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ABSTRACT 

The Coin Change problem is to represent a given amount V 

with fewest number of coins m. As a variation of knapsack 

problem, it is known to be NP-hard problem. Most of the 

time, Greedy alogrithm (time complexity O(m), space 

complexity O(1)), irrespective of real money system, doesn’t 

give optimal solution. Dynamic algorithm (time complexity 

O(mV), space complexity O(V)) gives optimal solution but is 

still expensive as amount V can be very large. In this paper, 

we have presented a suboptimal solution for the coin change 

problem which is much better than the greedy algorithm and 

has accuracy comparable to dynamic solution. Moreover, 

comparison of different algorithms has been stated in this 

paper. Proposed algorithm has a time complexity of O(m2f) 

and space complexity of O(1), where f is the maximum 

number of times a coin can be used to make amount V. It is, 

most of the time, more efficient as compared to dynamic 

algorithm and uses no memoization, this is a significant 

advantage over dynamic approach.   

General Terms 

Theory of computation, Design and analysis of algorithms, 

Algorithm design techniques, Dynamic programming 

Keywords 

Dynamic programming, Coin change problem, optimization 

methods, Algorithm design and analysis. 

1. INTRODUCTION 
Dynamic programming (DP) [1, 2] is one of the several 

methods for solving different problems in computer science 

(and operation research). One of the distinguishing features of 

dynamic programming algorithm is the way it decomposes a 

problem into subproblems. A problem of size N decomposes 

to several subproblems; each of the subproblems has size N-1. 

Then each of which decomposes to several subproblems of 

size N-2, etc. Once it reaches at the lowest stage where 

problem is divided into many simplest subproblems, then it 

solves each of those subproblems just once. To avoid 

recomputation of same subproblems, a DP algorithm just 

makes records of the solution to all subproblems it encounters. 

In this way, at the expense of extra memory, a DP algorithm 

reduces the time required to solve a problem. 

A dynamic programming algorithm is most appropriately 

applied to those problems for which table, containing the 

computed solutions of encountered subproblems; helps 

eliminate a great number of redundant computations. DP is 

primarily applicable to those problems that can be expressed 

as a sequence of decisions to be made at each of several 

stages. There are many dynamic programming algorithms [3] 

used to solve real life problems such as knapsack algorithm 

(for different knapsack problem [4]), Needleman–Wunsch 

algorithm [5], Bellman–Ford algorithm [6] etc. 

Most of the usage of dynamic programming is in the field of 

optimization. A dynamic programming algorithm checks all 

the previously computed subproblems and combines their 

solution to give the best one. In comparison, a greedy 

algorithm examines the solution as some sequence of steps 

and chooses the solution which seems best at that instance 

(locally). Using a greedy algorithm one could not guarantee 

the globally optimal solution. Because choosing locally 

optimal solution may result in bad global solution.  

Dynamic programming ensures the optimal solution of the 

given problem. Dynamic programming originated with the 

work of Bellman and has been applied to problems in 

operation research, economics, control theory, computer 

science and several other areas. Not surprisingly, the literature 

on the dynamic programming is enormous. 

The proposed algorithm in this paper is of change making 

problem. The change making problem is an NP-hard problem 

[7] specifies the question of finding minimum number of 

coins that add up to given amount of money. It is a knapsack 

type problem. It has applications wider than just currency. 

Coin change algorithm is one of the well-known algorithms of 

dynamic programming. It is widely used in distributing 

change problem in vending machines and shipping systems 

etc. The algorithm proposed in this paper is an improvement 

over existing coin change algorithms. Unlike existing 

dynamic programming’s solution to coin change problem [8], 

the proposed algorithm does not keep any record of solution 

to sub problems. It updates the optimal solution at real time. 

Thus, in this way no extra memory is required (to keep record 

of solutions to all sub problems). Unlike Greedy algorithm 

[9], most of the time it gives the optimal solution as dynamic 

and the accuracy of suboptimal solutions are comparable to 

dynamic solution. It takes more or less same iterations and 

execution time to dynamic approach. 

2. DESCRIPTION 
The coin change problem arises from the situation: in a shop, 

the cashier needs change for several transactions of money 

based on some coins C={cm,…,c3,c2,c1} such that 

cm>…>c3>c2>c1 (in descending order) where ci denotes the ith 

type of coin in C. 

The presented algorithm is designed to minimize the space 

complexity. In this regard, greedy approach has done its work 

by minimizing space complexity to O(1) but in most of the 

cases greedy approach fails to produce optimal result. 

Moreover, it produces very bad solution in several cases. If 

we talk about dynamic solution, although it produce optimal 

solution but its space complexity is O(V). This means that if 

V is large it’ll take large space to find the optimal result. 

