
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

1

ASH CC Algo.: Coin Change Algorithm Optimization

Ashar Mehmood
School of Electrical Engineering and Computer Science (SEECS)

National University of Science and Technology (NUST)
Islamabad, 44000, Pakistan

ABSTRACT

The Coin Change problem is to represent a given amount V

with fewest number of coins m. As a variation of knapsack

problem, it is known to be NP-hard problem. Most of the

time, Greedy alogrithm (time complexity O(m), space

complexity O(1)), irrespective of real money system, doesn’t

give optimal solution. Dynamic algorithm (time complexity

O(mV), space complexity O(V)) gives optimal solution but is

still expensive as amount V can be very large. In this paper,

we have presented a suboptimal solution for the coin change

problem which is much better than the greedy algorithm and

has accuracy comparable to dynamic solution. Moreover,

comparison of different algorithms has been stated in this

paper. Proposed algorithm has a time complexity of O(m2f)

and space complexity of O(1), where f is the maximum

number of times a coin can be used to make amount V. It is,

most of the time, more efficient as compared to dynamic

algorithm and uses no memoization, this is a significant

advantage over dynamic approach.

General Terms

Theory of computation, Design and analysis of algorithms,

Algorithm design techniques, Dynamic programming

Keywords

Dynamic programming, Coin change problem, optimization

methods, Algorithm design and analysis.

1. INTRODUCTION
Dynamic programming (DP) [1, 2] is one of the several

methods for solving different problems in computer science

(and operation research). One of the distinguishing features of

dynamic programming algorithm is the way it decomposes a

problem into subproblems. A problem of size N decomposes

to several subproblems; each of the subproblems has size N-1.

Then each of which decomposes to several subproblems of

size N-2, etc. Once it reaches at the lowest stage where

problem is divided into many simplest subproblems, then it

solves each of those subproblems just once. To avoid

recomputation of same subproblems, a DP algorithm just

makes records of the solution to all subproblems it encounters.

In this way, at the expense of extra memory, a DP algorithm

reduces the time required to solve a problem.

A dynamic programming algorithm is most appropriately

applied to those problems for which table, containing the

computed solutions of encountered subproblems; helps

eliminate a great number of redundant computations. DP is

primarily applicable to those problems that can be expressed

as a sequence of decisions to be made at each of several

stages. There are many dynamic programming algorithms [3]

used to solve real life problems such as knapsack algorithm

(for different knapsack problem [4]), Needleman–Wunsch

algorithm [5], Bellman–Ford algorithm [6] etc.

Most of the usage of dynamic programming is in the field of

optimization. A dynamic programming algorithm checks all

the previously computed subproblems and combines their

solution to give the best one. In comparison, a greedy

algorithm examines the solution as some sequence of steps

and chooses the solution which seems best at that instance

(locally). Using a greedy algorithm one could not guarantee

the globally optimal solution. Because choosing locally

optimal solution may result in bad global solution.

Dynamic programming ensures the optimal solution of the

given problem. Dynamic programming originated with the

work of Bellman and has been applied to problems in

operation research, economics, control theory, computer

science and several other areas. Not surprisingly, the literature

on the dynamic programming is enormous.

The proposed algorithm in this paper is of change making

problem. The change making problem is an NP-hard problem

[7] specifies the question of finding minimum number of

coins that add up to given amount of money. It is a knapsack

type problem. It has applications wider than just currency.

Coin change algorithm is one of the well-known algorithms of

dynamic programming. It is widely used in distributing

change problem in vending machines and shipping systems

etc. The algorithm proposed in this paper is an improvement

over existing coin change algorithms. Unlike existing

dynamic programming’s solution to coin change problem [8],

the proposed algorithm does not keep any record of solution

to sub problems. It updates the optimal solution at real time.

Thus, in this way no extra memory is required (to keep record

of solutions to all sub problems). Unlike Greedy algorithm

[9], most of the time it gives the optimal solution as dynamic

and the accuracy of suboptimal solutions are comparable to

dynamic solution. It takes more or less same iterations and

execution time to dynamic approach.

2. DESCRIPTION
The coin change problem arises from the situation: in a shop,

the cashier needs change for several transactions of money

based on some coins C={cm,…,c3,c2,c1} such that

cm>…>c3>c2>c1 (in descending order) where ci denotes the ith

type of coin in C.

The presented algorithm is designed to minimize the space

complexity. In this regard, greedy approach has done its work

by minimizing space complexity to O(1) but in most of the

cases greedy approach fails to produce optimal result.

Moreover, it produces very bad solution in several cases. If

we talk about dynamic solution, although it produce optimal

solution but its space complexity is O(V). This means that if

V is large it’ll take large space to find the optimal result.

Thus, we come to solution which has less space complexity

and give optimal result (presented algorithm).

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

2

Formally, the Coin-Change problem solves the following

integer programming problem with respect to given amount of

V.

