
International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

42 

Dynamic Divisible Load Balancing Algorithm for 

Balancing Workload in Cloud Computing 

Neetu 
Department of Computer Science & Engineering 

Rajasthan College of Engineering for Women 
Bhankrota, Ajmer Road, Jaipur - 302026 

 

Subhash Chandra 
Assistant Professor, Department of Computer 

Science & Engineering 
Rajasthan College of Engineering for Women 

Bhankrota, Ajmer Road, Jaipur - 302026 

 

ABSTRACT 

One of the developing zones in the field of data innovation is 

Cloud Computing. Cloud computing is a term which includes 

virtualization, systems services, programming and web 

services. Cloud computing helps to share data and provides 

many resource to users. It incorporates adaptation to internal 

failure, high accessibility, adaptability, decreased overhead 

for clients, reduced expense of proprietorship, on interest 

administrations and so forth. Load balancing is a central 

challenge in cloud computing because measure of information 

storing increments rapidly in open environment. Load 

balancing is a way toward redistributing the workload among 

Datacenters to improve both asset use and job reaction time. 
Load balancing aids to allocate the static / dynamic workload 

across numerous nodes to guarantee that no solo node is 

overloaded. Several existing algorithms deliver load balancing 

and improved resource utilization. There are several type of 

loads are possible in cloud computing like memory, CPU and 

network load. The work presented in this paper provides 

better algorithm for balancing loads in cloud environment. 

The methodology adopted for this dissertation has minimized 

the make span time of the system and got better throughput of 

the system. The tool used to prove this work is CloudSim with 

integrated development environment as Java Eclipse. 

Keywords 

Load Balancing, Datacenter, Broker, Host, Cloud 

Virtualization, CloudSim, Dynamic load balancing, Load 

balancing Algorithm. 

1. INTRODUCTION 
In today scenario, Cloud computing is a buzzword in IT 

industry and many are interested to know what cloud 

computing is and how it works. Cloud computing is a 

technique to deliver information technology services on 

demand over a network rather than physically having the 

computing resources at the client location, in which resources 

are recovered from the Internet through online tools and 

applications. It permits us to manipulate, arrange and get to 

hardware and programming resources remotely. It offers 

online information storage, system and application. In other 

words, we can say cloud computing is a collection of servers 

which delivers services on demand. The cloud based services 

decrease the cost of hardware and software for the 

establishment of IT industry. Cloud computing is a strategy to 

upgrade the limit or include abilities powerfully without 

putting resources into new foundation, preparing newcomers, 

or buying new programming. Cloud computing includes the 

idea of cloud computing aside from that it gives on interest 

resources provisioning. 

The demand of cloud based services raised some issue like 

load balancing related to the cloud computing environment. 

The set number of resource and boundless number of demand 

makes some over-burdening situation in cloud. It is focused to 

give better usage of resources using virtualization process. 

1.1 Load Balancing 
Load balancing can be characterize as a strategy for dispersing 

workload on the different PCs or a PC bunch through network 

links to accomplish ideal resource use which boosts 

throughput and limits generally speaking reaction time. It 

limits the total waiting time of the resources just as dodges an 

excessive amount of over-burden on the resources. In this 

technique, traffic is divided among servers, so that data can be 

sent and received without maximum delay.  

One of the significant problem in cloud computing is to 

partition the workload dynamically. Total processing time 

required by a machine to implement whole the assigned jobs 

to that machine is termed as workload for that machine [13]. 

Load balancing is a method to improve the performance of a 

system by shifting the workload among all the processors 

[14]. The profits of distributing the workload includes higher 

resource utilization ratio which further leads to improving the 

whole performance thereby attaining maximum client 

fulfillment. Subsequently load balancing is one of the 

significant factors to boost the working performance of the 

cloud service provider. 

1.1.1 Classification of Load Balancing Algorithm 
Based on process orientation, load balancing algorithms are 

classified as: 

 Sender Initiated 

 Receiver Initiated 

 Symmetric 

Sender Initiated: In this category sender starts the process; 

the client sends request for until a recipient is allocated to him 

to get his remaining task at hand. For example the sender 

starts the process. 

