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ABSTRACT 
In this paper, we present a method which is based on 

Bernoulli Collocation Method to give approximate solution of 

the Bagley-Torvik equation. The Bagley-Torvik equation is 

transformed into a system of algebraic equations by this 

method and this algebraic equations are solved through by 

assistance of Maple 2016. Further some numerical examples 

are given to illustrate and establish the accuracy and reliability 

of the proposed algorithm. 
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1. INTRODUCTION 
In recent years, fractional calculus has become most popular 

in different areas of science and engineering such as 

viscoelasticity, heat conduction, electrode–electrolyte 

polarization, electromagnetic waves, diffusion wave, control 

theory, acoustic, mathematical biology etc [1-5]. Altough 

fractional calculus arises many areas, it is difficult to find 

solutions to fractional equations, even impossible. So many 

researchers developed different methods to solve fractional 

equations such as the operational matrix method[6-9], 

Adomian decomposition method [10], homotopy-perturbation 

method[11], collocation method[12-13], and others[14-16]. 

The Bagley-Torvik equation is in fractional calculus, 
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with the initial conditions 
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where mA  , AA 23  , kA 0  and where   

is the viscosity,   is the fluid density. This equation arises in 

the modelling of the motion of a rigid plate immersed in a 

Newtonian fluid. The motion of a rigid plate of mass m  and 

area A  connected by a mass less spring of stiffness k , 

immersed in a Newtonian fluid. 

The questions of existence and uniqueness of the solution to 

this initial value problem have been discussed in [5-6]. An 

analytical solution is possible and can be given in the form [2] 
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where 
)(

,

kE   is the kth  derivative of the Mittag-Leffler 

function with parameters   and   given by 
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Note that this analytical solution involves the evaluation of a 

convolution integral, containing a Green’s function expressed 

as an infinite sum of derivatives of Mittag–Leffler functions, 

and for general functions f  this cannot be evaluated 

conveniently. For inhomogeneous initial conditions even 

more complicated expressions arise. An analytical expression 

for the inhomogeneous case is given in [5]. It involves 

multivariate generalizations of Mittag–Leffler functions and is 

also quite cumbersome to handle. We are motivated by the 

difficulty of obtaining an analytical solution to investigate 

numerical schemes for the solution of (1) with initial 

conditions (2) that can be relied upon to perform well. We 

seek the approximate solution of Eq.(1) under the conditions 

Eq.(2) with the fractional truncated Bernoulli series as, 
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where 10  . 

 

2. FUNDEMENTAL RELATIONS 
In this section, we consider the fractional differential 

equations 
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with initial conditions 

i
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which )(xPk  and )(xf  are functions defined on 

bxa  , i  is a appropriate constant. 

We use the fractional truncated Bernoulli series expansions of 

each term in expression and their matrix representations for 

solving  thk  order linear fractional differential equation 

with variable coefficients. We first consider the solution 

)(xy of Eq. (1) defined by a fractional truncated Bernoulli 

series (3). Then, we have the matrix form of the solution 

)(xy  

   AB xxy )(                                                   (6) 
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On the other hand, fractional Bernoulli polynomials are, 
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Matrix representation of Eq.(7) is, 
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By substituting (6) into (8), we obtain 

   SAX xxy )(                                                 (9) 

Similarly, the matrix representation of the function 
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substituting (11) into (10) we obtain the matrix represantation 

of the fractional derivative by, 

SARX 1* )(  xyD                                                   

(12) 

In a similar way for any i , it can be written by 

)(* xyDk
SARX k


                                               (13) 

where 
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Thus, we obtain the fundemental matrix form of Eq.(1) and 
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the matrix representation of the condition in given Eq.(3) 

respectively by 
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3. METHOD OF SOLUTION 
We can write Eq. (14) in the form 
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or the corresponding matrix equation 
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algebraic equations with )1( N  unknown coefficients. If
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 . Thus, the matrix A  is uniquely 

determined. Also the Eq.(1) with conditions (2) has a unique 

solution. On the other hand, when 0* W , if 
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find a particular solution. Otherwise if 

];[ ***
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Therefore, the approximate solution is given by the truncated 

fractional Bernoulli series 
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Moreover, we can easily check the accuracy of the method. 

Since the truncated fractional Bernoulli series (3) is an 

approximate solution of Eq.(1), when the solution )(xy  and 

its fractional derivatives are substituted in Eq.(1), the resulting 

equation must be satisfied approximately; that is , for   
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4. EXAMPLES 
In order to illustrate the effectiveness of the method proposed 

in this paper, several numerical examples are carried out in 

this section. All algorithms are implemented in Dell inspiron 

15r on a Intel core i5-3337U, 1.80 GHz CPU machine with 

8GB RAM. 

4.1 Example 

Let us consider the fractional integro-differential equation 
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Fundamental matrix relation of this is 
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Also, we have the matrix representation of conditions, 
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of the truncated fractional Bernoulli series 
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given xy 14
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equation. 
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Let us consider the fractional integro-differential equation 
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Also, we have the matrix representation of conditions, 
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and so we solve the this equation, we obtained the coefficients 

of the Taylor series 

 122191999999999.0A . 

Hence, for 4N , the approximate solution of example 2 is 

given 
2

4 xy   which is the exact solution of this equation. 

4.3 Example 

Consider the problem [12,16]  

8)()()( 2/3
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2

*  xyxyDxyD , ]1,0[x  

subject to the initial conditions 

0)0( y , 0)0(' y . 

Numerical results with comparison to Ref. [16] are given in 

Table 4. 

Table 4: Comparison of numerical results. 

x Exact 

solution 

Adomian 

method 

Taylor  

method 

Present 

method 

 

0.0 0.000000 0.000000 0.000000 0.000000  

0.2 0.125221 0.140640 0.125254 -0.41366  

0.4 0.455435 0.533284 0.455468 -0.07387  

0.6 0.950392 1.148840 0.950398 0.563342  

0.8 1.579557 1.963033 1.579689 1.411317  

1.0 2.315526 2.952567 2.315589 2.414368  

5. CONCLUSION 
In this study, we present a Bernoulli collocation method for 

the numerical solutions of Bagley-Torvik equation. This 

method transform Bagley-Torvik equation into a system of 

linear algebraic equation. The approximate solutions can be 

obtained by solving the resulting system, which can be 

effectively computed using symbolic computing codes on 

Maple 2016. This method has been given to find the analytical 

solutions if the system has exact solutions that are polynomial 

functions.  If the exact solutions of problem are not 

polynomial functions, then a good approximation can be 

gained by using the proposed method . The method can also 

extended to the system of linear Fractional differential 

equations with variable coefficients, but some modifications 

are required. 
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