
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

31

Evaluating the Impact of GUI Similarity between Android

Applications to Measure their Functional Similarity

Sondus Almrayat
CIS Department

The University of Jordan
Amman, Jordan

Rana Yousef
CIS Department

The University of Jordan
Amman, Jordan

Ahmad Sharieh
CS Department

The University of Jordan
Amman, Jordan

ABSTRACT

Finding similar or related Android applications is a feature in

popular search engines. An app's appearance is usually the

first indicator of similarity. In this paper, the impact of GUI

similarity for Android applications in measuring their

functional similarity is evaluated. Accordingly, a number of

Android applications will be analyzed to identify their

resources and extract the most commonly used appearance

features from each app’s package kit (APK) and its xml

layouts. An algorithm that automatically extracts these

features is designed and developed. A sample of 50 Android

apps from Google play store was chosen, and two separate

experiments were performed: one using the presented method

to measure appearance similarity, the second using one of the

available methods to measure functional similarity, then the

results were compared. Results show that there is a

relationship between appearance and functional similarities,

where a strong relationship exists between appearance

similarity and most of the functional similarity anchors.

General Terms

Android Application, Similarity, GUI

Keywords

Appearance Similarity, Functional Similarity, Adaptive

Programmable Interface Unit, Android Package Kit (APK).

Search engine

1. INTRODUCTION
Smart phones are becoming more integrated and important

part of people’s daily lives due to their highly powerful

computational capabilities, such as email applications, online

banking and online shopping…etc. The use of mobile devices

has increased in our lives offering almost the same

functionality as personal computers. Android devices have

appeared lately and, since then, the number of applications

available for this operating system has increased

exponentially. Finding similar or related Android applications

is a feature in popular search engines (e.g., Play store, Galaxy

apps). For example, after users submit search queries, Google

play displays the search results together with a group of

relevant applications labeled as similar applications. Market-

specific search engines identify similar apps by relying on

textual descriptions only [1]. However, a match between

words in a search query with words in the descriptions or in

the source code of applications doesn't guarantee that these

applications are relevant. In addition, many application

repositories are polluted with poorly functioning projects.

In this paper, the aim is to compare the similarity between

Android applications' graphical interfaces and their functions

to figure out if there is any association between them. This

can evolve a new direction in different researches concerned

with finding relevant apps in search engines, understanding

main features of successful apps, discovering code theft and

plagiarism [2, 3], identifying reusable components that can

help new android developers to use APIs, and improving

understandability of source code and rapid prototyping

Android app’s features will be examined both from text

elements and image elements. Then, different distance

calculating formulas will be used to compute the similarity

scores based on different similarity metrics.

Section 2 presents background knowledge and some related

work, section 3 describes the algorithms developed to

measure appearance similarities and functional similarities,

section 4 presents the experiments and results, finally, section

5 concludes the paper.

2. BACKGROUND AND RELATED

WORK
In this section, an overview about Android platforms and

Android applications’ architecture (i.e. the main components

of an android application) is resented. Then, the main features

of the GUI of an Android application will be discussed.

Finally, a review of the literature to addresses current methods

of detecting similar Android applications is given.

2.1 Android Platform
Android is a mobile operating system programmed by Google

and designed mostly for the purpose to be use for the

sophisticated mobile devices with touch-screen capabilities

which are known commercially as Smartphones [4]. Android

application development depends on four major components,

each plays an important role to build the structure of the

application. Figure 1 illustrates the structure of Android

platform.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

32

Fig 1: Android Platform Architecture [5]

2.2 Android Application Components
In the following subsections, a brief overview of the main

components of Android appliances as was depicted in [6] is

provided.

2.2.1 Activity
An activity is the most essential part of an Android

application that represents every single screen. Each

application should at least have one activity to let the user

interact with the mobile device. An activity starts running

when the application is opened. Each application has a

number of activities and each has a lifecycle.

2.2.2 Content provider
A content provider is used to supply and store data in an

application. It manages access to data store by the application

itself or by other apps and provides means to share data and

define security issues related to accessing and sharing the

data.

2.2.3 Service:
A service is a process that runs in the background without

user interactions (e.g. wifi status is running through a

background process by calling the Service class related to this

service). The service performs its function by starting to run

with an intent to describe the service and to carry any

necessary data. Services don’t provide user interfaces so other

components can start a service, such as an activity or another

service in the application. There are two types of services;

bounded and unbounded services.