Thus, we come to solution which has less space complexity 

and give optimal result (presented algorithm). 
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Formally, the Coin-Change problem solves the following 

integer programming problem with respect to given amount of 

V. 

 Min    
 
     

 s.t      
 
   =V, ci>=0 

Generally, representation of V under C is called the feasible 

solution (n1, n2, n3, . . . , nm) of the above integer programming 

problem. If this representation satisfies 

     
   
   <ci for 2≤i≤m, 

then, it is the greedy representation of V, denoted by 

GRDC(V), and |GRDC(V)|=    
 
   is its size. Similarly, the 

optimal solution (x1, x2, x3, . . . , xm) is called the optimal 

representation of V, denoted by OPTC(V), and 

|OPTC(V)|=   
 
    is its size, all mentioned in [10]. 

Following the aforementioned approach, the presented 

algorithm’s solution (a1, a2, a3, . . . ,am) is called the 

suboptimal representation of V, denoted by ASHC(V), and 

|ASHC (V)|=   
 
    is its size, where ai  is the frequency (the 

maximum number of times a coin ci is used to make amount 

V) of coin at ith denomination. 

Using the presented approach, we will be able to achieve the 

result |ASHC(V)|, which will be equal to |OPTC(V)| in most 

of the time and have accuracy comparable to |OPTC(V)| in 

rest of the cases. But the positive point is that we use 

minimum space using this approach. Using minimum space 

we are achieving optimal result in most of the time. 

We are dividing the algorithm into three parts: 

 Check all the coins. 

 Check maximum frequency (the maximum number 

of times a coin ci is used to make amount V) of each 

coin in making amount V and use only few of them 

which is enough to reach the optimal result. 

 On the basis of minimum to maximum frequency 

(that has been used) of a specific coin, check all the 

other coins’ frequency in making amount V. 

All the aforementioned steps are done in nested form. 

 for each Ci in C s.t 1≤i≤m, where m=total number of 

coins in C. 

 for each Ci in C  evaluate fmax. 

 fmin to fminx of Ci   evaluate fCj s.t 1≤j≤m and j≠i, 

where fminx≤fmax: frequencies of coin which 

participate in finding optimal result. 

All the aforementioned steps cover most of the cases to find 

optimal solution. For each frequency of each coin, the result 

will be updated. At the end, we will have optimal solution 

(|ASHC(V)|= |OPTC(V)|) or suboptimal solution having 

accuracy comparable to |OPTC(V)|. 

3. EXISTING TECHNIQUES 
We ask that authors follow some simple guidelines. In 

essence, we ask you to make your paper look exactly like this 

document. The easiest way to do this is simply to download 

the template, and replace the content with your own material. 
Recursion [11][12] is used in the majority of programming 

problems as it is believed to be an efficient approach. 

Generally, recursion should only be used when the number of 

recursive calls is not excessive. The number of recursive calls 

somewhat depends on the amount of memory available. Stack 

sizes can now be several megabytes of memory, which allows 

recursion to go fairly deep without causing a core dump. 

Sometimes recursion is used because it employs a simpler 

process as compared to the iterative version. For example, 

nearly all code written for tree-like structures is recursive. 

Many sorting algorithms are more naturally written 

recursively as well. 

However, recursive solutions can be very inefficient, if one is 

not diligent. For example, the obvious recursive solution to 

compute the Nth Fibonacci number has exponential running 

time, even though the loop version runs in O(n) and same case 

is for coin change problem. Recursive formula for solving 

coin change problem is given below: 

3.1 Algorithm 
min_Coin(coins[], m, V) 

If V == 0, return 0; 

rsltINT_MAX; 

from coinsi to coinsm 

If (coinsi<=V) 

sbrsltmin_Coin(coins[],m,V-coinsi); 

if (sbrslt!=INT_MAX and sbrslt+1 < rslt) 

rsltsbrslt+1; 

return result; 

Using recursive formula, the time complexity of coin change 

problem becomes exponential. If we consider the complete 

recursion tree given below then we can see that many sub 

problems are solved repeatedly and redundantly. It results in 

unnecessary overhead due to which the complexity of 

algorithm ends up in exponential value. 

 

Fig 1: Recursive tree for understanding the working of 

recursion in coin change problem solution and its 

redundant calculations [13] 

Dynamic Programming is an algorithmic technique which is 

usually based on a recurrent formula and one (or multiple) 

initial state(s). A sub-solution of the problem is constructed 

from previously solved ones. Dynamic programming 

solutions have a polynomial complexity which assures a much 

faster running time than other techniques like backtracking[3], 

brute-force[14,15], recursion etc. Algorithm of dynamic 

programming based solution is given below: 

3.2 Algorithm 
min_Coin(coin[],m,V) 

for i = 1 to V 

tableiINT_MAX  

for j = 1 to V 

for k = 0 to m-1 
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if (coink<=j) 

sbrslttablei-coin[j] 

if(sbrslt!=INT_MAX and sbrslt+1< tablei) 

tableisbrslt+1 

return tableV 

Like other Dynamic Programming problems, recomputing the 

same sub problems can be avoided by constructing a 

temporary array table[][] in bottom up manner. But using this 

technique, we need memory to record all the sub-solutions. 

