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ABSTRACT 

In the high speed wireless communication system most 

commonly used linear detector is a linear minimum mean 

square error (LMMSE) due to its low complexity. In this 

paper the decoder is designed for the MIMO-OFDM based 

system considering the mobile terminal downlink scenario. 

This MIMO decoder demands the complex matrix inversion. 

To invert large matrices, systolic array based QR 

decomposition (QRD) is usually used. However, the matrices 

involved in MIMO-OFDM based mobile terminal is generally 

small, hence QRD is not necessarily efficient. In this paper a 

proposed complex matrix inversion method is Alamouti 

blockwise analytic matrix inversion (ABAMI), which 

achieves good trade-off between performance and silicon area 

compared to the prior work. This matrix inversion method 

used to implement LMMSE decoder makes it more flexible 

and faster. 
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1. INTRODUCTION 
MIMO technologies have been adopted at the forefront of 

next generation wireless communication to decide the 

wireless standards. MIMO along with OFDM is a promising 

technology, mostly adopted in the wireless standard such as 

WiMAX and 3GPP LTE to increase the spectral efficiency. 

The 3GPP LTE radio access technology, use MIMO-OFDM 

technologies to achieve high data rate of the target of 

100Mbits/s for the downlink scenario. According to the LTE 

and WiMAX standards 2x2 and 4x2 MIMO schemes are 

preferred as good trade-off between the complexity and 

performance gain. 

Here, the MIMO-OFDM technology used for the mobile 

terminal by considering downlink scenario. The baseband 

processing of a MIMO system involves complex valued 

matrix inversion and matrix multiplication. This signal 

processing needs large computing power as compared to the 

single antenna system. As the mobile terminal is battery 

operated, hence the power is limited. The other problem is to 

increase the number of antennas at the mobile terminals is due 

to lack of space availability and integration cost, but increase 

in the number of antennas at the base station is more practical.  

This scenario will  help to  increase the diversity gain  and  

data rate,  in the Multi-user STBC. The maximum number of 

antennas in the mobile handset will be restricted to four in the 

near future. In most of the prior work either 4x4 MIMO 

systems or 2x2 MIMO systems are greatly adopted. The 

MIMO-OFDM receiver involves the complex matrix 

manipulation such as matrix inversion and matrix 

multiplication, which leads to increase the receiver 

complexity. As the limited power available at the mobile 

terminals the critical issue of the power consumption, 

performance in terms of latency and hardware complexity 

carefully need to be addressed in the MIMO-OFDM system. 

2. SYSTEM MODEL 
Diversity in MIMO leads to link reliability between the 

transmitter and receiver for a given data rate, which can be 

achieved in multiple dimensions such as space, frequency and 

time. In the transmit diversity scheme space-time block 

coding (STBC) is one of the most widely adopted 

transmission methods. This method transmits multiple copies 

of the information symbol over multiple independent channels 

in time and space. Due to the increase in link reliability, the 

channel fading decreases and increases in the robustness to 

co-channel interference. The data transmission with assured 

diversity achieved by the two transmit diversity schemes, one 

is the space-time block coding used in WiMAX and other is 

the space frequency block coding in 3GPP LTE with very low 

complexity symbol detector at the receiver side. The basic 2x2 

Alamouti matrix in [1] is defined as  

    
    

   
   

          (1)        

 
Fig. 1 Alamouti Space-Time Encoder 

The multi-user STBC scheme adopts Alamouti structure due to 

its simplicity to transmit information symbols which increase 

the diversity order. An STBC is also represented in matrix 

form in which row represents a time slot and each column 

represents one antenna transmission. The transmitted signals  

are traversing through multipath in air media with scattering,  

reflection and refraction. The multiple copies are received at 

the receiver which may be corrupted due to thermal noise in 

the receiver. Some of the copies of the received data may be 

better than the others from the multiple copies, which help to 

decode the data correctly at the receiver. The advantage of 

space-time block coding is that it combines the multiple copies 

of the received signal and extract as much as information from 

each. A typical block diagram of the Alamouti space- time 

encoder is shown in the Fig 1. The data rate can be enhanced in 

multi-user STBC in the down link scenario where a base 

station (BS) uses two antenna arrays to transmit data to single 
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antenna array at the mobile station as shown in Fig. 2.  

