
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

39

Cache Friendly and Capacity Conscious Scheduling in

Multi-core Systems

Sheela Kathavate
Department of Computer Science and Engineering

Sir M. Visvesvaraya Institute of Technology
Bangalore

N. K. Srinath
Department of Computer Science and Engineering

R. V. College of Engineering
Bangalore

ABSTRACT

Current generation high performance multi-core processors

have large shared cache memories. This shared cache memory

is accessible by multiple cores. Concurrently running threads

under each core do not always demand the entire capacity of

the shared cache. Threads running on different cores

accessing shared cache concurrently may result in higher

cache miss rate and significant performance degradation due

to inter-thread cache conflicts and lack of cache space. The

cache capacity is the quantity of physical cache memory

available with the processor. To achieve certain higher degree

of processing performance on multi-core processors, efficient

shared cache memory usage plays the defining role. The

overall processor performance gets more sensitive to the

problem of shortage of cache capacity, as threads sharing the

cache compete for their requirement of the cache sizes. In this

paper, a cache friendly and capacity conscious thread

scheduling strategy is proposed for multi-core processors with

multiple shared caches. The proposed scheduling policy

ensures that the shared cache is optimally used by the

competing threads which minimizes inter-thread resource

conflict and hence reduces performance degradation.

According to the experimental results the proposed policy

reduces shared cache contention significantly thereby

improving the overall performance among threads by up to

5%.

Keywords

CMP, Cache Capacity, Thread Scheduling, Shared Cache.

1. INTRODUCTION
The current trend in processor chip manufacturing technology

is experiencing the limitation of thermal diffusion technology,

physical characteristic and semiconductor processes. As a

result, the speed of the processor is expected not to double as

per Moore’s law. To overcome this limitation in processor

scaling capability, Chip Multi-Processor (CMP) has become

the trend and is prevalent in modern computer systems.

Multiple threads can run concurrently on a CMP consisting of

multiple cores. Each core is embedded with its private cache

called level-1 (L1 Cache) to share among the threads of

individual core. The last level cache (LLC Cache) is shared

among multiple cores to enhance cache resource utilization.

Modern multi-core systems are designed to allow clusters of

cores to share various hardware structures, such as a LLC

memory controllers, and interconnects, as well as prefetching

hardware. Figure 1 shows a multi-core system with each core

having a private L1 cache and a shared last level L2 cache

between two cores. Concurrently running threads, or co-

runners often share a single second level (L2) cache, and

cache allocation is controlled by the underlying hardware [1].

Cache sharing depends solely on the cache needs of the co-

runners, and unfair cache sharing occurs often. When the

shared cache is being accessed by applications running on

different cores, cache miss could occur resulting in the

degradation of system performance. Hence, addressing shared

cache contention issue in CMPs becomes an issue to be

addressed.

Figure 1: Block Diagram of 4 Core CMP architecture

Concurrently executing threads spawned from different

applications on multi-cores cause performance degradation

issues due to the contention of shared resources among

threads. As a result of this, the time taken to execute

applications on a multi-core processor may consume longer

time than that of a uni-core processor, even though the former

can simultaneously execute multiple threads. Hence, avoiding

inter-thread resource conflicts becomes a major task for a

multi-core processor.

The rest of this paper is structured as follows. In Section 2,

related work is discussed. Section 3 describes cache

conscious scheduling algorithm, Section 4 explains

experimental methodology. Section 5 shows Results and

analysis and conclusion in Section 6.

2. RELATED WORK
To overcome the shared cache contention, many researchers

have proposed scheduling policies considering the inter-task

interference. J. Mars et al. [2] proposed a framework (CiPE –

Cross-core interference Profiling Environment) which is

composed of a lightweight runtime environment on which a

host application runs on one core. With this, a contention

synthesis engine executes on a neighboring core. CiPE

manipulates the co-running contention synthesis engine, while

monitoring and analyzing the resulting dynamic impact on the

host application. Here, a specially designed benchmark was

used to be co-scheduled with another task. The throughput of

the task was used to assign scores to itself. In this

methodology, the cache capacity is not taken into

consideration. Xie et al. [3] proposed classification of an

application based on its anti-interference abilities. Anti-

interference is defined as the loss in performance degradation

when one application competes with the other for shared

cache. This method classifies the tasks analogous to animal

personalities, such as sheep, devils, rabbits and turtles, based

on some metrics related to the cache. In order to reduce the

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

40

cache contention, the authors proposed co-scheduling of a

task having better anti-interference ability with a less anti-

interference ability task. This method of scheduling may not

be accurate as it is difficult to co-schedule task which have

similar anti-interference abilities.

G. E. Suh et al. [4] described a cache partitioning algorithm

centered on the concept of low overhead control scheme and

marginal gain. However, the drawback in this algorithm is the

accountability of fairness in sharing of cache among threads.

M. K. Qureshi et al. [5] and S. Kim et al. [6] have proposed

mechanisms to reduce inter-thread cache conflicts on last

level cache using dynamic cache partitioning concept. They

defined the fairness among threads as parity of performance

degradation. As per their algorithm, the allocation of

partitioned cache capacities is decided based on the minimum

difference in miss rates among running threads. Such

mechanisms have shown certain amount of performance

improvement. However, as dynamic cache partitioning does

not consider the cache capacity of each thread, performance

severely degrades.

