
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

10

ASH Search: Binary Search Optimization

Ashar Mehmood
School of Electrical Engineering and Computer Science (SEECS)

National University of Science and Technology (NUST)
Islamabad, 44000, Pakistan

ABSTRACT

The binary search is a method of finding the position of an

element in an ordered array. It continuously aims the middle

element of array and check if it is the target element or not

untills it finds its position. The best case complexity of binary

search is O(1), whereas average and worst case time

complexity is O(log n), where ‘n’ is the number of elements in

the array. In this paper, I have proposed an algorithm which

drastically improves the complexity of search algorithm in

sorted array domain outperforming binary search, the paper

also compares the proposed solution with other well-known

search algorithms. The presented approach minimizes the

space complexity, eliminates the need to analyze the scenario

and look for the algorithm that best fits the given problem.

The proposed algorithm has constant space complexity (O(1))

and time complexity of O(1) (constant time) in best case,

O(log(log n)) in average case and O(log(n)) in worst case.

Thus, most of the time proposed algorithm works very well as

compared to other search algorithms in sorted array domain.

General Terms

Theory of computation, Design and analysis of algorithms,

Data structures design and analysis, Sorting and searching

Keywords

Binary search, Sorted searching, Search optimization,

Interpolation search, complexity analysis.

1. INTRODUCTION
Search aim to retrieve object or information with specified

features and constraints in large search space or bulk of data.

An object or information can be value or set of values, assign

to a variable, satisfy a specific constraint. Searching works on

sorted list of elements and unsorted list of elements as well.

As a proper database is used to fix in the large amount of data,

searching often used algorithms that query the data structure

to extract required information. Often, search algorithms

depend on the data structure being searched. On the basis of

data structure being used for the data storage, a suitable search

algorithm is chosen. Sometimes, it has some prior knowledge

about the type of data being searched. Both aforementioned

factors help the algorithm to extract the specific information

efficiently.

Applications of search algorithms are everywhere. Everyone

who uses smartphone or computer is directly or indirectly

taking advantages of search algorithms such as finding a word

in any text editor, searching any song in playlist or searching

contact number by name, number in cell phone etc. In online

shopping websites we search for the products. Similarly there

are many applications of search algorithms. Any search

operations you come across involve search algorithms.

There are various types of algorithms used to search an

element from bulk of elements. They usually return a success

or a failure status, usually denoted by Boolean true/false.

Different types of search algorithms are used for different

purposes and their performance and efficiency depend on the

data and on the mechanism in which they are used. All search

algorithms can be classified based on their searching

mechanism but normally they are classified as traditional

search algorithm and proposed search algorithm.

Traditional search algorithms are those which are used very

frequently or in normal day life or in our academia e.g linear

search[1], Binary or half-interval search[1], Digital search[2],

hashing[1], interpolation search[3], jump search[4] etc.

However, searches outside a linear search require sorted data.

Proposed search algorithms are those which are proposed by

researcher’s recently e.g network localization using tree

search algorithm [5], Quadratic search [6] etc.

The algorithm presented in this paper is related to traditional

search algorithms. Thus, we will not discuss about proposed

algorithms and all the comparison of presented algorithm in

this paper is with some of traditional search algorithms.

Presented algorithm works on sorted data, similar to binary

search; it proceeds using an element of data as its basis,

predicting whether or not it is the target element in a given

iteration. However, unlike binary search which repeatedly

targets the middle element of the search structure and divides

the search space in halves with each iteration, the proposed

solution accounts for the nature of data given, similar to

interpolation search (mentioned below), which can be an

instrumental factor in optimizing the search efficiency.

Like Interpolation search [3], presented algorithm considers

the type of data and caters variations between the elements of

data, in search space, being searched. It estimates the position

of targeted value. After comparison, it divides the search

space according to the estimate index and discard that search

space which is not useful anymore, in finding that value

(confirmed that value is not in that part of search

space).Inshort, unlike binary search, which divides the search

space into half, the presented approach reduces the search

space to the part before or after the estimated postion or index.

The algorithm repeatedly does the same steps until the target

value is found.