This means that the more the value of amount V to be made, 

the more memory overhead we will have, for the 

memoization. For example: consider a problem where 3 coins 

m (12,5,1) are used to make V (15), the dynamic approach can 

take up to 45 iterations and 15 memory locations, to keep 

record of sub-solution, to obtain the optimal result. Real life 

problems are far more complex and can have value V in 

millions and number of coins can be much greater as well. As 

time complexity of dynamic approach is O(mV), execution 

time will be large and large memory will be required to reach 

optimal solution. 

Other than aforementioned solution, more work has also been 

done in this area e.g canonical coin system [10] for different 

types of coins or when will greedy and dynamic approach 

give the same optimal result (necessary conditions for 

canonical coin systems). 

4. PRESENTED APPROACH 
Presented algorithm further optimizes the existing algorithms. 

It takes more or less same iterations as dynamic solution to 

reach a decision. For example, in above mentioned problem 

where coins were m(12,5,1) and we had to make V(15), more 

or less 30 iterations and no memory overhead are taken to 

reach the optimal or suboptimal solution which is drastic 

improvement in performance when compared to the available 

solutions. 

In algorithm, abbreviations of different variables are used 

which includes Of : outputflag, Mc : min_no_of_coins, Tc : 

total_coins, IA : instant_val_of_amount, Am : amount and Nc 

: no_of_coins. 

4.1 Algorithm 
Ash_change(Nc,coins<vector>, Am) 

Offalse; 

Mc0; 

Tcinfinite; 

IA0; 

from ci to cm 

from cfmin to cfminx   

Mcf; 

IAAm-( ci * Mc ); 

if (IA==0) 

Oftrue; 

else 

from cj to cm 

if(IA>=cj && j!=i) 

McMc +(IA/cj); 

IAIA%cj; 

if(IA==0) 

Oftrue; 

break; 

if(Tc>Mc && Of==true) 

TcMc; 

Mc0; 

Offalse; 

IA0; 

return Tc; 

4.2 Description 
Presented algorithm, on the basis of each coin’s specific 

frequency, is calculating other coins’ frequencies in obtaining 

a specific amount (value V). It compares the frequency of the 

coin under consideration against the rest one by one to reach 

the optimal solution. 

In presented algorithm, 

Infinite : can be maximum value of range of data type being 

used to check whether amount is made or not with given 

coins. If it’s not made then just return data type range max 

value. 

“Outputflag”: A flag variable to ensure that amount (value V) 

has made with given coins. 

“Min_no_of_coins”: Minimum number of coins on the basis 

of a coin’s specific frequency (temporary minimum number of 

coins to make amount (value V)). 

“total_coins”: Overall minimum number of coins (best option) 

needed to make amount (value V). 

“Instant_val_of_amount”: A temporary variable used to 

represent instant value of amount. 

“Amount”: Amount (V) to be made. 

“Ci”: coin selected at that instant 

“Cm”: coin which has lowest denomination (assumed that 

coins are placed in descending order) where m is total number 

of coins provided. 

“Cj”: coin selected at that instant other than Ci. 

“f”: frequency of selected coin used in making amount V. 

“Cfmin”: minimum frequency of selected coin used, in making 

amount V i.e 0. 

“Cfmax”: maximum frequency of selected coin used, in making 

amount V. 

“Cfminx”: frequencies which participate in obtaining optimal 

result. 

4.3 Logical point of view 
The algorithm is checking each coin in descending order so 

that it does not have to check all the coins. Doing this, we are 

achieving our optimal solution by just checking those cases 

which have the potential to give the optimal solution or 

suboptimal solution of accuracy comparable to optimal 

solution. The algorithm is checking some frequencies of every 

coin so that most of the cases, which participate in obtaining 
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optimal result, can be considered. It does not check some of 

the possible frequencies of selected coin because using those 

frequencies may result in bad solutions e.g it’s better to 

neglect those frequencies of selected coin. 

On the basis of different frequencies of selected coin, it 

evaluates other coins’ frequencies using greedy approach. 

Whenever all the frequencies of other coins are calculated 

with respected to specific frequency of selected coin, our 

result is updated on the condition that the current result is 

smaller than or equal to previous one. Otherwise, result will 

retain its previous value. With combination of some 

frequencies of every coin and greedy approach, we are 

achieving optimal solution in most of the time and suboptimal 

solution of accuracy comparable to dynamic solution in rest of 

the cases. 