2.2.4 Broadcast receiver:
It is a mechanism to define how Android platform forwards its

events to applications. There are two types of Broadcast

Receivers: ordered and normal, and the main usage of these

receivers are inter-process communication and tracking of

specific events (e.g. arrival of an SMS). Applications declare

statically or dynamically their interest in receiving a certain

event and accordingly the operating system (OS) will try to

deliver this event when it happens.

2.3 Android Project Structure
Most of Android applications are developed using the

Android Studio environment [6]. There are other

environments for creating Android projects such as eclipse

IDE and NetBeans IDE. In this section, the project structure

of an Android project is presented, the reader should be aware

of a few directories and files in the app. For every single

Android screen, there are at least two files; one is a Java

source code file and the other is an xml layout file. Google

now supports Kotlin as a language for mobile development on

Android, it is designed to fully interoperate with Java [7]. In

this paper, only Java source code files will be examined.

Src: contains source code files for the application project. It is

represented by MainActivity.java which is a Java file that

represents the app project activities and it is the most

important file to be converted to a Dalvik executable and to

run activities.

Gen: It contains the R (resource) file, a compiler-generated

file that references all the resources found in the application

project, and the user should not modify this file because it is

generated automatically when the app is created. This file is

like the glue between the activity Java files like

MainActivity.java and the resources like strings.xml.

Bin: This file contains the Android package files. apk, which

is built by the ADT during the build process, and everything

else needed to run an Android application.

Res: This folder contains many files such as: drawable,

layout, values:

Res/drawable: This directory consists of image components

that are designed for screens' interfaces of apps.

Res/layout: This is a directory for the files that define the

graphical user interfaces.

Res/values: This directory has other various XML files that

contain a collection of resources, such as strings and colors

definitions.

AndroidManifest.xml: This file provides a description of the

fundamental characteristics of the app and defines each of its

components and application permissions.

2.4 Android UI Views
The user interface (UI) for each component of the Android

app is defined using a hierarchy of View and View

Group objects. A view is an object that draws a component on

the screen that the user can interact with, and the view

group is an object that holds other view objects in order to

define the layout of the user interface.

To declare the app’s layout, you must instantiate a view object

in code and start building a tree, but the easiest and most

effective way to define the app layout is with an XML file.

XML offers a human-readable structure for the layout.

Android provides several views which allow the user to build

the graphical user interfaces (GUIs) for the app; such as

TextView which is used to display text to the user, EditText: a

pre-defined subclass of TextView that includes rich editing

capabilities, AutoCompleteTextView: a view that is like

EditText, except that it shows a list of completion suggestions

automatically while the user is typing, Button: can be pressed,

or clicked, by the user to perform an action, ImageButton,

Application(home,
contact,phone,browser,your app)

Application framework(activity
manger,window manger, content

provider,view system,package
manger,telepholny manger,resource

manger,location manger,notification manger)

Libraries(media
framework,sqlite,open

GLlES,free
type,webkit,Sgl,SSL,Lib

c,surface manger)

Android
Runtime

(core
libraries,Dalvik

virtual machine)

Linux
Kernal(Displa

y driver,
camera

driver,keypad
driver,

https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/View.html

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

33

AbsoluteLayout: enables users to specify the exact location of

its children, Checkbox: an on/off switch that can be toggled

by the user. The user should use checkboxes when presenting

them with a group of selectable options that are not mutually

exclusive, Toggle Button: an on/off button with a light

indicator. Radio Button: has two states: either checked or

unchecked. Radio Group: used to group together one or more

Radio Buttons, and Progress Bar view: provides visual

feedback about some ongoing tasks, such as when users are

performing a task in the background.

2.5 The Strings File
The strings.xml file is in the res/values folder and it contains

all the text that the application uses. For example, the names

of buttons, labels and default Android text. This file is

responsible for the textual content of an app.

2.6 Related Work
There are existing approaches for measuring similarities

between Android applications. The similarity approach of

Linares and Holtzhauer [8] is based on detecting closely

related applications in Android (CLANdroid). The authors

relayed on advanced Information Retrieval techniques and

five semantic anchors. They evaluated CLANdroid by

creating a benchmark consisting of 14,450 apps along with

information on similar apps provided by Google Play.