2. RELATED WORKS
Uniform binary search[1] is another search algorithm invented

by Donald Knuth. It stores the index of middle element

instead of lower and upper bounds. It also stores the change in

the middle element between two consective iterations (current

and next iteration). But this method is faster in those cases

only where it is inefficient to calculate middle point, e.g

decimal computer [7].

Exponential search [8] is another search method created by

Jon Bentley and Andrew Chi-Chih Yao in 1976. It starts by

finding the upper bound which is the first element with an

index that is both power of two and greater than target value.

Afterwards, it switches to binary search. To search an element

firstly, exponential search takes log2x+1 iterations then binary

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

11

search takes atmost log2x, where x is the position of target

value. Exponential search is an improvement over binary

search only in that case when target value lies near the

beginning of the array.

Fractional cascading [9] is another search technique

introduced by Chazelle and Guibas in 1986. It divides the

sorted searching array into multiple sorted arrays and searches

each array separately. Searching each array separately needs

O(k log n) times (k is the number of arrays: result of original

array fragmentation) but fractional cascading searches any

element in O(k+log n) times because it stores some specific

information about each elements and its position of each array

in other arrays. Thus, it needs some extra space to compute

the index.It is used in solving computational geometry

problem [10] efficiently and data mining [11] as well.

Interpolation search [3] is another search algorithm firstly

described by W. W. Peterson in 1957. Like proposed

algorithm it estimates the index of target element and in the

next iteration, remaining search space reduced to the part

before or after the estimated index. There is an estimation

formula to estimate the index of target element. Interpolation

search has average time complexity of O(log(log(n))) which is

better than binary search but in worst case(e.g when elements

increase exponentialy) its estimation is very inaccurate and it

can take O(n) iterations.

Quadratic search [6] is another search algorithm recently

introduced by Parveen Kumar in March, 2013. It was an

improvement over binary search. Instead of targeting the

middle element it targets the middle,1/4th and 3/4th element

of sorted array and check whether one of these elements is

searched/target element or not. If one of these element is the

target element then it immediately returns that element

otherwise it reduce the search space after checking many

cases. It has worst case complexity of O(log(n/2)). No doubt

that it works very well as compared to binary search but its

biggest disadvantage is that it is very costly (a lot of condition

is to be checked for the reduction of search space and index

calculation). When an array is searched containing millions

number of elements then quadratic search has to perform

many index calculations and condition checking which is not

good. Moreover, in average case too it will take log(n/2) steps

which is not better than log(log n) and the presented approach

is very less costly as compared to quadratic approach.

Similarly, there are many other search algorithms for different

purposes e.g Quantum binary search [12], Noisy binary search

[13][14], Fibonacci search [15]. Each has their own

advantages and disadvantages.

The proposed algorithm estimates the target element index

using a formula nearly same as one used in interpolation

search. Moreover, it doesn’t collapse in anycase e.g elements

increase exponentialy or very different variation of variations

between the elements of array. Similar to binary search, it

takes log(n) in worst case whereas interpolation search takes

O(n) in worst case. For instance of average case it takes

log(log(n)) like interpolation search. Thus, the proposed

approach is better than interpolation and binary search as well.

The main comparison in this paper is amongst presented,

binary and interpolation search algorithm.

3. ALGORITHM
Ash_search(arr<vector>,s_num,t_elem)

est_var0;

est_indx0;

start0;

endt_elem-1;

while(start<=end)

est_var (arr[end]-arr[start])/(end-start);

est_n ((s_num-arr[start])/est_var)+start;

if(arr[est_n]==s_num)

return est_n;

else

if(s_num>arr[est_n])

startest_n+1;

else

endest_n-1;

if(arr[start+((0.5)*(end-start))]<=s_num)

startstart+((0.5)*(end-start));

else

endend-((0.5)*(end-start));

return -1;

3.1 Description
In proposed algorithm,

arr<vector>: Dynamic array containing all the elements.

s_num: target element.

t_elem: total number of elements in arr<vector>

est_var: average variation computed between the elements of

data.

est_n: estimated index of target element on the basis of

estimated variation between the elements of data.

start: starting index of instantanious array.

end: ending index of instantanious array.