 Min

 s.t

 =V, ci>=0

Generally, representation of V under C is called the feasible

solution (n1, n2, n3, . . . , nm) of the above integer programming

problem. If this representation satisfies

 <ci for 2≤i≤m,

then, it is the greedy representation of V, denoted by

GRDC(V), and |GRDC(V)|=

 is its size. Similarly, the

optimal solution (x1, x2, x3, . . . , xm) is called the optimal

representation of V, denoted by OPTC(V), and

|OPTC(V)|=

 is its size, all mentioned in [10].

Following the aforementioned approach, the presented

algorithm’s solution (a1, a2, a3, . . . ,am) is called the

suboptimal representation of V, denoted by ASHC(V), and

|ASHC (V)|=

 is its size, where ai is the frequency (the

maximum number of times a coin ci is used to make amount

V) of coin at ith denomination.

Using the presented approach, we will be able to achieve the

result |ASHC(V)|, which will be equal to |OPTC(V)| in most

of the time and have accuracy comparable to |OPTC(V)| in

rest of the cases. But the positive point is that we use

minimum space using this approach. Using minimum space

we are achieving optimal result in most of the time.

We are dividing the algorithm into three parts:

 Check all the coins.

 Check maximum frequency (the maximum number

of times a coin ci is used to make amount V) of each

coin in making amount V and use only few of them

which is enough to reach the optimal result.

 On the basis of minimum to maximum frequency

(that has been used) of a specific coin, check all the

other coins’ frequency in making amount V.

All the aforementioned steps are done in nested form.

 for each Ci in C s.t 1≤i≤m, where m=total number of

coins in C.

 for each Ci in C  evaluate fmax.

 fmin to fminx of Ci  evaluate fCj s.t 1≤j≤m and j≠i,

where fminx≤fmax: frequencies of coin which

participate in finding optimal result.

All the aforementioned steps cover most of the cases to find

optimal solution. For each frequency of each coin, the result

will be updated. At the end, we will have optimal solution

(|ASHC(V)|= |OPTC(V)|) or suboptimal solution having

accuracy comparable to |OPTC(V)|.

3. EXISTING TECHNIQUES
We ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.
Recursion [11][12] is used in the majority of programming

problems as it is believed to be an efficient approach.

Generally, recursion should only be used when the number of

recursive calls is not excessive. The number of recursive calls

somewhat depends on the amount of memory available. Stack

sizes can now be several megabytes of memory, which allows

recursion to go fairly deep without causing a core dump.

Sometimes recursion is used because it employs a simpler

process as compared to the iterative version. For example,

nearly all code written for tree-like structures is recursive.

Many sorting algorithms are more naturally written

recursively as well.

However, recursive solutions can be very inefficient, if one is

not diligent. For example, the obvious recursive solution to

compute the Nth Fibonacci number has exponential running

time, even though the loop version runs in O(n) and same case

is for coin change problem. Recursive formula for solving

coin change problem is given below:

3.1 Algorithm
min_Coin(coins[], m, V)

If V == 0, return 0;

rsltINT_MAX;

from coinsi to coinsm

If (coinsi<=V)

sbrsltmin_Coin(coins[],m,V-coinsi);

if (sbrslt!=INT_MAX and sbrslt+1 < rslt)

rsltsbrslt+1;

return result;

Using recursive formula, the time complexity of coin change

problem becomes exponential. If we consider the complete

recursion tree given below then we can see that many sub

problems are solved repeatedly and redundantly. It results in

unnecessary overhead due to which the complexity of

algorithm ends up in exponential value.

Fig 1: Recursive tree for understanding the working of

recursion in coin change problem solution and its

redundant calculations [13]

Dynamic Programming is an algorithmic technique which is

usually based on a recurrent formula and one (or multiple)

initial state(s). A sub-solution of the problem is constructed

from previously solved ones. Dynamic programming

solutions have a polynomial complexity which assures a much

faster running time than other techniques like backtracking[3],

brute-force[14,15], recursion etc. Algorithm of dynamic

programming based solution is given below:

3.2 Algorithm
min_Coin(coin[],m,V)

for i = 1 to V

tableiINT_MAX

for j = 1 to V

for k = 0 to m-1

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

3

if (coink<=j)

sbrslttablei-coin[j]

if(sbrslt!=INT_MAX and sbrslt+1< tablei)

tableisbrslt+1

return tableV

Like other Dynamic Programming problems, recomputing the

same sub problems can be avoided by constructing a

temporary array table[][] in bottom up manner. But using this

technique, we need memory to record all the sub-solutions.

This means that the more the value of amount V to be made,

the more memory overhead we will have, for the

memoization. For example: consider a problem where 3 coins

m (12,5,1) are used to make V (15), the dynamic approach can

take up to 45 iterations and 15 memory locations, to keep

record of sub-solution, to obtain the optimal result. Real life

problems are far more complex and can have value V in

millions and number of coins can be much greater as well. As

time complexity of dynamic approach is O(mV), execution

time will be large and large memory will be required to reach

optimal solution.