4.4 Algorithmic point of view 
We have three loops e.g outer loop, inner loop and most inner 

loop. Outer and most inner loop will run m (total no. of coins) 

times and on the basis of selected coin in outer loop, inner 

loop will run cfminx times (the number of times a coin 

participates in obtaining optimal result). 

In outer loop, algorithm checks each coin one by one and 

passes it to inner loop. Inner loop finds the cfmax and iterates 

from cfmin to cfminx (check frequencies of selected coin which 

is sufficient for obtaining optimal result.Criteria for 

sufficiency is described below in the example). At the end, 

most inner loop, on the basis of selected coin’s specific 

frequency, evaluates other coins’ frequencies using greedy 

approach but excluding the coin which is already selected in 

outer loop. At any moment, in most inner loop, when the 

amount V is reached, algorithm doesn’t check rest of the 

coins. It just breaks out of the loop, updates the total_coins 

and iterates for other frequencies of selected coin, if they 

exist. 

With every inner loop’s iteration, total_coins is updated on 

condition that min_no_of_coins calculated is smaller than 

total_coins (instantaneous best result). This means that we 

update our result whenever we come up with better solution. 

For example, consider the case where there are coins in 

descending order of denominations 9, 6, 5 and 1 and we have 

to make amount V=11. The optimal result from dynamic 

approach gives 2 coins but it is done after memorization. 

Presented approach will find the same result without making 

use of memoization. Algorithm will find the best decision as 

given the manner that follows: 

Criteria for sufficiency: Value obtained by multiplying 

frequency of selected coin and selected coin denomination 

should be less than the denomination of coin before it e.g 

ci*f<ci-1. Sufficiency principle will not be used for first coin 

(no coin exists before it). Sufficiency principle will be 

followed for the coins which are factors of amount V but not 

strictly as mentioned above; it just also checks the selected 

coin maximum frequency along with frequencies which 

resulted from sufficiency principle (there are high chances 

that the maximum frequency of this coin is our optimal 

result). 

total_coinsinfinity 

On the basis of coin of denomination 9: 

Cfmax V/ci1  

As there is no coin before 9 so it will be used maximum 

number of times (sufficiency principle will not be applicable 

in case of first coin). Its maximum frequency in making 

amount V(which is 11) is 1, but if in some other case 

maximum frequency of first coin is greater than 1, then it will 

be used maximum frequency times rather than using 

sufficiency principle which results in a frequency lesser than 

maximum frequency. 

We can use 9 only one time in making 11. So, inner loop will 

run 2 times in this branch (once for coins of denomination 9 

with frequency 0 and once for frequency 1, same process will 

be used for all coins) and remaining amount will be made 

using rest of the coins in most inner loop. 

fi0,1 

V’V-(ci*fi)11,2 

for each cj in C 

 min_no_of_coin=V’/cj s.t V’>cj and j!=i   (eq. 1) 

 V’=V’%cj   (eq. 2)  

So, we will have 2 solutions in this branch i.e 1(6)+1(5)2 

and 1(9)+2(1)3, where V is original amount and V’ is 

instantaneous amount. Thus, we will go for 2 coins.. 

As, min_no_of_coin<total_coins 

total_coins2 

On the basis of coin of denomination 6: 

Cfmax V/ci1 

We can use 6 only one time in making 11. So, inner loop will 

run 2 times in this branch and remaining amount will be made 

using rest of the coins in most inner loop. 

fi0,1  

V’V-(ci*fi)11,5 

Same steps will be evaluated, aforementioned for coin of 

denomination 9, represented as eq.1 and eq.2. We will have 2 

solutions in this branch e.g 1(9)+2(1)3 and 1(6)+1(5)2. 

As min_no_of_coin is not lesser than total_coins the result 

will remain the same. 

total_coins2 

On the basis of coin of denomination 5: 

Cfmax V/ci2  

We can use 5 two times in making 11. So, inner loop should 

run 3 times in this branch to check all the cases but inner loop 

will run two times due to sufficiency principle because for 

frequency 2 of selected coin (denomination 5) value will be 

greater than the denomination of coin right before it (which is 

6). However, its advantage is not observable in such cases 

where it discards just one iteration: its advantage is more 

evident in next branch (coin of denomination 1). Thus, after 

using frequency 0 and 1 of selected coin, remaining amount 

will be made using rest of the coins in most inner loop. 

fi0,1 

V’V-(ci*fi)11,6 

Same steps will be evaluated, aforementioned for coin of 

denomination 9, represented as eq.1 and eq.2. We will have 

two solutions in this branch e.g 1(9)+2(1)2 and 

1(5)+1(6)2. However, neither of the two is less than 

total_coins current value which is 2. So, total_coins value will 

remain unchanged. 