3.2 Logical point of view
 The algorithm runs within the starting and ending

index of the array.

 The algorithm finds the average variation between

elements of array so that it can find with how much

average variation elements are coming.

 As target element lie between starting and ending

index of the array so algorithm estimates the

position of target number by just dividing it by the

average variation.

 Due to large variation of variations between the

elements of array, average variation can be

inaccurate (don’t fulfill between all the elemets of

the array). Thus, in this case estimated index would

be very inaccurate and algoritm has to update the

array starting and ending index so that in the next

iteration the estimation can be more accurate.

 Moreover, the array is reduced to half to get more

accurate estimated variation and estimated index in

the next iteration.

 The array is reduced such that the neglected part

doesn’t contain target element.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

12

3.3 Algorithmic point of view
 Presented algorithm works on a single loop. Each

iteration does the following set of operations:

 Calculating average variation between the elements

of array.

 Calculating estimated index of target element on the

basis of calculated average variation between the

elements of array.

 Checking whether the element on the estimated

index is equal to target element or not.

 If the element on the estimated index is not equal to

target element then update the starting and ending

index of the array to converge to target element.

 If target element is greater than element on the

estimated index then it means that the target element

lies between the estimated index and ending index.

Thus, now our starting index will be

estimated_index+1.

 If target element is smaller than element on the

estimated index then it means that the target element

lies between the starting index and estimated index.

Thus, now our ending index would be

estimated_index-1.

 Discard the 50% part of instantanios array from the

right or left side such that the target element

remains in the updated array and estimations can be

more accurate.

Consider the case where there is a vector containing 30

elements coming with different variations in ascending order

arr= {21, 27, 35, 58, 59, 60, 67, 69, 85, 95, 120, 151, 152,

157, 160, 166, 174, 181, 192, 197, 204, 209, 219, 225, 229,

235, 241, 248, 251, 263}

For example, we want to find the position of of element “67”,

where subtraction of elements (arr[end]-arr[start]), subtraction

of indexes (end-start) and difference of starting index element

from target element (s_num-arr[start]) is represented by △

(Delta), Ω (Omega), µ (mu) respectively.

In first iteration:

Start0

endt_elem-1

est_var8.34483△⁄Ω

est_n6 (µ⁄(est_var))+start;

After comparing the element at 6th index with target element

it is noted that they are equal. Thus, in this case proposed

algorithm finds the elements in first iteration.

Now, suppose we want to find 192,

In first iteration:

start0

endt_elem-1

est_var8.34483△⁄Ω

est_n20(µ⁄(est_var))+start;

As, at 20th index element is 204, which is greater than 192 so

proposed algorithm changes the starting and ending index to

make estimation more accurate and find correct index of

element 192. Thus,

start9start+((0.5)*Ω)

end19 est_n-1;

In second iteration:

est_var10.2△⁄Ω

est_n19 (µ⁄(est_var))+start;

As, at 19th index element is 197, which is still greater than

192 so proposed algorithm again changes the starting and

ending index. Thus,

start13start+((0.5)*Ω)

end18 est_n-1;

In third iteration:

est_var7△⁄Ω

est_n18 (µ⁄(est_var))+start;

At 18th index the element is 192 which is equal to target

element. Thus, proposed algorithm finds the target element in

3 iterations.

With the help of average variation and index estimation

formula, we ended up with estimated index of target element.

We can noticed that after comparing the estimated index

element with target element in second iteration the starting

and ending index is updated.There are two types of updation

is performed in the proposed algorithm: first on the basis of

estimated index and second is just cutting the array from left

or right side. The purpose of both the updation is to converge

to the target element quickly.

On the basis of estimated index:

s_num>arr[est_n]: If target element is greater than element at

the estimated index then it is obvious that to acquire more

accurate estimation of target element we have to start from

next index of current estimated index. Therefore, “start”

becomes “est_n+1” (As arr[est_n]!=s_num, so there is no

need to consider est_n in new array).

s_num<arr[est_n]: If target element is smaller than element at

the estimated index then it is obvious that to acquire more

accurate estimation of target element we have to update our

ending index. As we know that the target element is smaller

than estimated index so it would be better to consider “est_n-

1” as ending index in next iteration. Thus, it will give better

estimation in next iteration.