Other than aforementioned solution, more work has also been

done in this area e.g canonical coin system [10] for different

types of coins or when will greedy and dynamic approach

give the same optimal result (necessary conditions for

canonical coin systems).

4. PRESENTED APPROACH
Presented algorithm further optimizes the existing algorithms.

It takes more or less same iterations as dynamic solution to

reach a decision. For example, in above mentioned problem

where coins were m(12,5,1) and we had to make V(15), more

or less 30 iterations and no memory overhead are taken to

reach the optimal or suboptimal solution which is drastic

improvement in performance when compared to the available

solutions.

In algorithm, abbreviations of different variables are used

which includes Of : outputflag, Mc : min_no_of_coins, Tc :

total_coins, IA : instant_val_of_amount, Am : amount and Nc

: no_of_coins.

4.1 Algorithm
Ash_change(Nc,coins<vector>, Am)

Offalse;

Mc0;

Tcinfinite;

IA0;

from ci to cm

from cfmin to cfminx

Mcf;

IAAm-(ci * Mc);

if (IA==0)

Oftrue;

else

from cj to cm

if(IA>=cj && j!=i)

McMc +(IA/cj);

IAIA%cj;

if(IA==0)

Oftrue;

break;

if(Tc>Mc && Of==true)

TcMc;

Mc0;

Offalse;

IA0;

return Tc;

4.2 Description
Presented algorithm, on the basis of each coin’s specific

frequency, is calculating other coins’ frequencies in obtaining

a specific amount (value V). It compares the frequency of the

coin under consideration against the rest one by one to reach

the optimal solution.

In presented algorithm,

Infinite : can be maximum value of range of data type being

used to check whether amount is made or not with given

coins. If it’s not made then just return data type range max

value.

“Outputflag”: A flag variable to ensure that amount (value V)

has made with given coins.

“Min_no_of_coins”: Minimum number of coins on the basis

of a coin’s specific frequency (temporary minimum number of

coins to make amount (value V)).

“total_coins”: Overall minimum number of coins (best option)

needed to make amount (value V).

“Instant_val_of_amount”: A temporary variable used to

represent instant value of amount.

“Amount”: Amount (V) to be made.

“Ci”: coin selected at that instant

“Cm”: coin which has lowest denomination (assumed that

coins are placed in descending order) where m is total number

of coins provided.

“Cj”: coin selected at that instant other than Ci.

“f”: frequency of selected coin used in making amount V.

“Cfmin”: minimum frequency of selected coin used, in making

amount V i.e 0.

“Cfmax”: maximum frequency of selected coin used, in making

amount V.

“Cfminx”: frequencies which participate in obtaining optimal

result.

4.3 Logical point of view
The algorithm is checking each coin in descending order so

that it does not have to check all the coins. Doing this, we are

achieving our optimal solution by just checking those cases

which have the potential to give the optimal solution or

suboptimal solution of accuracy comparable to optimal

solution. The algorithm is checking some frequencies of every

coin so that most of the cases, which participate in obtaining

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

4

optimal result, can be considered. It does not check some of

the possible frequencies of selected coin because using those

frequencies may result in bad solutions e.g it’s better to

neglect those frequencies of selected coin.

On the basis of different frequencies of selected coin, it

evaluates other coins’ frequencies using greedy approach.

Whenever all the frequencies of other coins are calculated

with respected to specific frequency of selected coin, our

result is updated on the condition that the current result is

smaller than or equal to previous one. Otherwise, result will

retain its previous value. With combination of some

frequencies of every coin and greedy approach, we are

achieving optimal solution in most of the time and suboptimal

solution of accuracy comparable to dynamic solution in rest of

the cases.

4.4 Algorithmic point of view
We have three loops e.g outer loop, inner loop and most inner

loop. Outer and most inner loop will run m (total no. of coins)

times and on the basis of selected coin in outer loop, inner

loop will run cfminx times (the number of times a coin

participates in obtaining optimal result).

In outer loop, algorithm checks each coin one by one and

passes it to inner loop. Inner loop finds the cfmax and iterates

from cfmin to cfminx (check frequencies of selected coin which

is sufficient for obtaining optimal result.Criteria for

sufficiency is described below in the example). At the end,

most inner loop, on the basis of selected coin’s specific

frequency, evaluates other coins’ frequencies using greedy

approach but excluding the coin which is already selected in

outer loop. At any moment, in most inner loop, when the

amount V is reached, algorithm doesn’t check rest of the

coins. It just breaks out of the loop, updates the total_coins

and iterates for other frequencies of selected coin, if they

exist.

