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ABSTRACT 

Current generation high performance multi-core processors 

have large shared cache memories. This shared cache memory 

is accessible by multiple cores.  Concurrently running threads 

under each core do not always demand the entire capacity of 

the shared cache.  Threads running on different cores 

accessing shared cache concurrently may result in higher 

cache miss rate and significant performance degradation due 

to inter-thread cache conflicts and lack of cache space. The 

cache capacity is the quantity of physical cache memory 

available with the processor. To achieve certain higher degree 

of processing performance on multi-core processors, efficient 

shared cache memory usage plays the defining role.  The 

overall processor performance gets more sensitive to the 

problem of shortage of cache capacity, as threads sharing the 

cache compete for their requirement of the cache sizes. In this 

paper, a cache friendly and capacity conscious thread 

scheduling strategy is proposed for multi-core processors with 

multiple shared caches. The proposed scheduling policy 

ensures that the shared cache is optimally used by the 

competing threads which minimizes inter-thread resource 

conflict and hence reduces performance degradation.  

According to the experimental results the proposed policy 

reduces shared cache contention significantly thereby 

improving the overall performance among threads by up to 

5%. 
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1. INTRODUCTION 
The current trend in processor chip manufacturing technology 

is experiencing the limitation of thermal diffusion technology, 

physical characteristic and semiconductor processes.  As a 

result, the speed of the processor is expected not to double as 

per Moore’s law.  To overcome this limitation in processor 

scaling capability, Chip Multi-Processor (CMP) has become 

the trend and is prevalent in modern computer systems.  

Multiple threads can run concurrently on a CMP consisting of 

multiple cores.  Each core is embedded with its private cache 

called level-1 (L1 Cache) to share among the threads of 

individual core. The last level cache (LLC Cache) is shared 

among multiple cores to enhance cache resource utilization. 

Modern multi-core systems are designed to allow clusters of 

cores to share various hardware structures, such as a LLC 

memory controllers, and interconnects, as well as prefetching 

hardware.  Figure 1 shows a multi-core system with each core 

having a private L1 cache and a shared last level L2 cache 

between two cores.  Concurrently running threads, or co-

runners often share a single second level (L2) cache, and 

cache allocation is controlled by the underlying hardware [1].  

Cache sharing depends solely on the cache needs of the co-

runners, and unfair cache sharing occurs often.  When the 

shared cache is being accessed by applications running on 

different cores, cache miss could occur resulting in the 

degradation of system performance. Hence, addressing shared 

cache contention issue in CMPs becomes an issue to be 

addressed.  

 

Figure 1: Block Diagram of 4 Core CMP architecture 

Concurrently executing threads spawned from different 

applications on multi-cores cause performance degradation 

issues due to the contention of shared resources among 

threads. As a result of this, the time taken to execute 

applications on a multi-core processor may consume longer 

time than that of a uni-core processor, even though the former 

can simultaneously execute multiple threads.  Hence, avoiding 

inter-thread resource conflicts becomes a major task for a 

multi-core processor. 

The rest of this paper is structured as follows. In Section 2, 

related work is discussed.  Section 3 describes cache 

conscious scheduling algorithm, Section 4 explains 

experimental methodology. Section 5 shows Results and 

analysis and conclusion in Section 6. 

2. RELATED WORK 
To overcome the shared cache contention, many researchers 

have proposed scheduling policies considering the inter-task 

interference.  J. Mars et al. [2] proposed a framework (CiPE – 

Cross-core interference Profiling Environment) which is 

composed of a lightweight runtime environment on which a 

host application runs on one core. With this, a contention 

synthesis engine executes on a neighboring core. CiPE 

manipulates the co-running contention synthesis engine, while 

monitoring and analyzing the resulting dynamic impact on the 

host application. Here, a specially designed benchmark was 

used to be co-scheduled with another task.  The throughput of 

the task was used to assign scores to itself. In this 

methodology, the cache capacity is not taken into 

consideration. Xie et al. [3] proposed classification of an 

application based on its anti-interference abilities.  Anti-

interference is defined as the loss in performance degradation 

when one application competes with the other for shared 

cache. This method classifies the tasks analogous to animal 

personalities, such as sheep, devils, rabbits and turtles, based 

on some metrics related to the cache. In order to reduce the 
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cache contention, the authors proposed co-scheduling of a 

task having better anti-interference ability with a less anti-

interference ability task.  This method of scheduling may not 

be accurate as it is difficult to co-schedule task which have 

similar anti-interference abilities. 