On the basis of coin of denomination 1: 
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Cfmax V/ci11  

We can use coin of denomination 1 eleven times in making 

11. But this is also the case where sufficiency principle 

(lessen the iterations to reach optimal result) is used which 

says:  

“We can achieve optimal result without checking all the 

possible frequencies of selected coin in making amount V. We 

use only those frequencies of selected coin whose 

multiplication with the selected coin is smaller than the 

denomination of coin right before it (coin which has next 

larger denomination). Use of values (resulting from 

multiplication of frequencies of selected coin with selected 

coin’s denomination) which are larger than the denomination 

of coin before the selected coin can lead to a bad result. Using 

1 as the frequency of coin having larger denomination is 

better than using larger frequency of coin(s) of smaller 

densomination.” 

For example, it’s better to use 1 coin of denomination 3 than 3 

coins of denomination 1. So, if we have a coin of 

denomination 3 before 1 then we don’t have to check 

frequency 3 or 4 of coin of denomination 1, we will use 1 coin 

of 3 and a coin of 1 to make amount 4. However, it’s not a 

hard and fast rule. It’s an approximation which is done to 

lessen the iterations to reach the result. Thus, using 

sufficiency principle, inner loop, instead of running 12 times, 

will run only 6 times. 

f0,1,2,3,4,11 

Frequency 11 is used after applying sufficiency principle 

because 1 is the factor of amount V (which is 11). There is a 

chance that the maximum frequency of a coin, whose 

denomination is the factor of amount V, is our best result. For 

frequencies 0, 1, 3 and 4 amount will not be made because 

after using 9, 6 or 5, coin of denomination 1 cannot be used as 

it’s already selected. Thus, instantaneous amount cannot be 

made using coins of denomination 9, 6 and 5 (greedy 

approach is followed in most inner loop). Thus, solution for 

this branch will be based on frequencies 2 and 11. 

f2,11 

V’V-(ci*fi)9,0 

Same steps will be evaluated, aforementioned for coin of 

denomination 9, represented as eq.1 and eq.2. We will have 

two solutions in this branch e.g 2(1)+1(9)3 and 11(1)11. 

However, none of these is less than current value of 

total_coins which is 2. Hence the value of total_coins will 

remain unaffected. So, we have traversed all the coins and 

their participated frequency and the result comprised of these 

frequencies. The total_coins is updated with every 

participated frequency of every coin. It can be noticed that we 

do not have to memoize the sub-solutions. At the end, we 

have our optimal result (|ASHC(V)| or total_coins for amount 

11 which is equal to |OPTC(V)| which is also 2. 

5. COMPARISON 
Using recursive formula the time complexity becomes 

exponential. It computes a same result again and again 

whenever it comes. It doesn’t do any memoization, which 

results in a large execution time. If we take three coins 

(12,5,1) and amount V=15 then it requires approximately 148 

iterations. So, the execution time will be very large. 

Dynamic programming based solution is far better than 

recursive formula because it uses memoization but it is still 

expensive e.g if we take above example in dynamic 

programming solution then it takes almost 45 iterations. Alot 

of memory is required to record all the sub-solution. The 

larger the amount is, greater will be the the required memory 

for memoization. Outer loop runs V (amount to be made 

V=15) times and inner loop runs m (total no. of coins m=3) 

times. It makes a table of size amount V for the 

memoization.Thus, its time complexity and space complexity 

become O (mV) and O (V) respectively. 

Presented algorithm’s complexity depends on the number of 

coins (m) and their frequency (f), in making amount V. It does 

not depend on the amount V to be made. If we take above 

example (coins {12, 5, 1}, V=15) in presented algorithm then 

it only takes more or less 30 iterations to make the amount 

(Value V). It does not need any memoization to reach the 

optimal or suboptimal result which is an explicit improvement 

in performance. 

6. EXPERIMENTAL ANALYSIS 
To measure the efficiency of presented algorithm against 

different well known algorithms I have designed some tests 

which covers nearly all types of data. The test has been 

performed on author’s laptop and the specifications of laptop 

are given below: 

Table 1. Author’s laptop specifications 

Dell Inspiron 15 3542 

Processor Intel Pentium 3558U 

Core Dual Core Processor 

1.7GHz, Core i3 

Storage 1 TB, 5400 rpm 

System memory 4GB DDR3-1600 

Graphic card (integrated) Intel HD Graphics 4400 

 

Abbreviations of different variables are used in the test which 

includes, NOS: Number of optimal Solutions, NSOS: Number 

of suboptimal Solutions, TC: Total coins needed, AVGVR: 

Average variation of suboptimal solutions with optimal 

solutions, TI: Total iterations, Algo: Algorithm used, Dyn : 

Dynamic approach, Pre : Presented approach, Gre : Greedy 

approach. 