Receiver Initiated: The receiver starts the procedure; the 

recipient sends a solicitation to recognize a sender who is 

prepared to share the workload for example the receiver starts 

the procedure. 

Symmetric: It is a mixture of both sender and receiver started 

kind of load balancing algorithm. 

The process based on the current state of the system, load 

balancing algorithms can be classified as: 

a) Static Load Balancing 

b) Dynamic Load Balancing 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

43 

 Static Load Balancing 

In the static load balancing algorithm the choice of moving 

the load does not depend upon the current scenario of the 

system. These algorithms needn't bother with the data in 

regards to current environment of the system. This kind of 

algorithms has serious drawbacks in the event of sudden 

disappointment of system resource, assignments and 

furthermore undertaking can't be shifted during its execution 

for load balancing. Static load balancing algorithms are not 

pre-emptive and in this way each machine has no less than 

one task allocated for itself. The four distinct sorts of Static 

load balancing process are Round Robin algorithm, Central 

Manager Algorithm, Threshold algorithm and randomized 

algorithm. 

 Dynamic Load Balancing 

Dynamic Load Balancing algorithms [9] are choice 

concerning load balancing dependent on the present 

environment of the system. There is no requirement of any 

prior information about the system. This will overcome the 

disadvantages of static methodology. This means it takes into 

consideration process pre-emption which isn't supported in 

Static load balancing approach. The dynamic algorithms are 

complex; however they can give better execution and 

adaptation to non-critical failure. A critical favorable position 

of this methodology is that its choice for balancing the load 

depends on the present environment of the system which 

helps in improving the general execution of the system by 

relocating the load powerfully.  

1.2 Virtualization in Cloud 
Virtualization means which are not exist in real, but it 

provides everything like real. Virtualization is the software 

implementation of a machine which executes different 

programs like a real machine. Through the virtualization user 

can use the different applications or services of the cloud, so 

this is the main part of the cloud environment. 

There are two different types of virtualization is used in cloud 

environment. 

a) Full virtualization 

b) Para virtualization 

 Full Virtualization: Full virtualization means a 

complete machine is installed on another machine which 

provides all those functions which exist on the original 

machine.  

 Para virtualization: Para virtualization means the 

hardware allows numerous operating systems to run on 

single machine. It allows efficient use of system 

resources such as memory and processor.  

2. RELATED WORK 
Multiple static and dynamic algorithms have been proposed in 

previous decade. Static algorithms allocate workload among 

processors before execution of algorithm and hence require 

prior knowledge of the system state. These algorithms give 

better results only when there is minimum variation in 

upcoming workload. J.Li et. al., [1] and B.Sahoo et. al., [2] 

both use the greedy approach to reduce the makespan time 

and execution time without using any load balancing approach 

(task migration or virtual machine migration), both approach 

do not work well in real environment. Greedy based algorithm 

[2] gives better results than [1] because this algorithm follows 

the dynamic approach. P.Samal and P.Mishra proposed round 

robin procedure considering the parameter reaction time and 

asset usage to tackle the issue of load balancing in cloud 

environment [3] yet algorithm don't limit the reaction time 

and makespan time. All discussed algorithm are not 

appropriate for real time environment like cloud computing 

where load on each node vary very habitually i.e., we cannot 

forecast the coming load therefore we need a dynamic 

algorithm. There is no requirement of advanced information 

about the resource and task in dynamic algorithm because this 

type of algorithm constantly observes the resource. 

A.Lakra and D.Yadav [4] proposed an algorithm to decrease 

turnaround time, cost and enhance throughput parameter. 