G. E. Suh et al. [4] described a cache partitioning algorithm 

centered on the concept of low overhead control scheme and 

marginal gain. However, the drawback in this algorithm is the 

accountability of fairness in sharing of cache among threads. 

M. K. Qureshi et al. [5] and S. Kim et al. [6] have proposed 

mechanisms to reduce inter-thread cache conflicts on last 

level cache using dynamic cache partitioning concept. They 

defined the fairness among threads as parity of performance 

degradation.  As per their algorithm, the allocation of 

partitioned cache capacities is decided based on the minimum 

difference in miss rates among running threads. Such 

mechanisms have shown certain amount of performance 

improvement.  However, as dynamic cache partitioning does 

not consider the cache capacity of each thread, performance 

severely degrades. 

Based on the dynamic behavior of the cache, some research 

has been done in the field of thread scheduling on multi-core 

systems.  Jia et al. [7] used L2 MRCs (Miss Rate Curve) to 

classify applications based on their cache behavior 

dynamically.  These methods need special hardware, like 

LRU counters and ATD.  James H. Anderson et al. [8] 

proposed a cache aware Pfare-based scheduling scheme for 

real time task on multi-core platforms, but they have only 

considered static and independent task.  Shekofteh et al. [9] 

proposed a risk function and approximated the probable cache 

contention of a co-schedule and the schedule with the least 

risk was chosen.  

When threads execute concurrently, conflict misses occur 

among threads whenever one thread replaces the data of the 

other in cache.  J. Kihm et al. [10] refer to such conflict as 

inter-thread kickouts resulting in increased execution time of 

a thread.  To avoid such inter-thread kickouts, dynamic cache 

partitioning has been proposed.   Dynamic cache partitioning 

divides the shared cache memory into multiple parts of 

different sizes and each thread receives its share at run-time. 

Carol-Jean Wu et al. [11] considers operating system priority 

levels as part of capacity management. The proposed 

methodology uses time keeping techniques that track an 

account of the time between two cache accesses. This 

technique needs to have a knowledge of the priority of each 

application. Sharanyan Srikanthan et al. [12] have proposed 

SAM, a Sharing-Aware Mapper that uses the aggregated 

coherence and bandwidth event counts which is used to 

separate traffic caused by data sharing due to memory 

accesses. In this methodology, cache sharing is not 

considered. Baptiste Lepers et al. [13] discuss about optimistic 

multi-core schedulers wherein the load balancing for the cores 

is taken into consideration.  

Furthermore, if cache sharing threads request large size cache 

capacities, it could result in degradation of performance under 

dynamic cache partitioning.   For example, consider that two 

threads that are running on a shared cache.  When the 

combined cache capacities requested by these two threads 

surpasses the capacity of the shared cache, the dynamic cache 

partitioning fails in meeting their demands.  This results in 

severe performance degradation among concurrently 

executing threads. Even though dynamic cache partitioning is 

effective in avoiding the problem of inter thread kickouts, it 

fails to address the capacity contention issue. 

In this paper, a cache conscious scheduling algorithm is 

proposed. This proposal considers the cache requirement of 

the individual threads and schedules them dynamically to 

avoid cache contention and eventually improves the overall 

system performance. 

3. CACHE Conscious THREAD 

SCHEDULING POLICY 

3.1 Motivation 
When threads are not classified according to their shared 

cache requirements, the scheduling of such threads will result 

in cache resource depletion or create unused cache resource. 

In Figure 2, Thread 0 and Thread 1 have been assigned to 

LLC 0 which results in cache depletion while Thread 2 and 

Thread 3 assignment to LLC 1 results in unused cache 

resource. This would have done better if the scheduler 

allocated Thread 0 and Thread 3 to share one cache (LLC 0) 

while allocating Thread 1 and Thread 2 to share the other 

cache (LLC 1) to optimize the available cache as shown in 

Figure 3. 

 

Figure 2: Scheduling with the cache capacity shortage and 

cache resource being unused 

 

Figure 3: Scheduling by cache conscious thread scheduling 

policy 

A classification and scheduling algorithm which takes into 

consideration the cache requirements of each thread and group 

them before distributing to the cores is proposed. The 

proposed scheduling policy combines thread of higher cache 

requirement with that of thread which needs lower cache 

requirement to run on shared cache.  

3.2 Profiling for Cache Requirement of a 

thread 
It is important to analyze and evaluate the request for cache 

capacity of every thread during profiling phase.  The 

underlying methodology uses a profiling scheme that controls 

the cache partitioning mechanism as applied to every shared 

cache.  In this mechanism the stack distance profiling is used 

to decide the number of cache ways to be allocated for each 

thread. 
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Figure 4 illustrates the low locality data access as per Chandra 

et al. [14]. In this graphical representation Cx represents the 

number of accesses to the blocks at the xth LRU position. Low 

locality means accesses are spread out all over the positions.  