The specification and result of different test are as follow: 

If we consider the real money system by taking 

coins={1000,500,100,50,20,10,5,2,1} and amount range from 

200000 to 210000 (10001 test cases), efficiency of different 

algorithms can be differentiated by the following table: 

Table 2.0. Real money system 

Algo. NOS NSOS TC 
AVG

VR 
TI 

Dyn. 10001 0 10001 0 1.8*1010 

Pre. 10001 0 10001 0 1.0*107 

Gre. 10001 0 10001 0 9.0*104 

 

The point to be noted here is that the purpose of this paper is 

to minimize the memory usage while also keeping the 

efficiency of the approach in consideration. Since Number of 

iterations is a vague criterion for measuring the efficiency of 

an algorithm, we are comparing the efficiency of the 

presented approach with existing solutions in terms of 

Number of operations. Comparison, addition, subtraction, 
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division etc are considered an operation. Operational analysis 

of above test is given below: 

Abbreviations of different variables are used in the test which 

includes, TO: Total number of operations used for whole 

testing, AVGOP: Average number of operation used in whole 

testing, MAXOP: Maximum number of operation used in 

whole testing. 

Table 2.1. Real money system (Operational analysis) 

Algo. TO AVGOP MAXOP 

Dyn. 1.8*109 183790 1.4*107 

Pre. 1.0*108 10212 1.4*104 

Gre. 8.4*106 842 8.8*102 

 

It is evident through operational analysis that Dynamic 

algorithm takes more operations than presented algorithm to 

compute optimal result. Thus, we can say that in this case 

presented algorithm is more efficient as compared to dynamic 

algorithm in terms of time complexity. 

In real money system, greedy algorithm gives optimal 

solution with fewer number of iterations. But when we move 

towards non-real money systems and other cases then it gives 

very bad result.Following are some more different types of 

test cases which depicts the efficiency of presented algorithm 

over other algorithms. 

Analysis of different algorithms with coins 

C={993,888,763,603,537,491,312,289,98,76,3,1} 

(irrespective of real money system) and amount ranges from 

200000 to 210000(10001 test cases) is given below: 

Table 3.0. Coin, irrespective of real money system 

Algo. NOS NSOS TC 
AVG

VR 
TI 

Dyn. 10001 0 2081596 0 2.4*1010 

Pre. 3984 6017 2090428 1.46 9.5*106 

Gre. 541 9460 2180404 10.44 1.2*105 

 

If we consider the above table it is obvious that when we 

move towards non-real money system then greedy approach 

fails to produce feasible result. Most of the time, it gives 

suboptimal result of very low accuracy as compared to 

optimal result. While if we consider presented algorithm, most 

of the time, it produces optimal result and accuracy of its 

suboptimal solution with optimal solution is very high e.g 

variation is just 1 (approx.) 

We can notice visible difference in the efficiency of presented 

algorithm against greedy and dynamic approach in operational 

analysis, which is given below: 

Table 3.1. Coins, irrespective of real money system 

(Operational analysis) 

Algo. TO AVGOP MAXOP 

Dyn. 1.6*109 155222 1.8*107 

Pre. 1.1*108 10621 1.1*104 

Gre. 8.7*106 872 9.6*102 

Followings are the analysis of different algorithms with no. of 

coins C nearly equal to amount to be made. Amount ranges 

from 2000 to 2500 (501 test cases) and coins are 1 to 

V(amount)-1 e.g for V=10 coins are {1, 2, 3, 4, 5, 6, 7, 8, 9}. 

Table 4.0. Number of coinsAmount to be made 

Algo. NOS NSOS TC 
AVG

VR 
TI 

Dyn. 501 0 1002 0 3.2*109 

Pre. 501 0 1002 0 7.5*106 

Gre. 501 0 1002 0 2.5*106 

 

Considering above table we can say that greedy approach can 

also give optimal result in this case. In some tests, due to large 

number of coins, presented algorithm takes a bit more 

iterations than dynamic approach to find the optimal result, 

which can be neglected because it is a very rare case e.g 

number of coins m are very large (approaches to amount V to 

be made). Operational analysis of this case is given below: 

Table 4.1. Number of coinsAmount to be made 

(Operational analysis) 

Algo. TO AVGOP MAXOP 

Dyn. 6.9*108 694193 3.2*107 

Pre. 1.0*109 1003470 1.4*107 

Gre. 8.0*103 8 8.0*100 

 

Following are the analysis of different algorithms with 20 

coins and their denominations are nearly half of the amount to 

be made. Amount ranges from 200000 to 200100 (101 test 

cases) and coins are (V/2)+20 to (V/2)-18 with decrement of 2 

and a coin of denomination 1 e.g for V=100, coins are {70, 

68, 66, 64, . . . , 52, 50, . . , 36, 34 , 32 , 1}. 