The work of Linares and Holtzhauer was based on a previous

work on source code engines, and approaches for detecting

similarity. There are also several studies that proposed various

code search engines for returning similar code pieces,

functions, components, applications, etc, [9]. However, many

studies also aim to detect similar code fragments (a.k.a. clone

detection) based on text matching, syntax trees, program

dependence graphs, etc.[10].

Moreover, Crussell [11] presented a scalable approach to

detect similar Android apps based on their semantic

information. He implemented his approach in a tool called

AnDarwin and evaluated it on 265,359 apps collected from 17

markets including Google Play and numerous third-party

markets, such as the app’s market, signature. AnDarwin

extract semantic vectors from source code methods in the

apps. The main idea is that the methods can be combined in

semantic blocks, therefore, if two semantic blocks are code

clones, then the semantic vectors representing these blocks are

considered similar.

The directory structure in mobile apps has been also used to

detect similar apps. For instance, the authors in [12]

decompiles an APK and walks through the directories and

files of the app to construct a tree, which represents the

directory structure. Destruct computes the percent difference

between two trees to represent the similarity between two

applications. Thus, the smaller the percent difference the more

similar the apps are based on their directory structures.

Other approaches have proposed the usage of centroids,

topics, and method signatures to detect similar apps. Chen et

al [13] has detected the similar apps by comparing centroids

created from dependency graphs at method level. However,

these similarity measures are used to draw a Boolean value

conclusion on the app’s core functionality cloning. That is,

either two apps are marked as clones or not, which prevents

partial similarity detection. Chen et al. evaluated their

approach across multiple different Android markets, yet did

not use Google Play. Gorla, et al. [14] applies Latent Dirichlet

Allocation on the descriptions of over 32K applications. The

k-means algorithm is then used to cluster the apps (by using

the topics generated with LDA) and, thus, provides the ability

to identify groups of apps with similar descriptions.

Similarly, Desnos [15] used method signatures to detect

similar Android apps, where the Signatures were composed of

string literals, API calls, control flow structures, and

exceptions. Wang et al [16] proposed an approach to detect

and identify app clones in two phases, first filtering the code

of the application from third-party libraries, and then uses API

calls to detect cloned apps across different applications.

Another work on detecting repackaged apps in two phases is

the one by Shao et al [17], which clusters the apps using

resources (e.g., strings and images) and statistical features

initially, and then performs a second clustering stage using

structural features.

The work by Thung et al [18] is also similar to CLANdroid,

because they used an approach based on CLAN for detecting

similar software systems, but instead of using API calls, the

authors used the tags for the systems in source forge website.

Zhu et. al. [19] proposed a method to design a system to

compare the GUI similarity among Android apps and pick up

some apps with high similarity on their appearance. In detail,

they extracted some features of apps and compute their

similarity by their feature vectors. They evaluated their design

with 2,000 apps in both official and alternative Android

marketplaces to find out such appearance-similar apps in their

dataset.

Jadhav et. al. [20] proposed a system to detect malware and

plagiarisms by using GUI similarity method. Their approach

consists of three steps: pre-processing, dish fit for a king

extraction and similarity comparison.

Reviewing the literature, it is realized that most of exiting

similarity approaches are based on similarity measures that

depend on elements of the code (clone code) to detect

malware but few of them handle this problem using graphical

user interfaces.

In this research, Android application's GUI features will be

analyzed to identify the mi important features that can give an

indication of functional similarity between two applications.

Then, the extent to which a similarity in those GUI features

can indicate a similarity in the applications' functionalities

will be measured.

3. METHODOLOGY
The main goal of this research is to evaluate the impact of

GUI similarity for Android applications in measuring their

functional similarity. In this section, the different phases of

the research methodology are descried.

3.1 Phase 1: Identify the most well-known

theories, techniques and tools to measure

similarity

3.1.1 String Similarity
In many applications of detecting similar apps, it is necessary

to algorithmically quantify the similarity of Android

applications depending on special features. String similarity

can be defined as finding the similarity of two strings that are

composed of symbols from a finite alphabet. There are many

string similarity measures but the most well-known measures

are based on edit distance [21] and the length of the longest

common subsequence [22].