Abdulhamid, AbdLatiff et al. [5] have assessed chosen 

scheduling algorithms dependent on the parameters, for 

example, load balancing, energy consumption, and make span 

and so forth. They concluded that none of the checked on 

scheduling algorithms satisfy the whole scheduling parameter 

necessities. Be that as it may, their audit assessed assignment 

scheduling algorithms and furthermore there is a gap for 

examining the open issue and difficulties in their survey. Jing 

Tai Piaoet. al. [6] inside the implement, they depicted 

approach places the VMs on physical machines with 

observation of the network things between the data storage 

and thus the physical machines. Throughout the implement, 

their strategy has in addition monitored the concept 

throughout that instable network situation changed the data 

access behaviors and deteriorated the appliance performance, 

and prohibited this idea by migrating the VM to totally 

different physical machines. All through the actualize, their 

system has what's more checked the idea all through that 

instable system circumstance changed the information get to 

practices and weakened the apparatus execution, and 

restricted this thought by moving the VM to very surprising 

physical machines. The simulation result on CloudSim 2.0 

shown the mentioned strategy may update the task completion 

time. 

D. Chitra Devi  et. al. [7] worked on Load Balancing in Cloud 

Computing surroundings using Improved Weighted Round 

Robin Algorithm for No preemptive Dependent Tasks. 

According to [8] Cloud computing usages the concepts of 

scheduling and load balancing to transfer jobs to underused 

VMs for efficiently sharing their sources. The taking part 

heterogeneous resources are overseen by designating the 

undertakings to fitting resources by static or dynamic 

scheduling to make the cloud computing progressively 

effective and hence it improves the client fulfillment. Goal of 

this work was to present and assess the proposed scheduling 

and load balancing calculation by considering about the 

capacities of each virtual machine(VM), the task length of 

each requested job, and the inter dependency of multiple 

tasks. Performances of the planned algorithm were studied by 

comparing with the existing methods. We have proposed and 

develop a dynamic load balancing algorithm that minimizes 

the make span time of the system and get better throughput of 

the system. 

3. PROPOSED WORK 
We have proposed a dynamic divisible load balancing 

algorithm in case of clouds is an optimal division of loads 

among datacenters, whose objective is to reduce, make span 

time and increase average resource utilization ratio in cloud 

environment. We created number of datacenter host and 

broker by using CloudSim tool. 

3.1 Algorithm and Technique 
All Clients should input the number of Datacenter Hosts, 

Brokers, VMs and cloudlets. After which we calculate the 

host load, VM load and cloudlet weight. 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

44 

Host Load = Host Bandwidth + Host RAM + Host CPU time 

VM Load = VM Bandwidth + VM RAM + VM CPU time 

Cloudlet weight = cloudlet length + input file size + output 

file size. 

Now, we assign priority to the cloudlets and arrange the 

cloudlets accordingly. If any cloudlets have same priority then 

cloudlet with least weight will come first. Also arrange the 

Host and VMs according to their loads in ascending order. 

For allocating VMs to host, in arranged VM and Host check if 

the VM load is less than the host load and if yes, then allocate 

the VM to the host else check another host. After allocation 

subtract the allotted VM load from the allotted host load. For 

allocating cloudlets to VM, we have defined a least bound, 

which is given as: 

Least Bound = ceil (number of cloudlet / number of VM) 

Also, we keep tracking the number of cloudlets connected to 

each VM and make sure it will not exceed the least bound 

value.  

In arranged cloudlets and VM check if cloudlet weight is less 

than the VM load, also check if number of connected 

cloudlets to that VM is less than or equal to the least bound 

then allocate cloudlet to the VM, else check for another VM. 

After allocation update the number of connection of the 

allotted VM and subtract the allotted cloudlet weight from the 

allotted VM load. 

We have calculated the estimated VM duration by dividing 

the VM load by the available computer resources. 

Estimated VM duration = VM load / (Host CPU time + Host 

RAM + HOST Bandwidth) 

Similarly, we have calculated the estimated cloudlet duration 

by dividing cloudlet weight by the available VM resources. 

Estimated cloudlet duration = cloudlet weight / (VM CPU 

time + VM RAM + VM Bandwidth). 

We have also calculated the throughput of the system as,  

Throughput = Number of cloudlet / total time taken. 

