assessment is completed. It

points out whether a student program passed the dynamic

testing or not. If a test fails, detailed information on that test is

included. This information includes a copy of the input

supplied to the program and the correct output the program

should have generated. Once the students see the input data

that resulted in errors, they have the opportunity to learn

something about the nature of good testing data.

Although it might seem that the instructor invests more time

writing a testable assignment specification and developing the

grading program, these costs are expected to be amortized

over multiple courses and assignments. Moreover, the

assessment provides the teacher with a feedback channel that

shows how learning goals are being met. It also ensures for an

outside observer that students achieve those learning goals.

5. CONCLUSION AND FUTURE WORK
The above presented method merges results from dynamic

and static analysis to ensure a reliable and objective

evaluation job. In one hand, the dynamic analysis is carried

out using unit testing framework making the process flexible

and reusable. On the other hand, the static analysis focus on

finding structural similarities between students’ and teachers

programs after transforming them into control flow graphs.

The proposed assessment system has been developed and is at

the current moment undergoing some encouraging testing

with real students’ exercises to assess its usability and

integration to an automated submission system. This

experiment will also allow us to evaluate its weaknesses and

therefore improve it.

Next, we would like to focus on quantifying the advantages

from using such assessment system in the introductory

programming course. A quantitative and qualitative analysis

of students’ performance and the robustness of the assessment

mechanism will provide further insight into the proposed

system.

6. REFERENCES
[1] Scherer, R., Siddiq, F., & Sánchez Viveros, B, The

cognitive benefits of learning computer programming: A

meta-analysis of transfer effects, Journal of Educational

Psychology. Advance online publication,2018,

[2] K. Heggart, Coded for success: the benefits of

programming among school students, June 2014,

[3] Higgins, S., Hall, E., Baumfield, V., Moseley, , A meta-

analysis of the impact of the implementation of thinking

skills approaches on pupils, Research Evidence in

Education Library, 2005,

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 14, May 2019

60

[4] Allen. I.E, Seaman. J, Class Differences: Online

Education in the United States, Newburyport, MA:

Babson Survey Research Group and The Sloan

Consortium Green, 2010,

[5] J. Hollingsworth. Automatic graders for programming

classes, Communications of the ACM, 3:528–529,

October 1960,

[6] C.Douce, D.Livingstone, and J. Orwell, Automatic test-

based assessment of programming: A review, Journal on

Educational Resources in Computing (JERIC), 2005,

[7] Rohaida Romli, Shahida Sulaimanb, Kamal Zuhairi

Zamlic, Improving Automated Programming

Assessments: User Experience Evaluation Using FaSt-

generator, Procedia Procedia Computer Science 72, 186

– 193, 2015,

[8] David Insa, Josep Silva. J.A, Automatic assessment of

Java code, Computer Languages, Systems & Structures

Vol 53, Pages 59-72, 2018,

[9] Soundous Zougari, Mariam Tanana, Abdelouahid

Lyhyaoui, Towards an automatic assessment system in

introductory programming courses, 2016,

[10] S. Rao Kosaraju, Analysis of structured programs. J.

Comput. Syst. Sci.,9(3) :232-255, 1974,

[11] Sadia Tariq, Muhammad Saleem and Muhammad

Shahbaz, User Similarity Determination in Social

Networks, 2019.

[12] Jieqi Kang, Image processing and understanding based

on graph similarity testing: algorithm design and

software development, 2017.

[13] Mohammad Shafkat Amin, Russell L. Finley, Hasan M.

Jamil, Top-k Similar Graph Matching Using TraM in

Biological Networks, 2012,

[14] D. Conte, P. Foggia, C. Sansone and M. Vento , Thirty

Years Of Graph Matching In Pattern Recognition,

International Journal of Pattern Recognition and

Artificial Intelligence Vol. 18, No. 03, pp. 265-298,

2004,

[15] Vincenzo CARLETTI, Exact and Inexact Methods for

Graph Similarity in Structural Pattern Recognition, 2016,

[16] Danai Koutra et al., Algorithms for Graph Similarity and

Subgraph Matching, 2011,

[17] M. Nikolic, Measuring Similarity of Graph Nodes by

Neighbor Matching, Journal Intelligent Data Analysis,

Vol 16 Issue 6 Pages 865-878, 2012,

[18] MilenaVujošević-Janičića, Mladen Nikolić, Dušan Tošić,

Viktor Kuncakb, Software verification and graph

similarity for automated evaluation of students’

assignments, Information and Software Technology Vol

55, 2013.

[19] Tiantian Wang, Xiaohong Su, Peijun Ma, Yuying Wang,

Kuanquan Wang, Ability-training-oriented automated

assessment in introductory programming course,

Computers and Education vol.56 issue 1 pages 220-226,

2011.

IJCATM : www.ijcaonline.org

https://www.sciencedirect.com/science/journal/14778424
https://ieeexplore.ieee.org/author/37085843631
https://ieeexplore.ieee.org/author/37085569005
https://ieeexplore.ieee.org/author/37444747400
https://ieeexplore.ieee.org/author/37444747400
https://ieeexplore.ieee.org/author/37903845200
https://ieeexplore.ieee.org/author/37566285400
https://ieeexplore.ieee.org/author/37283176600
https://ieeexplore.ieee.org/author/37283176600
https://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
https://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
https://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
https://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
https://www.worldscientific.com/worldscinet/ijprai
https://www.worldscientific.com/worldscinet/ijprai
https://www.worldscientific.com/toc/ijprai/18/03
https://www.sciencedirect.com/science/article/abs/pii/S0950584912002406#!
https://www.sciencedirect.com/science/article/abs/pii/S0950584912002406#!
https://www.sciencedirect.com/science/article/abs/pii/S0950584912002406#!
https://www.sciencedirect.com/science/article/abs/pii/S0950584912002406#!
https://www.sciencedirect.com/science/journal/09505849