Eidt distance: also known as levenshtein distance, is defined

as the minimum number of edit operations such as insertion

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

34

and deletion needed to transform one string into another.

Figure 2 shows the edit distance algorithm.

The Longest common subsequence algorithm (LCS): is a well-

known algorithm, defined as finding the length of the longest

common subsequence (LCS) of two strings. Let two

sequences be defined as: X = (x1, x2...xm) and Y = (y1, y2...yn).

The prefixes of X are X1, 2,...m; the prefixes of Y are Y1, 2,...n.

Let LCS(Xi, Yj) represent the set of longest common

subsequence of prefixes Xi and Yj. To find the longest

subsequences common to Xi and Yj, compare the

elements xi and yj. If they are equal, then the sequence LCS(Xi-

1, Yj-1) is extended by that element, xi. If they are not equal,

then the longer of the two sequences, LCS(Xi, Yj-1),

and LCS(Xi-1, Yj), is retained. If they are both the same length,

but not identical, then both are retained. Notice that the

subscripts are reduced by 1 in these formulas. That can result

in a subscript of 0. Since the sequence elements are defined to

start at 1, it was necessary to add the requirement that the LCS

is empty when a subscript is zero [22].

Fig 2: Edit distance (Levenshtein) Algorthim

3.1.2 N-Gram Similarity and Distance Algorithm
One of the efficient algorithms for computing string similarity

is the n-gram similarity and distance algorithm. Kondrak [23]

developed this algorithm to measure similarity between two

strings. He showed that edit distance and the length of the

LCS are special cases of n-gram. He proved that the main idea

of n-gram and distance similarity is generalizing the concept

of the longest common subsequence by reporting the results

of his experiments. The results suggested that this algorithm

outperform the other algorithms.

The affixing method in this algorithm is aimed to emphasize

the initial segments, which tends to be much more important

than final segments in determining word similarity. The

number of n-grams is thus increased from K +L−2(n−1) to

K+L, where K and L are the lengths of the two compared

texts. The normalization is achieved by simply dividing the

total similarity score by max (K, L), the original length of the

longer text. This procedure guarantees that the new measures

return 1 if and only if the texts are identical and 0 if and only

if the texts have no letters in common. Figure 3 shows the

algorithms for computing the similarity and distance of strings

X and Y.

This algorithm is used for the following reasons; first, it is an

enhanced version of the most common algorithms edit

distance [21] and the length of the longest common

subsequence [22]. It is intended to combine the advantages of

the unigram (one string or word) and the n-gram (sequence of

words or strings) measures. The n-gram similarity and

distance algorithm is also applied on three different areas of

string science: the word-comparison tasks work, the

identification of genetic cognates, and confusable drug names

which is very similar to the data types used in this research

because most of the elements' contents are kind of confusable

labels. In this research and for the purpose of evaluating the

effect of appearance similarity on functional similarity, only

the appearance similarity between Android applications is

measured based on the contents of views (i.e. text elements) in

the graphical interfaces.

Function Levenshtein_Distance(S1,S2)

Begin

for i:=0 to m do

 for j:=0 to n doupper=upperleft=left:=maxint;

 if i>0

 then upper:=dist[i-1,j]+weight(S1[i],ø);

 if i>0 and j>0

 then upperleft:=dist[i-1,j-1]+weight(S1[i],S2[j]);

 if j>0

 then left:=dist[i,j-1]+weight(ø,S2[j]);

 dist[i,j]:=min(upper,upperleft,left);

 if dist[i,j]=maxint then dist[i,j]:=0;

 end

 end

Levenshtein_distance:=dist[m,n];

end

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

35

Fig 3: The algorithms for computing N-SIM and N-DIST

of strings X and Y [23]

3.1.3 CLANdroid Search Engine
CLANdroid (Closely Related Android Applications) is a

search engine proposed by [8] for detecting similar Android

applications. The search engine works by extracting different

types of features such as: (1) API calls (Application

Programming Interface) which is the set of classes included

with the Java Development Environment. These classes are

written using the Java language and run on it. The Java API

includes everything from collection classes to GUI classes, (2)

Intents which are used within applications, (3) User

permissions declared in the application's manifest files, and

(4) Sensors declared in the source code.