Suppose there is an array whose elements comes with very

different variations such as,

arr={16,81,256,625,1296,2401,4096,6561,10000,14641,1464

2,14643,14644,20736,83521,104976}. It can be noticed that

difference between first two element of array is 65 and

difference between next two elements is 175. Similarly,

difference between 3rd and 4th element is 369 and so on. But

difference between 10th and 11th element is just 1 and same

is the case for 11th, 12th and 12th, 13th. It can also be noticed

that the variation in the last four elements are 6092, 62785,

21455.Thus, with this much variation in the variations

between the elements of array the average variation estimation

would not be better enough to give accurate result for the

estimate index. Here comes the second part of updation of

starting and ending index.

After assigning “start” or “end” index to “est_n+1” or “est_n-

1”, the proposed algorithm further check whether right half

part of the array can be discarded or left one such that the

target element doesn’t lie in the discarded part. After

validation (target element doesn’t lie in the discarded part) it

discards the right or left half part of the array. Basically, it’s

the fast way of converging to element which is being targeted.

As the array is becoming smaller so the variation in the

variations between the elements of array will be lesser. In this

way we will be closer to target element and index estimation

would be better.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

13

4. EXISTING APPROACHES
Usually binary search and linear search considered as best

search algorithms for sorted and unsorted arrays respectively.

Binary search does not consider the type of data (whether

elements in the data structure increase linearly, exponentialy

or with different variations) in the data structure but

considering it can be helpful in more efficient searching.

There are two other search techniques which are little bit

better than binary search for some cases, Interpolation

search[3] and hash table[1].

Similar to presented algorithm interpolation search estimates

the position or index of target element and reduced the search

space to the part before or after the estimated index. Same

steps is taken untill it finds the target element. Interpolation

search works well when the elements of data is distributed

equally but it collapse when elements increase exponentially

or increase with very different variations.

In “search using hash value” approach we insert the elements

into a hash implemented data structure e.g Hashtable or

HashMap[1]. As in this approach elements of hashmap

indexed by a specific code e.g hashcode, the time to search

any element of data structure would almost take constant time

(O(1)). But the huge disadvantage of this approach comes out

when the number of elements are large. In this case, it leads

collision and it requires more space for the elements. Thus, it

is difficult to use when number of elements is large.

5. PROPOSED APPROACH
The presented algorithm does not collapse in any case. It is

not affected by the type of data e.g data is increasing

exponentially or data is increasing with very different

variations. In average, it takes fewer iteration as compared to

binary search to search an element in a data structure and it

has no space overhead (does not use any extra array other than

searching array). In even worst case, it takes iterations more

or less equal to binary search. Thus, the presented algorithm is

the best choice to search an element in sorted data structure.

6. EXPERIMENTAL ANALYSIS
Table 1. Author’s laptop specifications

Dell Inspiron 15 3542

Processor Intel Pentium 3558U

Core Dual Core Processor

1.7GHz, Core i3

Storage 1 TB, 5400 rpm

System memory 4GB DDR3-1600

Graphic card (integrated) Intel HD Graphics 4400

The efficiency of search algorithm is measured by number of

times the comparison is made with target element. We can say

that the number of iteration a target element takes to be

searched in a data structure under worst case circumstances

decides the algorithm’s efficiency. To test the proposed

approach against best algorithms so far and to show little bit

comparison between algorithms, some tests are designed. The

specification and result of different tests are as follow:

TS = Total number of searches which have been made in a

test.

LI = Number of searches in which an algorithm takes less

iterations than binary search.

MI = Number of searches in which an algorithm takes more

iterations than binary search.

EI = Number of searches in which an algorithm takes equal

iterations to binary search.

TI = Total iterations an algorithm takes to make all the

searches.

MaxI = Maximum number of iterations an algorithm takes to

make any search in a test.

AvgI = Average number of iterations an algorithm takes to

make all the searches in a set of test.

Algo. = Algorithms.

Interp. = Interpolation search.

Bin. = Binary search.