3.2 BLOCK DIAGRAM 

 

Fig 1: Block Diagram 

In figure 3.2.1, data flow diagram shows the process of 

proposed algorithm. 

3.3 Environment execution 
Module 1: Datacenter host and Broker creation 

Firstly, number of Datacenter host and Broker will be created 

which is done using the CLOUDSIM tool. 

Step 1: Start. 

Step 2: Declare variable nofdatacenter and nofbroker creation. 

Step 3: Read nofdatacenter and nofbroker. 

Step 4: For i = 1 to nofdatacenter 

Call CreateDatacenter(i) 

Step 5: Create Datacenter 

Declare variable nofmachine. 

Read random value of nofmachine from 2 to 5. 

For j = 1 to nofmachine 

Call Host from CLOUDSIM library. 

Declare variable ram, bw, storage and host_id. 

Initialize host_id as 0. 

Read random values of ram, bw and storage. 

host_id = host_id +1  

Step 6: For k = 1 to nofbroker 

Call CreateBroker 

Step 7: CreateBroker 

Declare variable dcb. 

dcb=call Datacenter Broker class from CLOUDSIM library. 

Step 8: Stop. 

Module 2: VM and cloudlet creation 

VM and cloudlet will be created using the CLOUDSIM tool. 

Step 1: Start. 

Step 2: Declare variable nofvm and nofcloudlet. 

Step 3: For i = 1 to nofvm 

 Call VM class from CLOUDSIM library. 

Step 4: For j =1 to nofcloudlet 

 Call Cloudlet class from CLOUDSIM library. 

Step 5: Stop. 

Module 3: Host Load, VM Load and cloudlet weight 

algorithm.  

Now, Host Load, VM Load and cloudlet weight will be 

calculated by cloud provider for further allocation of load to 

the server.  

Step 1: Start. 

Step 2: Declare variables h_cpu, h_mips, h_ram, vm_cpu,     

vm_mips, vm_ram, c_length, c_input_file, c_output_file, 

host_load, vm_load and cloudlet_weight. 

Step 3: Read values h_cpu, h_mips, h_ram, vm_cpu, 

vm_mips, vm_ram, c_length, c_input_file and c_output_file. 

Step 4: Add h_cpu, h_mips and h_ram and assign the result to 

host_load. 

Step 5: Add vm_cpu, vm_mips and vm_ram and assign the 

result to vm_load. 

Step 6: Add c_length, c_input_file and c_output_file and 

assign the result to cloudlet_weight. 

Step 7: Stop. 

Module 4: Arranging Host Load and VM Load. 

Host Load and VM Load is arranged in ascending order. 

Datacenter host and broker creation 

Vm and cloudlet creation 

Calculating host load,VM load and 
cloudlet weight 

Priority assignment for cloudlets 

Allocation 

Evaluation result 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

45 

Step 1: Start. 

Step 2: Declare array host_load [ ] and vm_load [ ]. 

Step 3: Declare variable temp, nofhost and nofvm. 

Step 4: Read values nofhost and nofvm. 

Step 5: For i = 1 to nofhost 

Read host_load [ ] 

Step 6: For j = 1 to nofvm 

Read vm_load [ ] 

Step 7: For k = 1 to nofhost 

If host_load [k] >host_load [k+1] 

temp = host_load [k] 

host_load [k] = host_load [k+1] 

host_load [k+1] = temp 

Step 8: For l = 1 to nofvm 

If vm_load [l] >vm_load [l+1] 

temp = vm_load [l] 

vm_load [l] = vm_load [l+1] 

vm_load [l+1] = temp 

Step 9: Stop. 

Module 5: Allocating VM to Host and finding estimated 

duration of VM 

Now, we apply the algorithm for allocating VM to Host. After 

which we evaluate estimated duration of VM. 

Step 1: Start. 

Step 2: Declare array vm_duration [ ] and final_vm [ ]. 

Step 3: Declare variable temp. 