With every inner loop’s iteration, total_coins is updated on

condition that min_no_of_coins calculated is smaller than

total_coins (instantaneous best result). This means that we

update our result whenever we come up with better solution.

For example, consider the case where there are coins in

descending order of denominations 9, 6, 5 and 1 and we have

to make amount V=11. The optimal result from dynamic

approach gives 2 coins but it is done after memorization.

Presented approach will find the same result without making

use of memoization. Algorithm will find the best decision as

given the manner that follows:

Criteria for sufficiency: Value obtained by multiplying

frequency of selected coin and selected coin denomination

should be less than the denomination of coin before it e.g

ci*f<ci-1. Sufficiency principle will not be used for first coin

(no coin exists before it). Sufficiency principle will be

followed for the coins which are factors of amount V but not

strictly as mentioned above; it just also checks the selected

coin maximum frequency along with frequencies which

resulted from sufficiency principle (there are high chances

that the maximum frequency of this coin is our optimal

result).

total_coinsinfinity

On the basis of coin of denomination 9:

Cfmax V/ci1

As there is no coin before 9 so it will be used maximum

number of times (sufficiency principle will not be applicable

in case of first coin). Its maximum frequency in making

amount V(which is 11) is 1, but if in some other case

maximum frequency of first coin is greater than 1, then it will

be used maximum frequency times rather than using

sufficiency principle which results in a frequency lesser than

maximum frequency.

We can use 9 only one time in making 11. So, inner loop will

run 2 times in this branch (once for coins of denomination 9

with frequency 0 and once for frequency 1, same process will

be used for all coins) and remaining amount will be made

using rest of the coins in most inner loop.

fi0,1

V’V-(ci*fi)11,2

for each cj in C

 min_no_of_coin=V’/cj s.t V’>cj and j!=i (eq. 1)

 V’=V’%cj (eq. 2)

So, we will have 2 solutions in this branch i.e 1(6)+1(5)2

and 1(9)+2(1)3, where V is original amount and V’ is

instantaneous amount. Thus, we will go for 2 coins..

As, min_no_of_coin<total_coins

total_coins2

On the basis of coin of denomination 6:

Cfmax V/ci1

We can use 6 only one time in making 11. So, inner loop will

run 2 times in this branch and remaining amount will be made

using rest of the coins in most inner loop.

fi0,1

V’V-(ci*fi)11,5

Same steps will be evaluated, aforementioned for coin of

denomination 9, represented as eq.1 and eq.2. We will have 2

solutions in this branch e.g 1(9)+2(1)3 and 1(6)+1(5)2.

As min_no_of_coin is not lesser than total_coins the result

will remain the same.

total_coins2

On the basis of coin of denomination 5:

Cfmax V/ci2

We can use 5 two times in making 11. So, inner loop should

run 3 times in this branch to check all the cases but inner loop

will run two times due to sufficiency principle because for

frequency 2 of selected coin (denomination 5) value will be

greater than the denomination of coin right before it (which is

6). However, its advantage is not observable in such cases

where it discards just one iteration: its advantage is more

evident in next branch (coin of denomination 1). Thus, after

using frequency 0 and 1 of selected coin, remaining amount

will be made using rest of the coins in most inner loop.

fi0,1

V’V-(ci*fi)11,6

Same steps will be evaluated, aforementioned for coin of

denomination 9, represented as eq.1 and eq.2. We will have

two solutions in this branch e.g 1(9)+2(1)2 and

1(5)+1(6)2. However, neither of the two is less than

total_coins current value which is 2. So, total_coins value will

remain unchanged.

On the basis of coin of denomination 1:

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

5

Cfmax V/ci11

We can use coin of denomination 1 eleven times in making

11. But this is also the case where sufficiency principle

(lessen the iterations to reach optimal result) is used which

says:

“We can achieve optimal result without checking all the

possible frequencies of selected coin in making amount V. We

use only those frequencies of selected coin whose

multiplication with the selected coin is smaller than the

denomination of coin right before it (coin which has next

larger denomination). Use of values (resulting from

multiplication of frequencies of selected coin with selected

coin’s denomination) which are larger than the denomination

of coin before the selected coin can lead to a bad result. Using

1 as the frequency of coin having larger denomination is

better than using larger frequency of coin(s) of smaller

densomination.”