Note: Coin of denomination 1 is taken so that amount is made 

with any case. 

Table 5.0. Coins’ denominationsV/2 

Algo. NOS NSOS TC 
AVGV

R 
TI 

Dyn. 101 0 252 0 2.1*108 

Pre. 101 0 252 0 1.0*107 

Gre. 0 101 10100631 100004 2.0*103 

 

In above mentioned case, greedy approach totally fails to give 

optimal solution but if we consider presented algorithm, it 

gives optimal solution in all test cases with fewer number of 

iterations than dynamic approach. Operational analysis of this 

case is given below: 

Table 5.1. Coins’ denominationsV/2 (Operational 

analysis) 

Algo. TO AVGOP MAXOP 

Dyn. 1.5*109 15303700 1.5*107 

Pre. 3.5*108 3501770 3.5*106 

Gre. 4.0*107 400025 4.0*105 
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Following are the analysis of different algorithms with very 

small no. of coins where the difference in their denominations 

is very large. Amount ranges from 1000 to 21000 (20001 test 

cases) and coins C = {449, 93, 1}. 

Table 6.0. Fewer coins, larger difference 

Algo. NOS NSOS TC 
AVGV

R 
TI 

Dyn. 10001 0 4746584 0 6.1*109 

Pre. 10001 0 4746584 0 1.0*107 

Gre. 1783 8218 5026316 34.03 3.0*104 

 

Considering above case, it is obvious that greedy approach 

gives infeasible result in such cases too. While, presented 

algorithm gives optimal solution in all test cases with fewer 

number of iterations than dynamic approach. Operational 

analysis of this case is given below: 

Table 6.1. Fewer coins, larger difference (Operational 

analysis) 

Algo. TO AVGOP MAXOP 

Dyn. 1.8*109 189370 5.0*106 

Pre. 1.3*108 13279 1.3*104 

Gre. 2.0*107 2010 2.2*103 

 

Following are the graphs of optimal solution and average 

number of operations in each set of test cases. 

 

Fig 2: No. of optimal solutions in each set of test cases 

 

Fig 3: Average no. of operations needed in each set of test 

cases 

Thus, It can be clearly noticed after all the analysis that 

greedy approach works fine for the real money system but if 

we move towards non-real money system and other cases, it 

gives infeasible solutions. On the other hand, if we consider 

performance of presented approach by analyzing both graphs, 

presented approach gives optimal solution in almost every set 

of test cases except non-real money system. In non-real 

money system, its solution varies with a small proportion to 

optimal solution e.g just 2, 3 coins more needed. Now, look at 

the average number of operations needed for each set of test 

cases. Iteration has not been used as criteria because of the 

reason that there can be many operations in an iteration of an 

algorithm than other algorithm’s iteration. It can be noticed 

that in few set of test cases, such as the set of test cases where 

no. of coins approaches to amount to be made, presented 

algorithm takes more operations than dynamic approach to 

find the result. But again, such cases are very rare. The main 

advantage of presented approach is that all the optimal and 

suboptimal solutions are evaluated using O(1) space. Unlike 

dynamic approach, no memoization has been done to find the 

result. Therefore, it is a big advantage to use proposed 

algorithm over dynamic approach. 

7. COMPLEXITY ANALYSIS AND ITS 

COMPARISON 
We ask that authors follow some simple guidelines. In 

essence, we ask you to make your paper look exactly like this 

document. The easiest way to do this is simply to download 

the template, and replace the content with your own material. 
This paper hasn’t presented a thorough complexity analysis of 

the presented approach but some cases have been discussed 

which clearly distinguish its uses and outline its benefits over 

other approaches. In worst case, algorithm checks almost 

every coin in most inner loop and considers most of the 

possible frequencies of selected coin in inner loop (discarding 

few frequencies). The problem will be in worst case when 

every coin of larger denomination is very far from its 

consecutive smaller coin (larger difference in their 

denominations). Thus, outer loop runs m (number of coins) 

times and for every coin in outer loop, inner loop runs nearly 

fmax (every possible frequency to make amount V) times. 