Pre. = Presented algorithm

In every test each element is searched.Considering the array

containing 501 nearly equally distributed elements

array={2,3,5,8,9,11,14,15,17,20,21,23,26,…..,1001 }. The

results of different algorithms are as follow:

Table 2.0. Equally distributed elements

Algo. TS LI MI EI TI MaxI AvgI

Interp. 501 498 1 2 834 2 1

Bin. 501 - - - 4007 9 7

Pres. 501 500 0 1 501 1 1

As the data were equally distributed so estimating the index of

target element was easy. That’s why in this case interpolation

algorithm works well as compared to binary search and

proposed algorithm is even better than interpolation search.

The point to be noted here is that number of iterations is a

vague criterion for measuring the efficiency of an algorithm

because of the reason that there can be many operations in an

iteration of an algorithm than other algorithm’s iteration.

Thus, we are comparing the efficiency of the presented

approach with existing solutions in terms of number of

operations as well. Comparison, addition, subtraction, division

etc are considered an operation. Operational analysis of above

test is given below:

LO: Number of searches in which an algorithm takes less

operation than binary search.

MO: Number of searches in which an algorithm takes more

operation than binary search.

EO: Number of searches in which an algorithm takes equal

operation to binary search.

TO: Total operations an algorithm takes to make all the

searches in a set of test.

MaxO: Maximum number of operations an algorithm takes to

make any search in a set of test.

AvgO: Average number of operations an algorithm takes to

make all the searches in a set of test.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

14

Table 2.1. Equally distributed elements(Operational

Analysis)

Algo. LO MO EO TO MaxO AvgO

Interp. 491 7 3 7005 17 13

Bin. - - - 17800 43 35

Pres. 500 1 0 3507 7 7

It can be noticed that the result obtained by operational

analysis is not much different than the previous approach

(comparison on the basis of iteration).

Now consider the array containing 1000 elements increasing

randomly whereas the random function for this test is given

as:

Next_element=Previous_element+ (random() * 1000 +1)

It means that random number is from 1 to 1000 and every next

element is the addition of previous element and generated

random number. The results of different algorithms are as

follow:

Table 3.0. Random generated elements

Algo. TS LI MI EI TI MaxI AvgI

Interp. 1000 991 4 5 2754 7 2

Bin. 1000 - - - 8987 10 8

Pres. 1000 994 4 2 2613 5 2

Table 3.1. Random generated elements(Operational

Analysis)

Algo. LO MO EO TO MaxO AvgO

Interp. 934 58 8 22217 53 22

Bin. - - - 39991 48 39

Pres. 940 52 8 22714 47 22

It can be noticed that average number of iterations and

operations that binary takes to search an element is very large

as compared to interpolation and presented algorithm. This is

because of not considering the type of data. Both interpolation

and presented approach consider the variations between the

data. Thus, they converge to target element with very less

iterations and operations. However, in this case too presented

algorithm has minimum MaxI and MaxO.

Now consider the case where interpolation fails to produce

efficient result. It is the case when there is equally distributed

data but at the end there are few elements which have a very

large variation from its previous element e.g outlier elements

or there are some equally distributed data and there are some

data coming with very different variation e.g cluster of

elements. For example, in this test we assumed an extreme

situation of aforementioned case represented as array = {1, 2,

3, 4, 5, 6, …….. , 997, 998, 999, 1000000999}. The results of

different algorithms are as follow:

Table 4.0. Outlier elements

Algo

.
TS LI MI

E

I
TI

Max

I
AvgI

Inter

p.
1000 8 989 3 499502 999 499

Bin. 1000 - - - 8987 10 8

Pres. 1000 983 8 9 2980 10 2

Table 4.1. Outlier elements(Operational Analysis)