Step 4: For i = 1 to nofvm 

For j = 1 to nofhost 

If vm_load [i] <host_load [j] 

Allocate VM to the host. 

 final_vm [k] = i 

k = k + 1   vm_duration [i] = vm_load[i] / 

host_load[j] 

temp = host_load [j] 

host_load [j] = temp – vm_load [i] 

Step 5: Stop. 

Module 6: Arranging cloudlets 

Now, cloudlet will be arranged according to the assigned 

priority and if any cloudlet have same priority then cloudlet 

with minimum weight will come first. 

Step 1: Start. 

Step 2: Declare an array priority. 

Step 3: Read values of priority [ ]. 

Step 4: Declare variable nofcloudlet, temp1 and temp2. 

Step 5: Read value of nofcloudlet. 

Step 6: For i = 1 to nofcloudlet 

Read cloudlet_weight [ ]. 

Step 4: For j = 1 to nofcloudlet 

If priority [j] > priority [j+1] 

temp1 = priority [j] 

priority [j] = priority [j+1] 

priority [j+1] = temp1 

temp2 = cloudlet_weight [j] 

cloudlet_weight [j] = cloudlet_weight [j+1] 

cloudlet_weight [j+1] = temp2 

else if priority [j] = priority [j+1] 

if cloudlet_weight [j] >cloudlet_weight [j+1] 

temp2 = cloudlet_weight 

[j]cloudlet_weight[j]=cloudlet_weight [j+1] 

cloudlet_weight [j+1] = temp2 

Module 7: Allocating cloudlet to VM, finding estimated 

duration of cloudlet and finding total estimated duration 

Now, algorithm is applied to allocate cloudlet to capable VM 

server. After which estimated cloudlet duration is evaluated 

and total estimated duration will be obtained by the 

summation of estimated VM duration and estimated cloudlet 

duration. 

Step 1: Start. 

Step 2: Declare array cloudlet_duration [ ], total_duration and 

active [ ]. 

Step 3: Declare variable temp1, temp2, vm_dur and 

least_bound. 

Step 4: For m = 1 to nofvm 

active [m] = 0 

Step 5: least_bound = ceil (nofcloudlet / nofvm) 

Step 4: For i = 1 to nofcloudlet 

For j = 1 to nofvm 

If cloudlet_weight [i] <vm_load [j] and active [j] <= 

least_bound 

Allocate cloudlet to the VM. 

cloudlet_duration [i] = cloudlet_weight[i] / vm_load[j] 

temp1 = vm_load [j] 

For k = 1 to final_vm 

If final_vm = j 

vm_dur = vm_duration [k] 

total_duration [i] = vm_dur + cloudlet_duration 

vm_load [j] = temp – cloudlet_weight [i] 

temp2 = active [j] 

active [j] = temp2 + 1 

Step 5: Stop. 

Module 8: Finding throughput 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

46 

Throughput is the rate at which number of cloudlet get 

finished per unit time.  

Step 1: Start. 

Step 2: Declare variable throughput, finish_time and temp. 

Step 3: For i = 1 to nofcloudlet 

temp = total_duration [i] 

finish_time = finish_time + temp 

Step 4: throughput = nofcloudlet / finish_time 

Step 5: Stop. 

4. RESULTS ANALYSIS 
After applying our algorithm let’s find the result for the 

following scenario: 

Number of Datacenter = 3. 

Number of Broker = 5. 

Number of VM = 7. 

Number of cloudlet = 10. 

4.1 Evaluation 

Table 1. Datacenter detail 

Datacenter Name No. of machine Host ID No. of PE RAM Bandwidth 

Datacenter_0 2 0 1 4096 16000 

Datacenter_0 2 1 1 2048 25000 

Datacenter_1 4 0 4 4096 24000 

Datacenter_1 4 1 4 2048 8000 

Datacenter_1 4 2 4 4096 8000 

Datacenter_1 4 3 4 2048 24000 

Datacenter_2 2 0 3 4096 8000 

Datacenter_2 2 1 3 2048 25000 

 