  

 

 

 

 

 

Fig. 2 Alamouti Multi-User Downlink 

Transmition Scheme 

3. LINEAR MIMO DECODERS 
Zero-forcing (ZF) and Linear Minimum Mean Square Error 

(LMMSE) are linear decoders most widely used decoders in 

MIMO systems due to its low complexity. LMMSE 

performance better than the ZF decoder as noise factor is taken 

into consideration. In LMMSE detector the receiver symbol y 

is multiplied with a linear filter as  

                                          
- 
                                   (2)  

which involves the pre-calculation of an equalization matrix W 

                                
- 
                             (3)   

Here, σ2 is the noise variance. The computation of W needs to 

complete as soon as possible because without W symbol 

detection will not start.  The computation of W is channel rate 

instead of symbol rate computation, hence W needs to be 

computed only once during the channel coherence time. The 

received symbol y has to be stored in a buffer until the W is 

available which adds the memory cost in the system.  The 

calculations of W involve predominantly matrix inversion and 

matrix multiplication. The variation in the wireless channel 

will determine the frequency of matrix manipulation. Here we 

have considered the channel matrix H is of 4x4 size 

considering two user 2x2 STBC MIMO-OFDM  based 

WiMAX system with the channel bandwidth 5 MHz, 512 

subcarrier and carrier frequency f is 2.4 GHz. If the mobile 

handset moving with speed 60 Km/hr then based on the 

following formula the maximum Doppler shift fm is 139 Hz. 

                       
  

 
                                        (4) 

The formula for estimating the channel coherence time is 

defined in [2] as 

                   
 

  
    (5) 

For the Doppler shift of 139 Hz the coherence time Tc to be 

8ms. During the estimation of the channel matrix the mobile is 

considered as stationary, hence it will not change drastically 

within the coherence time.  The channel estimation and the 

channel preprocessing task have to be finished before the 

detection starts. 

4. MATRIX INVERSION FOR MIMO  

DECODING 
In the equation (3) W represents the equalization matrix. It 

involves the matrix inversion and matrix multiplication. For 

small matrices, a matrix inversion technique used is a direct 

analytic matrix inversion which is less complex and easy to 

implement. For bigger matrix, QR decomposition is a 

traditionally used decomposition of the original matrix to 

generate a unitary matrix Q and upper triangular matrix R.  

The inverse matrix of Q is simply its hermitian transpose and 

the inverse matrix of R can be computed by using back 

substitution. Other than QR decomposition the available 

algorithms for matrix inversion are Strassen, Strassen-

Newton, Gaussian elimination, Gauss-Jorden, LU 

decomposition, Cholesky decomposition etc.[3] But 

disadvantage of these algorithms they require square root 

operation which is having high computational complexity. 

However, Squared Givens Rotation (SGR) developed to 

reduce the square root operation, but this also has the 

drawback that it cannot handle the situation when zeros 

occurs on diagonal element. To overcome this drawback 

Modified SGR (MSGR) proposed, but many division 

operations are involved in this algorithm [4]. The Cholesky 

decomposition method requires positive definite matrix to 

ensure the argument of the square root is non-negative.  

So, a faster way to compute matrix inversion is to partioning 

the bigger matrix into four smaller matrices. This method is 

known as blockwise analytic matrix inversion. For example, to 

calculate the inverse of 4x4 matrix X, it is first divided into 

four sub-matrices 

      
  
  

     

       
                                        

                                

The blockwise analytic matrix inversion (BAMI) is more 

suitable as compared to the direct analytic matrix inversion as 

the least number of subtraction operations, which will avoid 

the possibility of cancellation. So, the blockwise analytic 

matrix inversion is an alternate method for the QR 

decomposition to calculate the matrix inversion of 4x4 matrix. 