However, it does not iterate fmax number of times because of 

sufficiency principle. Most inner loop runs m-1 times as it 

does not use the selected coin, which is already selected in 

outer loop, in most inner loop again. Thus, complexity 

becomes, 

(m)(m-1)(fmax)=O(m2fmax) 

In average case, algorithm checks every coin in outer loop but 

in inner loop, it considers only those frequencies of selected 

coin which have the potential to give optimal result 

(sufficiency principle). Thus, outer loop runs m times, inner 

loop runs fminx times and most inner loop runs less than m-1 

times. Some reasons for the average case are that Sometimes, 

at maximum frequency of selected coin, most inner loop does 

not run because amount (V) to be made happens to be 

multiple of selected coin (in inner loop), which can be exactly 

divided hence amount is made using selected coin (in inner 

loop) only in that branch. There is another reason for average 

case, for example we have to make amount V with m number 

of coins. Let’s say that amount is not made with a specific 

frequency of selected coin (in inner loop) then it will fall into 

most inner loop and check all other coins. Suddenly, it finds 

that amount V is made. In spite of the fact that some coins are 

not checked yet, it will go out of inner loop as amount is 

made. So, in this case inner loop will not run exactly m-1 

times. It’ll run some less time. Normally, inner loop does not 

run for every possible frequency of selected coin. It follows 

the sufficiency principle and run fminx times..Last condition 

of above three has most effect on the iteration to evaluate 

optimal result. It lessens most of the iterations and gives the 
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same optimal or suboptimal result. Thus average complexity 

evaluates to, 

(m)(m-1)(fminx)=O(m2fminx) 

In the ideal scenario, the difference between maximum and 

minimum coin’s denomination is minimum and amount V is 

nearly equal to maximum coin’s denomination e.g ci=1, 2, 3, 

4 and V=5. In best case, in every iteration of outer loop, inner 

loop runs once or twice. Thus, inner loop’s iterations are 

minimized in best case (≈fmin), outer loop runs m times and 

most inner loop, in average, runs less than (m-1) times. Thus, 

in best case complexity becomes, 

(m)(m-1)(fmin)=O(m2fmin) 

As, fmin≈1 so best case complexity becomes O(m2). 

The time complexity of presented algorithm is O(m2f) which 

is more efficient than dynamic solution’s time complexity in 

most of the cases. The main advantage of presented algorithm 

over dynamic solution is that it has space complexity of O(1) 

e.g. no memoization is required. The algorithm will be no 

longer much efficient than dynamic solution (in time 

complextiy aspects) in two mutually exclusive situations. 

First, when the number of coins given is nearly equal to the 

amount to be made. In this case, due to large value of m2, m2f 

will be large enough to surpass the dynamic complexity mV. 

But it’s a very rare case. Normally, the number of coins m is 

very less as compared to amount V to be made. 

Second, number of coins given are very small as compared to 

amount to be made and difference in their denominations is 

very large e.g V=5000 and coins are {4949 , 1}. In this case, 

m2 will be small but the inner loop will run several times 

because sufficiency criteria will not fulfill until value obtained 

by multiplying frequency of coin with coin’s denomination 

(1), reaches 4948. 

Both of the aforementioned cases are very rare and even if 

they do occur, their cost is still comparable to dynamic 

approach i.e it can be neglected. Thus, the presented algorithm 

is very efficient and feasible solution. On the other hand, 

normally, algorithm takes very less iterations as compared to 

dynamic to find optimal or suboptimal solution (of accuracy 

comparable to optimal solution) and takes no memory for the 

memoization. Thus, O(m2f) is far better than O(mV) in most 

of the cases and its space complexity (O(1)) has an obvious 

advantage over other algorithms’ space complexity. 

8. ADVANTAGES AND 

DISADVANTAGES 
Following are some advantages of presented algorithm over 

existing algorithms: 

 It only depends on the number of coins (m) and 

frequency (fminx) which eliminates the dependence 

of execution time or number of iterations on amount 

(V) to evaluate optimal or suboptimal solution. 

 Fewer iterations are needed. 

 The execution time is reduced. 

 Memoization is no longer required. 

There is as such no disadvantage of presented algorithm. 

However, there are some limitations of presented algorithm.   

 The primary disadvantage of using this algorithm is 

that coins have to be inputted in descending order. 

 If the number of coins is nearly equal to amount V, 

to be made, then its time complexity will no longer 

be better than dynamic solution. 

In some cases, the solution is repeated in presented approach 

in a manner similar to recursive technique but they do not 

have a significant adverse impact on the algorithm’s 

efficiency since the presented approach discards a large 

number of cases which are not useful in obtaining optimal 

results. 

9. CONCLUSION 
The algorithm introduced in this paper has no memory 

overhead and significantly reduced the number of iterations in 

most of the cases; consequentially the execution time also 

decreases as now it is dependent on coins and their 

frequencies, not on the amount to be made. The presented 

algorithm has a complexity O (m2f) which in most cases is 

better than dynamic based solution’s complexity O (mV) and 

recursive solution (exponential complexity). In most cases, 

presented approach gives optimal solution but even if it gives 

suboptimal solution, the accuracy is comparable to optimal 

result. The case, in which presented algorithm improves 

performance only marginally as compared to dynamic based 

solution arises very rarely. Therefore, in almost all of the 

cases presented algorithm is far better than existing 

algorithms. 
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