This infers that the available cache capacity is lesser than the 

capacity needed by the thread.  On the contrary, a thread 

having high locality means the requested capacity by a thread 

is lesser than the cache capacity.  This high locality occurs 

frequently at the adjacent positions as shown in Figure 5. To 

mathematically analyze and to quantify this locality 

difference, H. Kobayashi et al. [15] defined an assessment 

matrix ‘D’ as C1/CN.  The scheme combines the assessment 

matrix D and predefined thresholds, t1 and t2 for the purpose 

of cache resizing. When the assessment matrix D becomes 

greater than threshold t2, the cache partitioning scheme 

assigns one additional way for the active thread. On a 

differing note, when assessment matrix D becomes smaller 

than threshold t1, the scheme removes or de-allocates a way to 

the active thread. 

 

Figure 4: Low Locality Stack Distance Profiling 

 

Figure 5: High Locality Stack Distance Profiling 

The cache Capacity Requirement of a thread is derived from: 

   
       
    

     
                                  -- (1) 

Where, 

 W(t) = (ways allocated at time t) 

 t0 = (the starting time of profiling) 

 t1 = (the ending time of profiling) 

3.3 Thread Scheduling Algorithm 
In Algorithm 1, m threads running concurrently on an n-core 

processor with n/2 shared caches.  Each L2 cache is shared by 

two cores and every thread is associated with a cache 

requirement. Let T be an array of m threads.  The threads in 

this array T are sorted by their cache requirement in 

descending order.  The top m/2 threads are scheduled on to 

the first core (C0) of the corresponding shared cache Si (lines 

2, 3 of the algorithm). The scheduled threads are deleted from 

the list T. Same steps are taken for the remaining threads in T 

but making sure that the threads are scheduled in the reverse 

order of the shared caches (lines 6 and 7). This makes sure 

that the thread with the highest cache requirement is 

scheduled with the lowest cache requirement thread to use the 

shared cache. 

Algorithm 1: Thread Scheduler  

1. Sort m threads of T in descending order of their 

Cache Requirement (CR) 

2. for i = 1 to n/2 do 

3. assign the first thread in T to C0 of Si; 

4. m = m – 1; //remove the assigned threadend for 

5. for i = n/2 to 1 do //assign remaining threads to C1 

core of Si 

6. assign the first thread in T to C1 core of Si; 

7. m = m - 1; //remove the assigned thread 

8.  end for 

4. EXPERIMENTAL METHODOLOGY 
The effectiveness of the proposed cache conscious scheduling 

algorithm has been evaluated using the Gem5 simulator [16].  

A four core CMP with 2 shared LLCs is used as the baseline 

system and single threaded cores with L1 private cache.  The 

L1 instruction cache and Data cache are 4-way 32 KB each, 

while the last level cache is a unified 32 way 4 MB cache.  

For the evaluation, six benchmarks from SPEC CPU2006 

suite based on the characteristics of cache accesses are used. 

The description of these benchmarks are given in Table 1. 

Table 2 also lists the same six SPEC CPU2006 benchmark 

programs and their Misses Per Kilo Instruction (MPKI) in the 

L1 cache and LLC when run in isolation. MPKI values give a 

measure of the cache utility for an application. In the 

selection, all the benchmarks are categorized into three types 

namely, high-utility, saturating-utility and low-utility based on 

their MPKI values. Benchmarks mcf and libquantum are 

categorized into high-utility benchmarks. These applications 

have a working set size that is greater than the available LLC 

and their performance increases gradually as cache size 

increases. Astar and bzip are categorized into saturating-

utility. Their performance saturates with a smaller cache size 

and will not improve when the cache size is increased. 

Perlbench and dea are categorized into low-utility. They 

benefit very less from the last level cache as their working set 

always fits into the lower level caches.  