There is an online version of CLANdroid search engine that

can be found at http://www.semeru.info/clandroid. It only

returns the top 20 ranked similar applications of application’s

query.

CLANdroid search engine is used by writing the id (which is

the unique name of your application) in a query space, then

choosing the search attributes such as same category or all

categories in addition to some other properties.

3.2 Phase 2: Analyze an Android app
In this phase, the main features which play an important role

in building graphical user interfaces in Android applications

are analyzed. As was mentioned in the previous section, the

GUI related files are available in the resource files.

In order to analyze an Android's layout (GUI), the xml layout

files rather than the source code file is considered. This is

because developers use xml layout files to design interfaces

through inserting the views (GUI elements) and setting up

their properties, where the source code file is used to

implement the functionality and the behavior of the

application.

However, xml files in the resource directory are compiled into

binary format when packaging to apk file. To extract

information from this part, Java library apk tool is used to

restore the original xml resource files.

In order to measure the GUI similarity between two apps, the

focus is on the text contents of the GUI elements. Reviewing

literature, it was noted that researchers used only the main

views (GUI elements) in their algorithms to measure

appearance similarity [24]. The main views used by

researchers are text_view, edit_text, image_view,

image_button, single_button, radio_button and check_box.

The text contents of these views were used in this research to

measure similarity.

3.3 Phase 3: Choose the Android Apps

Dataset
The apps dataset consists of 50 pairs of APK (Android

Package Kit) files of android applications from different

markets. The apps are gathered through official Android

Markets such as google play and some alternative sources

such as CLANdroid search engine. The data (apps) was

collected in pairs to apply the proposed method to perform the

comparisons. The android apps were chosen from different

categories and at the same time they were checked to be

available in CLANdroid dataset for comparison purposes.

3.4 Phase 4: Extract Features
The process of extracting features from android apps dataset

is explained here and illustrated using an example:

This step starts by fetching android applications from an

official market. Figure 4 shows an example of a pair of

android applications: dropbox.apk and Microsoft one drive

.apk. These two applications’ files were inputted into a

program which was developed for preprocessing purposes.

Then the files were decompiled to their source codes in order

to extract the xml layout from the recourses file. Here, an apk

tool in java library is used.

Fig 4: An Example of two Android Applications from the

Dataset

The extracted xml layout file contains all the application’s

views, i.e. all GUI elements. However, in this research only

the main view used by researchers are considered, which are

text_view, edit_text, image_view, image_button,

single_button, radio_button and check_box. Accordingly,

these views will be extracted together with their textual

contents, such as their captions, as can be seen in the given

example in Figure 5.

Algorithm N-DIST (X,Y)

K ← length(X)

L ← length(Y)

for u ← 1 to N − 1 do

 X ← x′ 1+X

 Y ← y′ 1 + Y

for i ← 0 to K do

 D[i,0] ← i

for j ← 1 to L do

D[0,j] ← j

for i ← 1 to K do

 for j ← 1 to L do

 D[i,j] ← min(

 D[i − 1,j] + 1,

 D[i,j − 1] + 1,

 D[i − 1,j − 1] +

dN(ΓN i−1,j−1))

return D[K,L]/max(K,L)

Algorithm N-SIM (X,Y)

K ← length(X)

L ← length(Y)

for u ← 1 to N − 1 do

 X ← x′ 1 + X

 Y ← y′ 1 + Y

for i ← 0 to K do

 S[i,0] ← 0

for j ← 1 to L do

 S[0,j] ← 0

for i ← 1 to K do

 for j ← 1 to L do

 S[i,j] ← max(

 S[i − 1,j],

 S[i,j − 1],

 S[i−1,j−1]+sN(ΓN i−1,j−1))

return S[K,L]/max(K,L)

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

36

Fig 5: Example on views’ textual contents

3.5 Phase 5: Design and Develop an

Appearance Similarity Algorithm Based on

Available Techniques
An appearance similarity algorithm is developed based on the

n-gram string similarity and distance algorithm. The input to

this algorithm is the pair of applications which degree of

appearance similarity needs to be measured. The output is a

value based on the similarity calculation. This value is in the

range [0,1], 0 means there is no similarity between the two

apps and the value 1 indicates that they are identical;

otherwise, the apps are similar in a certain degree. The

algorithm was implemented and applied to the collected

dataset obtained in step 3 which consists of 50 android apps.