For example, it’s better to use 1 coin of denomination 3 than 3

coins of denomination 1. So, if we have a coin of

denomination 3 before 1 then we don’t have to check

frequency 3 or 4 of coin of denomination 1, we will use 1 coin

of 3 and a coin of 1 to make amount 4. However, it’s not a

hard and fast rule. It’s an approximation which is done to

lessen the iterations to reach the result. Thus, using

sufficiency principle, inner loop, instead of running 12 times,

will run only 6 times.

f0,1,2,3,4,11

Frequency 11 is used after applying sufficiency principle

because 1 is the factor of amount V (which is 11). There is a

chance that the maximum frequency of a coin, whose

denomination is the factor of amount V, is our best result. For

frequencies 0, 1, 3 and 4 amount will not be made because

after using 9, 6 or 5, coin of denomination 1 cannot be used as

it’s already selected. Thus, instantaneous amount cannot be

made using coins of denomination 9, 6 and 5 (greedy

approach is followed in most inner loop). Thus, solution for

this branch will be based on frequencies 2 and 11.

f2,11

V’V-(ci*fi)9,0

Same steps will be evaluated, aforementioned for coin of

denomination 9, represented as eq.1 and eq.2. We will have

two solutions in this branch e.g 2(1)+1(9)3 and 11(1)11.

However, none of these is less than current value of

total_coins which is 2. Hence the value of total_coins will

remain unaffected. So, we have traversed all the coins and

their participated frequency and the result comprised of these

frequencies. The total_coins is updated with every

participated frequency of every coin. It can be noticed that we

do not have to memoize the sub-solutions. At the end, we

have our optimal result (|ASHC(V)| or total_coins for amount

11 which is equal to |OPTC(V)| which is also 2.

5. COMPARISON
Using recursive formula the time complexity becomes

exponential. It computes a same result again and again

whenever it comes. It doesn’t do any memoization, which

results in a large execution time. If we take three coins

(12,5,1) and amount V=15 then it requires approximately 148

iterations. So, the execution time will be very large.

Dynamic programming based solution is far better than

recursive formula because it uses memoization but it is still

expensive e.g if we take above example in dynamic

programming solution then it takes almost 45 iterations. Alot

of memory is required to record all the sub-solution. The

larger the amount is, greater will be the the required memory

for memoization. Outer loop runs V (amount to be made

V=15) times and inner loop runs m (total no. of coins m=3)

times. It makes a table of size amount V for the

memoization.Thus, its time complexity and space complexity

become O (mV) and O (V) respectively.

Presented algorithm’s complexity depends on the number of

coins (m) and their frequency (f), in making amount V. It does

not depend on the amount V to be made. If we take above

example (coins {12, 5, 1}, V=15) in presented algorithm then

it only takes more or less 30 iterations to make the amount

(Value V). It does not need any memoization to reach the

optimal or suboptimal result which is an explicit improvement

in performance.

6. EXPERIMENTAL ANALYSIS
To measure the efficiency of presented algorithm against

different well known algorithms I have designed some tests

which covers nearly all types of data. The test has been

performed on author’s laptop and the specifications of laptop

are given below:

Table 1. Author’s laptop specifications

Dell Inspiron 15 3542

Processor Intel Pentium 3558U

Core Dual Core Processor

1.7GHz, Core i3

Storage 1 TB, 5400 rpm

System memory 4GB DDR3-1600

Graphic card (integrated) Intel HD Graphics 4400

Abbreviations of different variables are used in the test which

includes, NOS: Number of optimal Solutions, NSOS: Number

of suboptimal Solutions, TC: Total coins needed, AVGVR:

Average variation of suboptimal solutions with optimal

solutions, TI: Total iterations, Algo: Algorithm used, Dyn :

Dynamic approach, Pre : Presented approach, Gre : Greedy

approach.

The specification and result of different test are as follow:

If we consider the real money system by taking

coins={1000,500,100,50,20,10,5,2,1} and amount range from

200000 to 210000 (10001 test cases), efficiency of different

algorithms can be differentiated by the following table:

Table 2.0. Real money system

Algo. NOS NSOS TC
AVG

VR
TI

Dyn. 10001 0 10001 0 1.8*1010

Pre. 10001 0 10001 0 1.0*107

Gre. 10001 0 10001 0 9.0*104

The point to be noted here is that the purpose of this paper is

to minimize the memory usage while also keeping the

efficiency of the approach in consideration. Since Number of

iterations is a vague criterion for measuring the efficiency of

an algorithm, we are comparing the efficiency of the

presented approach with existing solutions in terms of

Number of operations. Comparison, addition, subtraction,

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

6

division etc are considered an operation. Operational analysis

of above test is given below:

Abbreviations of different variables are used in the test which

includes, TO: Total number of operations used for whole

testing, AVGOP: Average number of operation used in whole

testing, MAXOP: Maximum number of operation used in

whole testing.

Table 2.1. Real money system (Operational analysis)

Algo. TO AVGOP MAXOP

Dyn. 1.8*109 183790 1.4*107

Pre. 1.0*108 10212 1.4*104

Gre. 8.4*106 842 8.8*102

It is evident through operational analysis that Dynamic

algorithm takes more operations than presented algorithm to

compute optimal result. Thus, we can say that in this case

presented algorithm is more efficient as compared to dynamic

algorithm in terms of time complexity.