The Cache Requirement (CR) analysis of the six CPU SPEC 

2006 benchmarks calculated using the stack distance profiling 

method as explained in the previous section matched closely 

with that of MPKI analysis as in Table 2. This justifies the 

usage of cache requirement analysis using stack distance 

profiling in the proposed scheduling algorithm. 
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Table 1: SPEC CPU2006 Benchmarks and their 

characteristics 

Benchmark Description 

bzip Data Compression 

astar Path Finding 

dea 
Solution of partial differential equation 

using adaptive finite element 

perlbench Perl programming language 

libquantum Physics / Quantum computing 

mcf 
Combinatorial optimization /single depot 

vehicle scheduling 

Table 2: MPKI of Representative SPEC CPU 2006 

benchmark applications 

Benchmar

ks  
astar bzip dea 

perlb

ench 

libqu

antu

m 

mcf 

L1 MPKI 

(64 KB) 29.29 19.48 0.95 0.42 38.83 21.51 

LLC MPKI 

(4MB) 
2.02 1.05 0.05 0.60 34.28 18.72 

Classificati

on 
SAT SAT LOW LOW HIG

HH 

HIG

H 

Cache 

Required 
17 10 8 6 31 32 

 

High=High Utility, Sat=Saturating Utility, Low=Low Utility 

To evaluate the proposed scheduling algorithm, six 

benchmark combinations of four threads each has been 

formulated. The best possible combination matrix of six 

workloads is selected out of the possible 15 combinations and 

are listed in Table 3. These workloads are simulated using the 

proposed scheduling algorithm. A worst application schedule 

which assigns two high cache requirement applications to the 

shared cache was also simulated for comparison purpose.  

In order to measure the performance of concurrently 

executing applications, the ‘Harmonic Mean Fairness’ metric 

has been used. The harmonic mean fairness metric is the 

harmonic mean of normalized IPCs which balances both 

performance and fairness [17]. This metric is obtained as 

follows: 

Harmonic Mean Fairness = 
 

  
         

    
 

   

   

           -- (2) 

Where N represents the number of threads, IPCi is ith 

application’s IPC when it concurrently runs with other 

applications. Solo-IPCi is ith application’s IPC running in 

isolation. 

 

 

 

 

 

Table 3: Benchmark combinations by thread 

characteristics 

Work 

loads 

 

 

 

 

Applications 

WL1 libquantu

m 

mcf dea perlbench 

WL2 libquantu

m 

mcf astar dea 

WL3 libquantu

m 

mcf astar bzip 

WL4 libquantu

m 

astar bzip perlbench 

WL5 libquantu

m 

bzip dea perlbench 

WL6 astar bzip dea perlbench 

 

5. RESULTS AND ANALYSIS 
Figure 6 shows the performance of different workloads over 

Default Application Scheduling (DAS).  The proposed policy 

shows an overall performance improvement of 5%.  This 

implies a proper combination of workloads that can run on a 

shared cache is the key factor of system performance 

improvement.  As per this policy, WL1 achieves the highest 

performance of 8% compared with the default application 

scheduling.  This consists threads of combination with two 

lowest and two highest cache requirement. A severe 

performance degradation can be observed in the worst case 

scenario in which two threads having the highest cache 

requirements are co-scheduled in the same shared cache and 

two other threads having the lowest cache requirements are 

co-scheduled in the other shared cache. Here, the shared cache 

either has cache shortage or waste of its cache capacity 

resource.  

The proposed scheduling policy effectively prevents this 

unfair situation by allocating different shared caches for the 

two high cache requirement threads.  With respect to the WL6 

combination, the proposed scheduling policy doesn’t perform 

well, as the threads in this group have saturating utility and low 

utility cache requirement and a proper cache space can be 

allocated to them by the default scheduler. The results show 

that the cache conscious scheduling policy performs better 

than the default case policy in other workload cases.  If the 

cache capacity has not been considered, dynamic cache 

partitioning would degrade the thread performance 

significantly.  Therefore, the proposed scheduling policy has 

shown to be effective in preventing this problem. 

 
Figure 6:  Performance Comparison on Proposed Policy to 

Default Application Schedule (DAS) 
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6. CONCLUSION 
In this paper, a cache conscious friendly scheduling policy is 

proposed.  The policy classifies the threads based on their 

cache requirements and schedules them intelligently to the 

shared last level caches. This ensures the threads demanding 

higher cache ways are distributed uniformly among the 

different shared LLCs along with threads that require less 

cache ways, so that the available cache space is optimally 

allocated. Accordingly, the shared cache contention is reduced 

and the performance improves. The contiguous cache memory 

allocation for the application threads in the shared last level 

cache is ensured by this proposed scheduler. This makes it 

Cache Friendly in nature to the application whether it’s 

classified in the range as a high utility or as a low utility 

thread. 

Experimental results show a performance improvement of 8% 

for a particular workload and an average of 5% for the 

proposed scheduling algorithm compared to the default 

application scheduling.  

Future work involves developing a dynamic profiling and 

scheduling algorithm which can take care of the requirements 

of the applications in real time. 