Table 2. Broker detail 

Broker Name Broker ID 

Broker_0 5 

Broker_1 6 

Broker_2 7 

Broker_3 8 

Broker_4 9 

Table 3. Host details 

Host ID Datacenter ID RAM STORAGE Bandwidth No. of PE 

0 0 4096 1000000 16000 1 

1 0 2048  1000000 25000 1 

0 1 4096 1000000 24000 4 

1 1 2048 1000000 8000 4 

2 1 4096 1000000 8000 4 

3 1 2048 1000000 24000 4 

0 2 4096 1000000 8000 3 

1 2 2048 1000000 25000 3 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

47 

Table 4. VM details 

VM ID Bandwidth RAM MIPS No. of PE 

0 2000 1024 76 2 

1 1000 3072 278 2 

2 1000 2048 553 2 

3 5000 3072 705 2 

4 2000 512 499 2 

5 1000 3072 785 2 

6 5000 2048 381 2 

 

Table 5. Host Load 

Host ID Datacenter ID LOAD 

0 0 20595 

1 0 48142 

0 1 32732 

1 1 47416 

2 1 64148 

3 1 94832 

0 2 16587 

1 2 48126 

 

Table 6. VM Load 

VM ID LOAD 

0 3100 

1 7450 

2 11051 

3 19828 

4 22839 

5 27696 

6 35125 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Allotted host to VM 

Datacenter ID Host ID VM ID 

2 0 0 

2 0 1 

0 0 2 

1 0 3 

1 1 4 

2 1 5 

0 1 6 

 

Table 8. Cloudlet Priority assignment 

Cloudlet ID Weight Priority 

8 282 0 

1 1007 0 

7 555 2 

3 666 2 

9 709 5 

0 760 5 

2 777 5 

5 336 7 

6 566 7 

4 1446 8 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

48 

Table 9. Allotted cloudlet to VM 

VM ID Cloudlet ID 

0 8 

0 1 

0 7 

1 3 

1 9 

1 0 

2 2 

2 5 

2 4 

3 6 

 

Table 10. Evaluated result 

Cloudlet ID Flow Time Start Time Finish Time 

8 0.27786 0 0.27786 

1 0.54424 0.27786 0.82210 

7 0.49335 0.82210 1.31545 

3 0.64178 1.31545 1.95723 

9 0.65689 1.95723 2.61412 

0 0.67748 2.61412 2.29160 

2 0.60690 2.29160 3.89850 

5 0.56929 3.89850 4.46779 

6 0.59354 4.46779 5.06133 

4 0.67870 5.06133 5.74003 

 

4.2 Calculating make span time 
Make span time = Summation of flow time of all cloudlet 

 Make span time = 5.74003   

4.3 Calculating throughput 
Throughput = number of cloudlet / make span time 

 Throughput = 10 / 5.74003 

 Throughput = 1.74215 

4.4  Analyzing throughput 
Series 1:  

Number of Datacenter = 13. 

Number of Broker = 15. 

Number of VM = 20. 

Series 2:  

Number of Datacenter = 15. 

Number of Broker = 17. 

Number of VM = 15. 

Series 3:  

Number of Datacenter = 14. 

Number of Broker = 16. 

Number of VM = 17. 

Figure 4.4.1 shows the throughput graph of the above cases 

with four different numbers of cloudlets 30, 60, 90 and 120. 

X-axis shows the number of cloudlets whereas Y-axis shows 

the throughput of the system. Client provides the number of 

Datacenter, Broker, VM and cloudlet. Each Datacenter creates 

number of hosts depending on the algorithm and cloud 

provider calculate the loads and allocate to the capable server 

according to the implemented algorithm. And throughput is 

evaluated accordingly. 

 

Fig 2: Performance evaluations according to throughput 

5. CONCLUSION AND FUTURE SCOPE 
This paper provides knowledge to get familiar with the 

available CloudSim packages which help in implementing any 

load balancing algorithm. Using this algorithm, throughput 

can be maintained. Overall, the end goal of forwarding the 

incoming cloudlets to the capable server has been achieved. 

And with this proposed work provides a lot about cloud 

computing and load balancing, especially for those who never 

had much insight in such vast topic. 