In real money system, greedy algorithm gives optimal

solution with fewer number of iterations. But when we move

towards non-real money systems and other cases then it gives

very bad result.Following are some more different types of

test cases which depicts the efficiency of presented algorithm

over other algorithms.

Analysis of different algorithms with coins

C={993,888,763,603,537,491,312,289,98,76,3,1}

(irrespective of real money system) and amount ranges from

200000 to 210000(10001 test cases) is given below:

Table 3.0. Coin, irrespective of real money system

Algo. NOS NSOS TC
AVG

VR
TI

Dyn. 10001 0 2081596 0 2.4*1010

Pre. 3984 6017 2090428 1.46 9.5*106

Gre. 541 9460 2180404 10.44 1.2*105

If we consider the above table it is obvious that when we

move towards non-real money system then greedy approach

fails to produce feasible result. Most of the time, it gives

suboptimal result of very low accuracy as compared to

optimal result. While if we consider presented algorithm, most

of the time, it produces optimal result and accuracy of its

suboptimal solution with optimal solution is very high e.g

variation is just 1 (approx.)

We can notice visible difference in the efficiency of presented

algorithm against greedy and dynamic approach in operational

analysis, which is given below:

Table 3.1. Coins, irrespective of real money system

(Operational analysis)

Algo. TO AVGOP MAXOP

Dyn. 1.6*109 155222 1.8*107

Pre. 1.1*108 10621 1.1*104

Gre. 8.7*106 872 9.6*102

Followings are the analysis of different algorithms with no. of

coins C nearly equal to amount to be made. Amount ranges

from 2000 to 2500 (501 test cases) and coins are 1 to

V(amount)-1 e.g for V=10 coins are {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Table 4.0. Number of coinsAmount to be made

Algo. NOS NSOS TC
AVG

VR
TI

Dyn. 501 0 1002 0 3.2*109

Pre. 501 0 1002 0 7.5*106

Gre. 501 0 1002 0 2.5*106

Considering above table we can say that greedy approach can

also give optimal result in this case. In some tests, due to large

number of coins, presented algorithm takes a bit more

iterations than dynamic approach to find the optimal result,

which can be neglected because it is a very rare case e.g

number of coins m are very large (approaches to amount V to

be made). Operational analysis of this case is given below:

Table 4.1. Number of coinsAmount to be made

(Operational analysis)

Algo. TO AVGOP MAXOP

Dyn. 6.9*108 694193 3.2*107

Pre. 1.0*109 1003470 1.4*107

Gre. 8.0*103 8 8.0*100

Following are the analysis of different algorithms with 20

coins and their denominations are nearly half of the amount to

be made. Amount ranges from 200000 to 200100 (101 test

cases) and coins are (V/2)+20 to (V/2)-18 with decrement of 2

and a coin of denomination 1 e.g for V=100, coins are {70,

68, 66, 64, . . . , 52, 50, . . , 36, 34 , 32 , 1}.

Note: Coin of denomination 1 is taken so that amount is made

with any case.

Table 5.0. Coins’ denominationsV/2

Algo. NOS NSOS TC
AVGV

R
TI

Dyn. 101 0 252 0 2.1*108

Pre. 101 0 252 0 1.0*107

Gre. 0 101 10100631 100004 2.0*103

In above mentioned case, greedy approach totally fails to give

optimal solution but if we consider presented algorithm, it

gives optimal solution in all test cases with fewer number of

iterations than dynamic approach. Operational analysis of this

case is given below:

Table 5.1. Coins’ denominationsV/2 (Operational

analysis)

Algo. TO AVGOP MAXOP

Dyn. 1.5*109 15303700 1.5*107

Pre. 3.5*108 3501770 3.5*106

Gre. 4.0*107 400025 4.0*105

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

7

Following are the analysis of different algorithms with very

small no. of coins where the difference in their denominations

is very large. Amount ranges from 1000 to 21000 (20001 test

cases) and coins C = {449, 93, 1}.

Table 6.0. Fewer coins, larger difference

Algo. NOS NSOS TC
AVGV

R
TI

Dyn. 10001 0 4746584 0 6.1*109

Pre. 10001 0 4746584 0 1.0*107

Gre. 1783 8218 5026316 34.03 3.0*104

Considering above case, it is obvious that greedy approach

gives infeasible result in such cases too. While, presented

algorithm gives optimal solution in all test cases with fewer

number of iterations than dynamic approach. Operational

analysis of this case is given below:

Table 6.1. Fewer coins, larger difference (Operational

analysis)

Algo. TO AVGOP MAXOP

Dyn. 1.8*109 189370 5.0*106

Pre. 1.3*108 13279 1.3*104

Gre. 2.0*107 2010 2.2*103

Following are the graphs of optimal solution and average

number of operations in each set of test cases.