Algo. LO MO EO TO MaxO AvgO

Interp. 5 995 0 4494511 8990 4494

Bin. - - - 39991 48 39

Pres. 795 192 13 28782 110 28

The reason for interpolation search failure in efficient

searching in this case is the large variation between 999th and

1000th elements. When there are some elements which have

great difference in variation between them, as compared to

variations between other elements, then average variation

becomes biased towards large variation (average variation

comes out very larger and gives estimated index very far from

actual index) which affects the searching of other

elements(e.g all the elements excepts outliers). On the other

hand, presented algorithm does not fail in this case because it

reduces the search space into half from one of either side,

which is suitable for next estimation and due to reduction of

search space, estimation becomes more accurate. This is why

most of the time presented approach converges to the

searched element in fewer numbers of operations. When we

look closely towards the efficiency of different algorithms in

operational analysis, it can also be noticed that the MaxO of

presented algorithm is greater than that of binary search; it

does not matter much because most of the time presented

approach works very well as compared to binary search (from

AvgO) and the case where there is only one outlier with this

much variation from previous elements is very rare. The result

gets better when we consider real life situations which usually

don’t have just one outlier but some outliers or clusters of

elements.

Now consider the case where elements increase exponentially.

This is the case where each pair of elements has variation vary

with large amount than other pair of elements’ variation.As a

result the average variation comes out is very disturbed which

cause very wrong prediction of index of target element.Thus,

interpolation search fails to perform efficient searching in this

case too. However, presented algorithm works very well as

compared to interpolation in this case too because it shortens

the search space with each iteration to give better average

variation which helps in better prediction of index of target

element. Exponential function for this test is given below:

Next_element=i*i*i*i

Here ‘i’ is the index number. It means that every next element

of array is the 4th power of the index number. In this test there

is an array of 1000 elements e.g array={1,16,81,256,625,…..,

996005996001, 1000000000000}. The results of different

algorithms are as follow:

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

15

Table 5.0. Exponentially increasing elements

Algo. TS LI MI EI TI
Max

I

Av

gI

Interp. 1000 230 730 40 41262 177 41

Bin. 1000 - - - 8987 10 8

Pres. 1000 933 32 35 5556 10 5

Table 5.1. Exponentially increasing elements (Operational

Analysis)

Algo. LO MO EO TO MaxO AvgO

Interp. 118 880 2 370358 1592 370

Bin. - - - 48978 60 50

Pres. 330 648 22 54506 109 54

When elements increase exponentially, variation between the

elements of data/array also increases and as a result, the

average variation becomes biased towards large variation.

Due to biased average variation (toward large variation

between the elements at the end part of array), the index

estimation is very wrong for the elements near the beginning

of array. Interpolation search takes several numbers of

iterations to find the target element becaurse after predicting a

very wrong index it moves forward in linear fashion e.g

suppose it predicts 2nd index but actual index is 28 then in

next iteration it predicts 3rd index and in next interation it

predicts 4th index and so on (same is the situation for set of

test “Outliers elements”). However, the presented algorithm

works well in this case because it reduces the search space

with each iteration. Due to which better average variation

comes out and prediction of target element’s index is more

accurate. But in operational analysis of set of test 3 and 4, it

can also be noticed that in case of the maximum number of

operations “MaxO” taken by the presented algorithm exceeds

the maximum number of operations binary search takes,

which depicts that the efficiency of presented approach is

slightly lower as compared to binary when elements have very

different variations. However, it does not have a significant

effect in even these cases, most of the time, presented

algorithm takes less operations than binary search as we can

see in the “AvgO” column of the operational analysis and

these cases are rare too.

Moreover, there are some more test has been run on the

presented algorithms. In these test too, presented approach

works better as compared to other search algorithms. One of

these tests includes string searching. For this test, a

CMUdict[16] (Carnegie Mellon University) Pronouncing

Dictionary (an open-source machine-readable pronunciation

dictionary for North American English that contains over

134,000 words and their pronunciations) is used. To perform

this test, a hashing function is used to convert each

string/word into a unique number according to their characters

(in that word/string). Each word/string is searched in this test,

about 132905 searches have been made, out of which in

132524 searches, presented algorithm works better than

binary search, in 178 searches it works the same as binary

search and in rest of the searches presented algorithm takes a

few more iterations than binary search. It was noticed that the

presented approach takes maximum of log n steps in

searching any word/string (17 iterations max.) and in average

it takes log (log n) steps (only 4 or 5 iterations), which is a

huge advantage over other search algorithms.