For the small 2x2 and 3x3 matrices the direct analytic 

approach is preferred [5]. In this paper, the adopted matrix 

inversion is based on BAMI and the special structure of 

Alamouti. This method is known as Alamouti blockwise 

analytic matrix inversion (ABAMI), which significantly 

reduces the amount of computation needed to invert 4x4 

matrix. The inversion of 2x2 Almouti matrix presented in 

equation (1) can be computed as follows 

               
    

   
   

  
  

          

                    

                     
 

    
       

  
  

    

  
   

       

5. MATRIX   COMPUTATION   OF  

EQUALIZATION COEFFICIENT    

MATRIX ‘W’  
A general MIMO decoder system with nt transmit antennas 

and nr receiving antennas is divided into two parts, namely 

channel preprocessing and the symbol detection. The channel 

preprocessing units pre-calculate the equalization coefficient 

matrices W from the estimated channel matrix H. The 

equalization coefficient matrices W is given by the equation 

(3) where H is a channel matrix of size nr x nt. The 

implementation of this equalization coefficient matrix W is 

divided into three parts such as  

 Computation of B              

 Computation of B inversion 

 Multiplication of B-1 and HH 
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5.1 Computation of B              
The matrix B involves multiplication of H hermitian matrix 

and H matrix. The matrix H has the complex values. The size 

of the H matrix is normally 2x2 or 4x4. Here, for 

implementation H matrix is considered of size 4x4. For small 

size matrices, to obtain the matrix inversion with higher speed 

direct analytic matrix inversion is used. For STBC scheme the 

4x4 MIMO channel matrix H with complex value is given by  

    

    

   
   

 
    

   
   

 

    

   
   

 
    

   
   

 

   

For linear MMSE detection, we have 

                                   

  

 
 
 
 

   
   

    

   
   

 

  
    

  
   

   
    

 
 
 

           

                    
       

       
       

      

         
       

       
       

           

                 
         

     
         

                             

           
         

     
           

                     

These computations give    and     as real values, whereas    

and     are complex values. The computation of B 

involves   ,   ,    and     values.  From above equation, it is 

observed that   ,   ,    and     computation requires complex 

multipliers and adders. These computations can be done in 

two different ways. 

Method – I: In this method   ,   ,    and     are computed 

parallely.  The equations of     and     involves single input 

and its conjugate in the product terms. To obtain the product 

terms in    and      square unit is used. The equation of    

and     involves two different inputs in each product term, so 

to obtain these product terms complex multipliers are used. To 

obtain the complex conjugate of input 2s complement unit is 

used. To find out the all four values parallely, four multiply 

and accumulate units are required. The following Fig.3 shows 

the schematic diagram for the computations of     and    . 
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Fig. 3 Schematic Diagram for the computation of b1 and b2 
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Fig. 4 MAC unit for the computation of b3 and b4 

The above Fig.4 shows the schematic diagram for the 

computations of     and    . The square unit used for    and  

   computation requires two multiplier and one adder. The 

complex multiplier uses four multipliers and two adders. The 

multiply and accumulation unit of    or      requires a more 

number of adders as compared to    or    multiply and 

accumulate (MAC) unit. The number of adders are less in    

or    computation because all the product terms are real. On 

the contrary, as    or      are complex, hence separate adders 

being required for the real part and imaginary part of data. 

Method – II:  In method I,   ,   ,    and     are computed 

parallely.  The equations of    and     as well as the equations 

of    and     are similar. So instead of using separate unit for  

   and    , a single unit can be used with the selection logic 

for input. Similarly for    and     computation single unit can 

be used with selection logic. This method reduces the number 

of square unit and complex multipliers. The following Fig. 5 

shows the schematic diagram for the computation of    or   . 
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Fig. 5 Schematic diagram for computation of b1 or b2 
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                      2s Complement Block 

Fig. 6 MAC unit for computation of b3 or b4 

The above logic reduces four square units at the cost of the 

eight multiplexer in    and     computation.  Similarly, four 

complex multipliers are reduced with increase in eight 

multiplexers in    and     computation. The above Fig.6 

shows the schematic diagram of    and     computation. 

5.1.1 Operations Involved in Computation of 

Matrix B 
The following Table 1 shows the various operations involved 

in the computation of matrix B 

Table 1:  Complex Floating-point Instructions 

Name Description 

Complex Squared absolute        
       

  

Complex Multiply 
                     

                      

Two’s Complement         

40 Bit Adder 

              

    and    each are of  

40 bit 

 
 

 

5.1.2 Numeric Representation 
The computation of matrix B involves the data representation 

in fixed point format. The fixed point format uses the 20 bit 

representation in which 8 bits are used for representing the 

integer and 12 bits are used for the fractional data. For 

increasing accuracy, multiplier output 40 bits is processed as 

it is. Hence, 40 bit adder is used to add the output of 

multiplier.  