Fig 2: No. of optimal solutions in each set of test cases

Fig 3: Average no. of operations needed in each set of test

cases

Thus, It can be clearly noticed after all the analysis that

greedy approach works fine for the real money system but if

we move towards non-real money system and other cases, it

gives infeasible solutions. On the other hand, if we consider

performance of presented approach by analyzing both graphs,

presented approach gives optimal solution in almost every set

of test cases except non-real money system. In non-real

money system, its solution varies with a small proportion to

optimal solution e.g just 2, 3 coins more needed. Now, look at

the average number of operations needed for each set of test

cases. Iteration has not been used as criteria because of the

reason that there can be many operations in an iteration of an

algorithm than other algorithm’s iteration. It can be noticed

that in few set of test cases, such as the set of test cases where

no. of coins approaches to amount to be made, presented

algorithm takes more operations than dynamic approach to

find the result. But again, such cases are very rare. The main

advantage of presented approach is that all the optimal and

suboptimal solutions are evaluated using O(1) space. Unlike

dynamic approach, no memoization has been done to find the

result. Therefore, it is a big advantage to use proposed

algorithm over dynamic approach.

7. COMPLEXITY ANALYSIS AND ITS

COMPARISON
We ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.
This paper hasn’t presented a thorough complexity analysis of

the presented approach but some cases have been discussed

which clearly distinguish its uses and outline its benefits over

other approaches. In worst case, algorithm checks almost

every coin in most inner loop and considers most of the

possible frequencies of selected coin in inner loop (discarding

few frequencies). The problem will be in worst case when

every coin of larger denomination is very far from its

consecutive smaller coin (larger difference in their

denominations). Thus, outer loop runs m (number of coins)

times and for every coin in outer loop, inner loop runs nearly

fmax (every possible frequency to make amount V) times.

However, it does not iterate fmax number of times because of

sufficiency principle. Most inner loop runs m-1 times as it

does not use the selected coin, which is already selected in

outer loop, in most inner loop again. Thus, complexity

becomes,

(m)(m-1)(fmax)=O(m2fmax)

In average case, algorithm checks every coin in outer loop but

in inner loop, it considers only those frequencies of selected

coin which have the potential to give optimal result

(sufficiency principle). Thus, outer loop runs m times, inner

loop runs fminx times and most inner loop runs less than m-1

times. Some reasons for the average case are that Sometimes,

at maximum frequency of selected coin, most inner loop does

not run because amount (V) to be made happens to be

multiple of selected coin (in inner loop), which can be exactly

divided hence amount is made using selected coin (in inner

loop) only in that branch. There is another reason for average

case, for example we have to make amount V with m number

of coins. Let’s say that amount is not made with a specific

frequency of selected coin (in inner loop) then it will fall into

most inner loop and check all other coins. Suddenly, it finds

that amount V is made. In spite of the fact that some coins are

not checked yet, it will go out of inner loop as amount is

made. So, in this case inner loop will not run exactly m-1

times. It’ll run some less time. Normally, inner loop does not

run for every possible frequency of selected coin. It follows

the sufficiency principle and run fminx times..Last condition

of above three has most effect on the iteration to evaluate

optimal result. It lessens most of the iterations and gives the

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

8

same optimal or suboptimal result. Thus average complexity

evaluates to,

(m)(m-1)(fminx)=O(m2fminx)

In the ideal scenario, the difference between maximum and

minimum coin’s denomination is minimum and amount V is

nearly equal to maximum coin’s denomination e.g ci=1, 2, 3,

4 and V=5. In best case, in every iteration of outer loop, inner

loop runs once or twice. Thus, inner loop’s iterations are

minimized in best case (≈fmin), outer loop runs m times and

most inner loop, in average, runs less than (m-1) times. Thus,

in best case complexity becomes,

(m)(m-1)(fmin)=O(m2fmin)

As, fmin≈1 so best case complexity becomes O(m2).

The time complexity of presented algorithm is O(m2f) which

is more efficient than dynamic solution’s time complexity in

most of the cases. The main advantage of presented algorithm

over dynamic solution is that it has space complexity of O(1)

e.g. no memoization is required. The algorithm will be no

longer much efficient than dynamic solution (in time

complextiy aspects) in two mutually exclusive situations.

First, when the number of coins given is nearly equal to the

amount to be made. In this case, due to large value of m2, m2f

will be large enough to surpass the dynamic complexity mV.

But it’s a very rare case. Normally, the number of coins m is

very less as compared to amount V to be made.

Second, number of coins given are very small as compared to

amount to be made and difference in their denominations is

very large e.g V=5000 and coins are {4949 , 1}. In this case,

m2 will be small but the inner loop will run several times

because sufficiency criteria will not fulfill until value obtained

by multiplying frequency of coin with coin’s denomination

(1), reaches 4948.