7. COMPLEXITY ANALYSIS AND ITS

COMPARISON
In best case, all the three algorithms have constant time

complexity. As presented algorithm estimate the position of

target element on the basis of estimate variation between the

elements of array. Suppose, if the elements of array increase

with equal variation or has equally distributed data. Then,

average variation comes out will be very accurate. Therefore,

presented algorithm finds the target element in constant time.

For example, an

array={2,4,5,8,9,11,12,14,16,18,20,22,23,25,27} contained

equally distributed data. All the searches made to this array

will be in constant time. Thus, the time complexity of

presented algorithm in best case is O(1).

In average case, the performance of presented algorithm is

slight better as compared to interpolation search and way

better than binary search because in average case presented

algorithm estimates the position of target element on the basis

of average variation which is not so disturbed because

elements are coming with random variations. Thus, it

converges to target element taking very less iteration as

compared to binary search. As, we are using the same

approach as interpolation search so we can say that the

average case complexity of presented algorithm is same as

interpolation search O(log(log(n)) where ‘n’ is the number of

elements in the data structure/array . It can be noticed that the

reduction of search space in presented algorithm follows both

the techniques e.g search space reduction technique used in

interpolation and binary search. But in average case, reduction

is biased towards one used in interpolation search(even in first

iteration average variation is accurate enough to move very

close to target element due to which reduction using binary

search technique is not so needed). If we talk about binary

search, it is not affected by any variation or other factors. It

does not concerend with how elements of data are increasing.

It just targets the middle element and discards half of the

elements. Thus, its time complexity in average case is O(log

n).

The most interesting thing happens in worst case. Binary

search complexity remains the same as average case (O(log

n)) but interpolation search fails to perform effficient

searching in worst case. It is because of elements coming with

very different variations or we can say that there is a large

difference/variation between the variations of each pair of

elements or there is cluster of elements in the search space,

which causes very inaccurate index estimation. That’s why

interpolation search take almost ‘n’ iterations in worst case or

worst case complexity is O (n), which is very bad relatively.

Presented algorithm, using its index estimation formula and

search space reduction technique, overcome the

aforementioned problem and finds the target element in fewer

number of iterations. The worst case complexity of presented

approach is not very accurate. However, it is evaluated to be

O(log n)+O(log(log n)) which eventually becomes O(log n).

Comparison of different search algorithms complexity is as

follow:

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

16

Fig 1: Complexity comparison

Fig 2: Different cases comparison

In Figure 2, it can be noticed that the presented algorithm is a

drastic improvement over binary and interpolation search. In

worst case, interpolation search totally fails to produce result

efficiently but presented algorithm works well. The main

advantage of presented algorithm is in average and some of

the worst case scenarios. The grey shaded region represents

the cases where the proposed approach works more efficiently

as compared to both interpolation and binary search. These

cases include randomly increasing elements, clusters of

elements, outliers etc in search space. In rest of the cases,

presented approach works more or less the same as binary

search. Thus, it is better to use proposed approach than other

algorithm in any case.

8. ADVANTAGES AND

DISADVANTAGES
Presented algorithm can be used in any scenario and

eliminates the need of analyzing the given problem to look for

the apt algorithm. Presented algorithm works well in all

scenarios and has better efficiency than all the best search

algorithms in sorted array domain. Less iteration is needed to

find the target element, no need of extra space and execution

time is also better than other algorithms. There is as such no

cons of presented approach other than that it is slight more

costly (calculation of estimation formula and search space

reduction calculation makes it more costly). However, even

after including these extra costs to the algorithm’s time

complexity, it works very well in best and average cases but

works almost identical to binary search in worst case. Another

disadvantage is that it only works on numbers (If you find a

string in a batches of string, you will have to convert array of

string into array of numbers using some hashing function)

9. CONCLUSION
The algorithm introduced in this paper has done a great

improvement over existing search algorithms in sorted data

domain. It covers all the different aspects of existing search

algorithms where these algorithms have defficieny in more

efficient searching. This is why, in average case, the result is

computed using fewer iterations as compared to the best

available approaches. Moreover, as presented algorithm

covers all the possibilites of data variation, it can be used in

any scanerio without analyzing it. All other algorithms have

their own disadvantages. Some fails to perform efficient

searching in worst case, some doesn’t consider the type of

data and some uses extra resources. While presented

algorithm has constant space complexity and worst case time

complexity of O (log n), its real advantage is in average case

and some of worst case scenario when it performs searching

within O (log (log n)) steps. In sorted data searching, the

presented approach will be the best option. Further, it can also

be expanded to other applications of search algorithms.