5.2 Computation of Matrix Inversion of B  
The Hermitian and Alamouti structure of         σ   provide 

simplicity for computing matrix inversion. 
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where             ,  

                                       

                                        

                                        

                                    
 

  
 

                                       
       

 
 

                                   
 

        
  

This matrix inversion involves multiplication, addition and 

inverse operations. The division operation is performed by 

using divider which uses 16 bit data as dividend and a divider. 

To perform the divider operation, if the dividend is smaller 

than the divider then the division operation gives a result as 

quotient value approximately zero. To avoid this problem, 

common scaling factor of 100 is used for c1, c2, c3 and c4. 

However, due to this magnitude value increase by the same 

factor.  

5.3 Computation of the Equalization  

Factor W  
The computation of matrix inversion discussed in the previous 

part which involves the operations like square, complex 

multiplier, adder etc. To obtain the equalization term W, 

multiplication of two matrices is done i.e.          . 
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Fig. 7 Computation of Equalization Term W 

The above Fig. 7 shows the schematic diagram for the 

computation of the equalization matrix W. The multiplication 

of B-1 and HH includes real multiplier, complex multiplier, 4:1 

multiplexer and adder. The H and B-1 matrix is of size 4x4 

hence the multiplication of these two matrices results into 16 

complex values. To determine the all 16 values only four 

circuits of multiply and accumulate units are used. The use of 

4:1 multiplexer selects the different inputs and passed to the 

multiplier. This additional selection logic reduces 12 MAC 

unit. This reduction in hardware increases the latency. The 

single MAC unit calculates four elements of one row; such 

four MAC units are used to find all 16 values.  

6. IMPLEMENTATION  
The 4x4 LMMSE MIMO decoder design was successfully 

synthesized, placed, routed and verified on Xilinx Virtex- 4 

series part. For the FPGA implementation Xilinx ISE and core 

generator is used to synthesize the data path components. 

Here, the matrix to be inverted is the size of 4x4 and the data 

is presented in 20 bit fixed point format which is usually 

chosen for the mobile handset to improve the area efficiency. 

Matrix inversion computation involves multiplication, 

division, addition and subtraction. Following Table 2 shows 

implementation results of the LMMSE decoder including the 

resource utilization from the synthesis report. 

Table 2:  FPGA Implementation Result 

 Method-I Method-II 

FPGA Type Virtex4 Virtex4 

Number of Parallel Streams 4 4 

Datatype  Fixed Fixed 

Wordlength (bits) 20 20 

Number of Slices 6189 4149 

Number of DSP48s 61 37 

Cycles to compute W 

(LMMSE) 
20 21 

Latency/subcarrier 48.52ns 48.64ns 

Frequency (MHz) 130 128 

 

Table 3: FPGA Implementation Result of other work for      

Comparison 

 Ref.[9] Ref.[8] Ref.[7] Ref.[6] 

FPGA Type Virtex4 Virtex4 Virtex2 Virtex2 

Number of 

Parallel 

Streams 

4 4 1 1 

Datatype  floating Fixed Fixed 

Wordlength 

(bits) 
20 20 16 12 

Number of 

Slices 
8516 9474 16805 4400 

Number of 

DSP48s 
0 0 44 0 

Cycles to 

compute W 

(LMMSE) 

120 120 66 100 

Latency/ 

subcarrier 
0.188μs 0.563μs 45μs -- 

Frequency 

(MHz) 
120 120 66 100 

                                                                                                     

As from the above Table 3 it seems that the our 20 bit fixed 

point implementation consumes less area and faster as 

compared to the synthesis result present in [6], [7], [8] and [9]. 

7. CONCLUSION 
In this paper, we have presented a simple and efficient matrix 

inversion method for small matrices of size 4x4. The 

implementation results are compared with other existing 

solutions in Table 3. According to the comparison our solution 

requires less resources, hence consumes a less silicon area and 

achieves high performance. Our implementation is faster as 

compared to the solution proposed in the prior work. After 

computing matrix inversion, equalization matrix W is obtained 

by multiplying the inversion matrix with hermitian matrix. The  

multiplexers are used to pass the different inputs which reduces 

the hardware of the MAC unit to 25%. The hardware resources 

in Method-I is 75% of Ref.[9] and in Method-II hardware 

resources used are 50% of Ref. [9]. 
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