This proposed work can be further extended to be applied on 

load migration environment. This proposed work can also be 

extended to provide strength check of the system i.e., if any of 

the server is failed then the algorithm will stop sending 

cloudlet to that server. Also, this algorithm can be applied on 

pre-emptive system with little changes. 

6. REFERENCES 
[1] Ji.Li, Longhua Feng, Shenglong Fang, “An Greedy-

Based Job Scheduling Algorithm in Cloud Computing”, 

Journal of Software, Vol. 9, No. 4, April 2014. 

[2] Bibhudatta Sahoo, Dilip Kumar and Sanjay Kumar Jena 

“Analysing the Impact of Heterogeneity with Greedy 

Resource Allocation Algorithms for Dynamic Load 

Balancing in Heterogeneous Distributed Computing 

System,” IJCA Impact of Hetroginity, Jan. 2013. 

[3] P. Samal and P. Mishra “Analysis of variants in Round 

Robin Algorithms for load balancing in Cloud 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 20, June 2019 

49 

Computing,” International Journal of Computer Science 

and Information Technologies, 2013. 

[4] A. Lakra, and D. Yadav, "Multi-Objective Tasks 

Scheduling Algorithm for Cloud Computing Throughput 

Optimization", Procedia Computer Science, 2015. 

[5] Sim Abdulhamid, A Latiff, M Shafie, "Scheduling 

techniques in on-demand cloud as a service cloud: A 

review", Journal of Theoretical and Applied Information 

Technology 63: 10--19. 

[6] Jing Tai Piao and Jun Yan “A Network-aware Virtual 

Machine Placement and Migration Approach in Cloud 

Computing”, IEEE, 2010, Pp 87-92. 

[7] D. Chitra Devi and V. Rhymend Uthariara, “Load 

Balancing in Cloud Computing Environment Using 

Improved Weighted Round Robin Algorithm for Non-

preemptive Dependent Tasks”, Hindawi Publishing 

Corporation e Scientific World Journal Volume 2016, PP 

1-14. 

[8] Sandeep Joshi and Pradeep Kumar Tiwari. "Load 

management using virtual machine migration." 

International Journal of Advanced Computer 

Communications and Control Vol. 03, No. 01, January 

2015. 

[9] Ray, Soumya, and Ajanta De Sarkar, “Execution analysis 

of load balancing algorithms in cloud computing 

environment”, International Journal on Cloud 

Computing: Services and Architecture (IJCCSA) 2.5 

(2012): 1-13. 

[10] Peter Mell and Timothy Grance, “The NIST Definition 

of Cloud Computing”, NIST Special Publication 800-

145. 

[11] Dr. Neenu Juneja, Krishan Tuli and Sarabjeet Kaur, 

“Load Balancing Techniques in Cloud Computing”, 

International Journal for Scientific Research & 

Development Vol. 4, Issue 12, 2017 ISSN (online):2321-

0613. 

[12] Rajwinder Kaur and Pawan Luthra, “Load Balancing in 

Cloud Computing”, Proc. of Int. Conf. on Recent Trends 

in Information, Telecommunication and Computing, 

ITC. 

[13] Nitin Kumar Mishra and Nishchol Mishra, “Load 

Balancing Techniques: Need, Objectives and Major 

Challenges in Cloud Computing- A Systematic Review”, 

International Journal of Computer Applications (0975 – 

8887) Volume 131 – No.18, December 2015. 

[14] Kaushal M. Madhu and S. M. Shah, “Study on Dynamic 

Load Balancing in Distributed System”, International 

Journal of Engineering Research & Technology (IJERT) 

Vol. 1 Issue 9, November- 2012 ISSN: 2278-0181 

[15] Sukhvir Kaur and Supriya Kinger, “Review on Load 

Balancing Techniques in Cloud Computing 

environment”, International Journal of Science and 

Research (IJSR) ISSN (Online): 2319-7064 Impact 

Factor (2012): 3.358. 

  

 

IJCATM : www.ijcaonline.org 