10. ACKNOWLEDGMENT
The author thanks Dr. Muhammad Ali Tahir (Assistant

professor, Department of Computing-SEECS) for his

guidance and inspiration.

11. REFERENCES
[1] D. E. Knuth, “The Art of Computer Programming”, Vol.

3: Sorting and Searching, Addison Wesley, 1973.

[2] F. Plavec, Z. G. Vranesic, Stephen D. Brown, “On

Digital Search Trees: A Simple Method for Constructing

Balanced Binary Trees”, in Proceedings of the 2 nd

International Conference on Software and Data

Technologies (ICSOFT ’07), Vol. 1, Barelona, Spain,

July 2007, pp. 61-68.

[3] W. W. Peterson, “Addressing for Random-Access

Storage”, IBM Journal of Research & Development, doi:

10.1147/rd.12.0130, 1957.

[4] Ben Shneiderman, “Jump Searching: A Fast Sequential

Search Technique”, Communications of the ACM, Vol.

21, NY, USA, Octuber 1978, pp. 831-834, doi:

10.1145/359619.359623.

[5] Phisan Kaewprapha, Thaewa Tansarn, Nattankan

Puttarak, “Network localization using tree search

algorithm: A heuristic search via graph properties”, 13 th

International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications

and Information Technology (ECTI-CON), 2016.

[6] Parveen Kumar, “Quadratic Search: A New and Fast

Searching Algorithm (An extension of classical Binary

search strategy)”, International Journal of Computer

Applications, Vol. 65, Hamirpur Himachal Pradesh,

India, March 2013.

[7] Hermann Von Schmid, “Decimal Computation (1 st ed)”,

John Wiley & Sons Ins., NY, USA, 1974.

[8] J. L. Bentley, A. C. Yao, “An almost optimal algorithm

for unbounded searching”, Vol. 5, Issue 3, Information

Processing Letters, pp. 82-87, doi: 10.1016/0020-

0190(76)90071-5, ISSN 0020-0190, 1976.

[9] B. Chazelle, L. J. Guibas, “Fractional cascading: A data

structuring technique”, Algorithmica, Vol. 1, Issue 1-4,

pp. 133-162, November 1986.

[10] Franco P. Preparata, Michael Ian Shamos,

“Computational Geometry - An Introduction”, ISBN 3-

540-96131-3, 1988.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 15, May 2019

17

[11] Jaiwei Han, Micheline Kamber, Jian Pei, “Data Mining:

Concepts and Techniques (3 rd ed.)”, ISBN: 978-0-12-

381479-1, June 2011.

[12] Vladimir Korepin, Ying Xu, “Binary Quantum Search”,

International Journal of Modern Physics B, Vol. 21,

ISSN 5187-5205, doi: 10.1117/12.717282, May 2007.

[13] Andrzej Pelc, “Searching with known error probability”,

Theoretical Computer Science, pp. 1855-2022, doi:

10.1016/0304-3975(89)90077-7, 1989.

[14] R. L. Rivest, A. R. Meyer, D. J. Kleitman, “Coping with

errors in binary search procedures”, STOC ’78

Proceedings of the 10 th annual ACM symposium on

Theory of computing, doi: 10.1145/800133.804351, pp.

227-232, San Diego, California, USA, 1978.

[15] David E. Ferguson, “Fibonaccian searching”,

Communications of ACM, Vol. 3, Issue 12, NY, USA,

doi: 10.1145/367487.367496, 1960.

[16] Kevin lenzo, “The CMU Pronouncing Dictionary”,

Speech at CMU, Retrieved Aug 13, 2018 from url:

http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

IJCATM : www.ijcaonline.org