For each pair, the views text_view, edit_text, image_view,

image_button, single_button, radio_button and check_box are

extracted from the xml layout file. The first application in

each pair of the dataset is represented as a small letter a and

the application’s file is denoted as the capital letter A. So, in

this way, the first application can be represented as (a1.1,

a1.2, ... , a1.n) and the second app as (a2.1, a2.2…… a2.n).

The following steps summarizes the appearance similarity

algorithm:

Step 1: Get all the resulting textual contents from the

Extraction Phase of the two apps and generate lists of the

views’ textual contents for the corresponding app.

Step 2: Apply n-Gram Similarity and Distance Algorithm for

all element, then save the results for each element and tag the

highest similarity value. Figure 6 shows part of the code

implementation concerned with text views similarity.

Step 3: Compute the similarity between the two applications

as a whole. All elements’ similarities are compared to obtain a

highest similarity score of each element for every application.

The final GUI similarity score between the two apps is

calculated. Figure 7 shows part of the code implementation

concerned with measuring string similarities for all elements

in the two apps.

4. EXPERIMENTS AND RESULTS
This section presents the experiments conducted in this

research. The first experiment is to measure appearance

similarity using the developed method and the second is to

measure functional similarity using CLANdroid. The results

of both were compared.

Fig 6: Text views similarity code snippet

var text_similarity_summation=0;

for variable index = 0 , index
<text_Similarity.size(), index++ {

text_similarity_summation+=text_Similarity[index];

}

var image_similarity_summation=0;

for variable index = 0 , index
<image_Similarity.size(), index++ {

image_similarity_summation+=image_Similarity[index]
; }

var radio_similarity_summation=0;

for variable index = 0 , index
<radio_Similarity.size(), index++ {

radio_similarity_summation+=radio_Similarity[index]
; }

variable Total_Similarity_value=
(text_similarity_summation)+
(image_similarity_summation)+
(radio_similarity_summation)

Fig 7: String similarities for all elements code snippet

4.1 Experiment 1: Measuring Appearance

Similarity
In the first experiment, the proposed algorithm is applied

using a sample of 50 Android applications to get their

appearance similarities and 25 pairs of applications were

selected. Table 1 shows the results of a sample of 10 pair of

Android applications. The first two columns show the apps’

names and the third column represent their appearance

similarity measured using the proposed method. The results

range between 0, which means no similarity, and 1 which

means an exact similarity. Other values between 0 and 1

represent the degree of similarity of each pairs of apps. For

example, measuring the appearance similarity between the

Calendar Widget application and the Dropbox application

results in 0.28, while between OneDrive app and Dropbox

results in 0.41. Measuring the appearance similarity between

the application and itself resulted in 1.

List text_Similarity;

variable max_similarity_value=-1;

for element_a1.1value in A1_Text_element{

 for(element a2.1 in A2_Text_element){

 variable temp_value=

getSimilarity(element.getTextContent(),element

2.getTextContent());

 if max_similarity_value < temp_value then {

 max_similarity_value = temp_value}}

text_Similarity.add(max_similarity_value);

max_similarity_value=-1;

}

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

37

Table 1: Appearance similarity for a sample of Apps’

pairs

App1 App2
Appearance

similarity

Calendar Widget Dropbox 0.27526176

Calendar Widget Microsoft One drive 0.27526176

One Drive Dropbox 0.40730816

Base CRM Dropbox 0.3880397

Base CRM Calendar Widget 0.27209589

Base CRM ONE DRIVE 0.4432375

Messenger Google Voice 0.3165981

Messenger
AT&T Messages For

Tablet
0.124587

Messenger
Yahoo Messenger -

Free Chat
0.39381893

Dropbox
Kobo Books -

Reading App
0.30613895

4.2 Experiment 2: Measuring Functional

Similarity
In the second experiment, an online version of CLANdroid for

detecting functional similarity between Android apps using

different semantic anchors (i.e., identifiers, API calls, intents,

sensors, and user permissions) is used. CLANdroid is

available at http://www.semeru.info/clandroid.