7. REFERENCES  
[1] P. Kongetira, et al, 2005 “A 32-Way Multithreaded 

SPARC Processor”, IEEE Micro, vol. 25 Mar, (2005). 

[2] J. Mars, L. Tang, and M. L. Soffa, 2011 “Directly 

characterizing cross core interference through contention 

synthesis”, In Proceedings of the 6th International 

Conference on High Performance and Embedded 

Architectures and Compilers, Pages 167–176. 

[3] Y. Xie and G. H. Loh, 2008 “Dynamic classification of 

program memory behaviors in CMPs”, In Proceedings of 

CMP-MSI. 

[4] Ed Suh, Larry Rudolph, Srini Devadas, 2001 “Dynamic 

cache partitioning for simultaneous multithreading 

systems”, in the proceedings of 13th IASTED 

International Conf. on Parallel and Distributed 

Computing and Systems, 116–127. 

[5] M. K. Qureshi and Y. N. Patt, 2006 “Utility-based cache 

partitioning: A low-overhead, high-performance, run- 

time mechanism to partition shared caches”, in the 

proceedings of 39th Annual IEEE/ACM International 

Symposium on Microarchitecture, 423–432. 

[6] S. Kim, D. Chandra, and Y. Solihin, 2004 “Fair cache 

sharing and partitioning in a chip multiprocessor 

architecture”, in the proceedings of 13th International 

Conference on Parallel Architecture and Compilation 

Techniques, 111–122, 

[7] X. Jia, J. Jiang, T. Zhao, S. Qi, and M. Zhang, 2010 

“Towards online application cache behaviors 

identification in CMPs”, in the Proceedings of the 12th 

IEEE International Conference on High Performance 

Computing and Communications, pages 1 – 8. 

[8] James H. Anderson, J M Calendrino, and U C Devi, 2006 

“Real time scheduling on multi core platforms”, in the 

proceedings of the 12th IEEE Real Time and Embedded 

Technology and Applications Symposium (RTAS ’06), 

San Jose California, USA, April 4-7. 

[9] S. Shekofteh, H. Deldari, and M. B. Khalkhali, 2010 

“Reducing cache contention in a multi-core processor via 

a scheduler”, International Conference on Advanced 

Computer Theory and Engineering. 

[10] J. Kihm, A. Settle, A. Janiszewski, and D. Connors, 2005 

“Understanding the impact of inter-thread cache 

interference on ILP in modern SMT processors”, The 

Journal of Instruction-Level Parallelism, 7. 

[11] Carol-Jean Wu, Margaret Martonosi, 2011 “Adaptive 

Timekeeping Replacement: Fine Grained Capacity 

Management for Shared CMP Caches”, ACM 

Transactions on Architecture and Code Optimization 

(TACO), Vol. 8, Issue 1, Article 3. 

[12] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai 

Shen 2015, “Data sharing or resource contention: toward 

performance transparency on multicore systems”, in the 

Proceedings of the 2015 USENIX Annual Technical 

Conference (USENIC ATC ’15)”, July 8–10, 2015, Santa 

Clara, CA, USA, pp. 529-540. 

[13] Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi, 

Nicolas Palix, Redha Gouicem, 2017 “Towards Proving 

Optimistic Multicore Schedulers”, HotOS 2017 - 16th 

Workshop on Hot Topics in Operating Systems, ACM 

SIGOPS, Whistler, British Columbia, Canada.  

[14] D. Chandra, F. Guo, S. Kim, and Y. Solihin, 2005 

“Predicting inter-thread cache contention on a chip multi-

processor architecture”, In the proceedings of 11th 

International Symposium on High Performance Computer 

Architecture, pp.340–351. 

[15] H. Kobayashi, I. Kotera, and H. Takizawa 2005 “Locality 

analysis to control dynamically way-adaptable caches,” 

ACM SIGARCH Computer Architecture News, vol.33, 

no.3, pp.25–32. 

[16] Nathan Binkert, Bradford Beckman, Gabriel Black, 

Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel 

Hestness, Derek. R. Hower, Tushar Krishna, Somayeh 

Sardashti, Rathijit Sen, Korey Sewell, Muhammad 

Shoaib, Nilay Vaish, Mark D. Hill and David A. Wood. 

2011 "The gem5 simulator", ACM SIGARCH Computer 

Architecture News, Vol. 39, No. 2 pp. 1-7. 

[17] K. Luo, J. Gummaraju, and M. Franklin, 2001 “Balancing 

throughput and fairness in SMT processors”, In ISPASS, 

pages 164–171. 

 

IJCATM : www.ijcaonline.org 