Both of the aforementioned cases are very rare and even if

they do occur, their cost is still comparable to dynamic

approach i.e it can be neglected. Thus, the presented algorithm

is very efficient and feasible solution. On the other hand,

normally, algorithm takes very less iterations as compared to

dynamic to find optimal or suboptimal solution (of accuracy

comparable to optimal solution) and takes no memory for the

memoization. Thus, O(m2f) is far better than O(mV) in most

of the cases and its space complexity (O(1)) has an obvious

advantage over other algorithms’ space complexity.

8. ADVANTAGES AND

DISADVANTAGES
Following are some advantages of presented algorithm over

existing algorithms:

 It only depends on the number of coins (m) and

frequency (fminx) which eliminates the dependence

of execution time or number of iterations on amount

(V) to evaluate optimal or suboptimal solution.

 Fewer iterations are needed.

 The execution time is reduced.

 Memoization is no longer required.

There is as such no disadvantage of presented algorithm.

However, there are some limitations of presented algorithm.

 The primary disadvantage of using this algorithm is

that coins have to be inputted in descending order.

 If the number of coins is nearly equal to amount V,

to be made, then its time complexity will no longer

be better than dynamic solution.

In some cases, the solution is repeated in presented approach

in a manner similar to recursive technique but they do not

have a significant adverse impact on the algorithm’s

efficiency since the presented approach discards a large

number of cases which are not useful in obtaining optimal

results.

9. CONCLUSION
The algorithm introduced in this paper has no memory

overhead and significantly reduced the number of iterations in

most of the cases; consequentially the execution time also

decreases as now it is dependent on coins and their

frequencies, not on the amount to be made. The presented

algorithm has a complexity O (m2f) which in most cases is

better than dynamic based solution’s complexity O (mV) and

recursive solution (exponential complexity). In most cases,

presented approach gives optimal solution but even if it gives

suboptimal solution, the accuracy is comparable to optimal

result. The case, in which presented algorithm improves

performance only marginally as compared to dynamic based

solution arises very rarely. Therefore, in almost all of the

cases presented algorithm is far better than existing

algorithms.

10. ACKNOWLEDGMENT
The author thanks Dr. Muhammad Ali Tahir (Assistant

professor, Department of Computing-SEECS) for his

guidance and inspiration.

11. REFERENCES
[1] Richard E. Bellman, “Dynamic Programming”, Princeton

University Press Princeton, Dover Publications, NY,

USA, 1957.

[2] Kevin Q. Brown, “Dynamic Programming in Computer

Science”, Technical Report CMU-CS-79-106, pp. 1-3,

1979.

[3] Donald E. Knuth, “The Art of Computer Programming”,

Addison-Wesley, US, ISBN: 0-201-03801-3, 1968.

[4] John J. Bartholdi, “The Knapsack Problem”, DOI

10.1007/978-0-387-73699-0_2, ISSN 0884-8289, 2008.

[5] S Needleman, C Wuncsch, “A general method applicable

to the search for similarities in the amino acid sequences

of two proteins”, Journal of Molecular Biology, 1970.

[6] Richard E. Bellman, “On a routing problem”, Quarterly

Applied Mathematics, DOI: 10.1090/qam/102435, 1958.

[7] G. S. Lueker, “Two NP-complete Problems in Non-

negative Integer Programming”, Comput. Sci. Lab. Univ.

Princeton, 1975.

[8] J. W. Wright, “The Change-Making Problem”, J. Assoc.

Comput. Mach., Vol. 22, Issue 1, pp. 125-128, NY,

USA, 1975.

[9] Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn

Rivest, Clifford Stein, “Introduction to Algorithms”,

Chapter 16, Greedy Algorithm, ISBN: 978-0-262-03384-

8, 2001.

[10] Xuan Chai, “Canonical Coin System for Change-Making

problems” in Ninth International Conference on Hybrid

Intelligent Systems MOE- Microsoft Laboratory for

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

9

Intelligent Computing and Intelligent Systems”, pp. 1-2,

DOI: 10.1109/HIS.2009.103, 2009.

[11] Susanna S. Epp, “Discrete Mathematics with

Applications (4 th ed.)”, p.427, ISBN-10: 0495391328,

2010.

[12] Edsger W. Dijkstra, “Recursive Programming”,

Numerische Mathematik, Vol. 2, Issue 1, doi:

10.1007/BF01386232, New Jersey, USA, pp. 312-318,

1960.

[13] Elmirap, “Coin Change”, LeetCode, Retrieved August

10, 2018 from url: https://leetcode.com/articles/coin-

change/#, May 2016.

[14] Eric W. Weisstein, “Exhaustive Search” MathWorld—A

wolfram Web Resource, Retrieved August 13, 2018 from

url:http://mathworld.wolfram.com/ExhaustiveSearch.htl.

[15] Christian Charras, Thierry Lecroq, “Brute Force

algorithm”, Retrieved August 13, 2018 from url:

http://www-igm.univ-mlv.fr/~lecroq/string/node3.html,

1997.

IJCATM : www.ijcaonline.org