The general process in this experiment is as follows. (i) The

APK files are chosen directly from Google Play and their id

names are fetched, then (ii) the id name of files are written as

a query in the search engine of the online version, finally (iii)

CLANdroid decompiles the APK file into JAR files and

source codes, and extracts semantic anchors from different

artifacts: identifiers and intents from source code, APIs and

sensors from JAR files, and permissions from the

AndroidManifest.xml files. After fetching these data, the

search engine retrieves the relevant applications with ranks in

descending order using a similarity matrix [8]. Table 2 shows

the results of comparing the functional similarities for the

same application pairs used in the previous experiment.

Table 2: Clandroid results for measuring functional similarities

Names of applications
CLANdroid

(API)

CLANdroid

(Identifiers)

CLANdroid

(Combined)

CLANdroid

(Intent)
Permission Sensor

Calendar Widget, dropbox 0.97 0.99 0.98 0 0 0

Calendar Widget, Microsoft OneDrive 0.97 0.99 0.98 0 0 0

One drive, dropbox 0.96 0.94 0.95 0 0.53 0

Base CRM, dropbox 0.99 0.99 0.99 0 0.72 0

Base CRM, Calender widget 0.98 0.99 0.99 0 0 0

Base CRM, one drive 0.98 0.96 0.97 0 0 0

Messenger, Google Voice 0.45 0.40 0.42 0 0 0

Messenger, AT&T messenger for tablet 0.08 0.29 0.18 0.28 0

Messenger, Yahoo messenger-free chat 0.01 0.24 0.12 0.14 0.18 1

Drop, kobo books-reading App 0.98 0 0 0 0.71 0

4.3 Comparing Appearance Similarity

with Functional Similarity
The correlation between the appearance similarity and

functional similarity measures were calculated for the 25 pairs

of Android apps. The results are shown in Table 3.

As can be seen in Table 3, there is a relationship between

appearance and functional similarities. A strong relationship

exists between appearance similarity and most of the

functional similarity anchors. The correlation was weak when

compared to the app’s identifiers. This is because the

appearance similarity measure was based on string similarities

of texts extracted from the apps GUI elements.

As intents are mainly used to communicate between Android

components such as activities, the textual elements extracted

from labels in the communicating activities such as the

screens’ titles and headers will be similar to intents. Hence,

there is strong correlation between the two similarity

measures. The same applied to permissions and sensors.

However, the use of APIs to perform different functionalities

which could be in the background is rarely relevant to texts

that appear on the apps screens. The confusing result was the

correlation between appearance similarity and identifiers

factor of the functional similarity. As programmers usually

use identifiers for the views that are relevant to their

functionality and hence the captions displayed on the

components. This suggests further investigation for this part.

Table 3: correlation between appearance similarity and

the different anchors of CLANdroid functional similarity

Anchor used for

comparison

CORREL values

API 0.500741077

Identifiers 0.326907624

Combined (API and Id) 0.484172313

Intent 0.942058173

Permission 0.952360282

Sensor 0.966404385

http://www.semeru.info/clandroid

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

38

5. CONCLUSION
In this paper, a method to measure appearance similarity in

Android applications is developed using N-gram and distance

algorithm. The CLANdroid application was used to detect

similar application according to some functional factors.

Then, the results were compared. The comparison shows that

there is a correlation between appearance similarity and

functional similarity in terms of intent, permission and sensor

usages. Lower impact was found between appearance

similarity and both API usage and identifiers of an app. This

is due to relaying on string similarity while measuring

appearance similarities.

The results of this research suggest the usage of appearance

similarity in researches concerned with malware detection and

plagiarisms. This research also contributes in providing

feature extraction of Android applications into dataset.

6. REFERENCES
[1] Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T.,

Matsushita, M. and Kusumoto, S., 2003, May.

Component rank: relative significance rank for software

component search. In 25th International Conference on

Software Engineering, 2003. Proceedings. (pp. 14-24).

IEEE.

[2] Liu, C., Chen, C., Han, J. and Yu, P.S., 2006, August.

GPLAG: detection of software plagiarism by program

dependence graph analysis. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 872-881). ACM.

[3] Sager, T., Bernstein, A., Pinzger, M. and Kiefer, C.,

2006, May. Detecting similar Java classes using tree

algorithms. In Proceedings of the 2006 international

workshop on Mining software repositories (pp. 65-71).

ACM.

[4] Gandhewar, N. and Sheikh, R., 2010. Google Android:

An emerging software platform for mobile devices.

International Journal on Computer Science and

Engineering, 1(1), pp.12-17.

[5] Hanna, S., et al., 2012, July. Juxtapp: A scalable system

for detecting code reuse among android applications. In

International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment (pp. 62-81).

Springer, Berlin, Heidelberg.

[6] Chang, G., et., 2008, December. Developing mobile

applications on the Android platform. In Workshop of

Mobile Multmedia Processing (pp. 264-286). Springer,

Berlin, Heidelberg.

[7] Shafirov, M., 2017. Kotlin on android. Now official. A:

Jetbrains. Kotlin Blog, 17.

[8] Linares-Vásquez, M., Holtzhauer, A. and Poshyvanyk,

D., 2016, May. On automatically detecting similar

Android apps. In 2016 IEEE 24th International

Conference on Program Comprehension (ICPC) (pp. 1-

10). IEEE.

[9] Grechanik, et al., 2010, May. A search engine for finding

highly relevant applications. In Proceedings of the 32nd

ACM/IEEE International Conference on Software

Engineering-Volume 1 (pp. 475-484). ACM.

[10] Bajracharya, S.K., Ossher, J. and Lopes, C.V., 2010,

November. Leveraging usage similarity for effective

retrieval of examples in code repositories. In Proceedings

of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering (pp.

157-166). ACM.

[11] Crussell, J., 2014. Scalable Semantics-Based Detection

of Similar Android Apps: Design, Implementation, and

Applications. University of California, Davis.

[12] Li, S., et al., 2012. Juxtapp and dstruct: Detection of

similarity among android applications. EECS

Department, University of California.

[13] Chen, K., et al., 2014, May. Achieving accuracy and

scalability simultaneously in detecting application clones

on android markets. In Proceedings of the 36th

International Conference on Software Engineering (pp.

175-186). ACM.

[14] Gorla, A., Tavecchia, I., Gross, F. and Zeller, A., 2014,

May. Checking app behavior against app descriptions. In

Proceedings of the 36th International Conference on

Software Engineering (pp. 1025-1035). ACM.

[15] Desnos, A., 2012, January. Android: Static analysis using

similarity distance. In 2012 45th Hawaii International

Conference on System Sciences (pp. 5394-5403). IEEE.

[16] Wang, H., et al 2015. Wukong: A scalable and accurate

two-phase approach to android app clone detection. In

Proceedings of the 2015 International Symposium on

Software Testing and Analysis (pp. 71-82). ACM.

[17] Shao, Yet al., 2014, December. Towards a scalable

resource-driven approach for detecting repackaged

Android applications. In Proceedings of the 30th Annual

Computer Security Applications Conference (pp. 56-65).

ACM.

[18] Thung, F., Lo, D. and Jiang, L., 2012, September.

Detecting similar applications with collaborative tagging.

In 2012 28th IEEE International Conference on Software

Maintenance (ICSM) (pp. 600-603). IEEE.

[19] Zhu, J., Wu, Z., Guan, Z. and Chen, Z., 2015, March.

Appearance similarity evaluation for Android

applications. In 2015 Seventh International Conference

on Advanced Computational Intelligence (ICACI) (pp.

323-328). IEEE.

[20] Jadhav Anita, et al, 2017. A Survey on Appearance

Similarity Evaluation For Android Application.

International Journal of Engineering Research and

Management, 3 (1), pp. 1-4.

[21] Yujian, L. and Bo, L., 2007. A normalized Levenshtein

distance metric. IEEE transactions on pattern analysis

and machine intelligence, 29(6), pp.1091-1095.

[22] Bergroth, L., Hakonen, H. and Raita, T., 2000. A survey

of longest common subsequence algorithms. In

Proceedings Seventh International Symposium on String

Processing and Information Retrieval. SPIRE 2000 (pp.

39-48). IEEE.

[23] Kondrak, G., 2005, November. N-gram similarity and

distance. In International symposium on string

processing and information retrieval (pp. 115-126).

Springer, Berlin, Heidelberg.

[24] Meier, R., 2012. Professional Android 4 application

development. John Wiley & Sons.

IJCATM : www.ijcaonline.org