Based on the dynamic behavior of the cache, some research

has been done in the field of thread scheduling on multi-core

systems. Jia et al. [7] used L2 MRCs (Miss Rate Curve) to

classify applications based on their cache behavior

dynamically. These methods need special hardware, like

LRU counters and ATD. James H. Anderson et al. [8]

proposed a cache aware Pfare-based scheduling scheme for

real time task on multi-core platforms, but they have only

considered static and independent task. Shekofteh et al. [9]

proposed a risk function and approximated the probable cache

contention of a co-schedule and the schedule with the least

risk was chosen.

When threads execute concurrently, conflict misses occur

among threads whenever one thread replaces the data of the

other in cache. J. Kihm et al. [10] refer to such conflict as

inter-thread kickouts resulting in increased execution time of

a thread. To avoid such inter-thread kickouts, dynamic cache

partitioning has been proposed. Dynamic cache partitioning

divides the shared cache memory into multiple parts of

different sizes and each thread receives its share at run-time.

Carol-Jean Wu et al. [11] considers operating system priority

levels as part of capacity management. The proposed

methodology uses time keeping techniques that track an

account of the time between two cache accesses. This

technique needs to have a knowledge of the priority of each

application. Sharanyan Srikanthan et al. [12] have proposed

SAM, a Sharing-Aware Mapper that uses the aggregated

coherence and bandwidth event counts which is used to

separate traffic caused by data sharing due to memory

accesses. In this methodology, cache sharing is not

considered. Baptiste Lepers et al. [13] discuss about optimistic

multi-core schedulers wherein the load balancing for the cores

is taken into consideration.

Furthermore, if cache sharing threads request large size cache

capacities, it could result in degradation of performance under

dynamic cache partitioning. For example, consider that two

threads that are running on a shared cache. When the

combined cache capacities requested by these two threads

surpasses the capacity of the shared cache, the dynamic cache

partitioning fails in meeting their demands. This results in

severe performance degradation among concurrently

executing threads. Even though dynamic cache partitioning is

effective in avoiding the problem of inter thread kickouts, it

fails to address the capacity contention issue.

In this paper, a cache conscious scheduling algorithm is

proposed. This proposal considers the cache requirement of

the individual threads and schedules them dynamically to

avoid cache contention and eventually improves the overall

system performance.

3. CACHE Conscious THREAD

SCHEDULING POLICY

3.1 Motivation
When threads are not classified according to their shared

cache requirements, the scheduling of such threads will result

in cache resource depletion or create unused cache resource.

In Figure 2, Thread 0 and Thread 1 have been assigned to

LLC 0 which results in cache depletion while Thread 2 and

Thread 3 assignment to LLC 1 results in unused cache

resource. This would have done better if the scheduler

allocated Thread 0 and Thread 3 to share one cache (LLC 0)

while allocating Thread 1 and Thread 2 to share the other

cache (LLC 1) to optimize the available cache as shown in

Figure 3.

Figure 2: Scheduling with the cache capacity shortage and

cache resource being unused

Figure 3: Scheduling by cache conscious thread scheduling

policy

A classification and scheduling algorithm which takes into

consideration the cache requirements of each thread and group

them before distributing to the cores is proposed. The

proposed scheduling policy combines thread of higher cache

requirement with that of thread which needs lower cache

requirement to run on shared cache.

3.2 Profiling for Cache Requirement of a

thread
It is important to analyze and evaluate the request for cache

capacity of every thread during profiling phase. The

underlying methodology uses a profiling scheme that controls

the cache partitioning mechanism as applied to every shared

cache. In this mechanism the stack distance profiling is used

to decide the number of cache ways to be allocated for each

thread.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

41

Figure 4 illustrates the low locality data access as per Chandra

et al. [14]. In this graphical representation Cx represents the

number of accesses to the blocks at the xth LRU position. Low

locality means accesses are spread out all over the positions.

This infers that the available cache capacity is lesser than the

capacity needed by the thread. On the contrary, a thread

having high locality means the requested capacity by a thread

is lesser than the cache capacity. This high locality occurs

frequently at the adjacent positions as shown in Figure 5. To

mathematically analyze and to quantify this locality

difference, H. Kobayashi et al. [15] defined an assessment

matrix ‘D’ as C1/CN. The scheme combines the assessment

matrix D and predefined thresholds, t1 and t2 for the purpose

of cache resizing. When the assessment matrix D becomes

greater than threshold t2, the cache partitioning scheme

assigns one additional way for the active thread. On a

differing note, when assessment matrix D becomes smaller

than threshold t1, the scheme removes or de-allocates a way to

the active thread.

Figure 4: Low Locality Stack Distance Profiling

Figure 5: High Locality Stack Distance Profiling

The cache Capacity Requirement of a thread is derived from:

 -- (1)

Where,

 W(t) = (ways allocated at time t)

 t0 = (the starting time of profiling)

 t1 = (the ending time of profiling)

3.3 Thread Scheduling Algorithm
In Algorithm 1, m threads running concurrently on an n-core

processor with n/2 shared caches. Each L2 cache is shared by

two cores and every thread is associated with a cache

requirement. Let T be an array of m threads. The threads in

this array T are sorted by their cache requirement in

descending order. The top m/2 threads are scheduled on to

the first core (C0) of the corresponding shared cache Si (lines

2, 3 of the algorithm). The scheduled threads are deleted from

the list T. Same steps are taken for the remaining threads in T

but making sure that the threads are scheduled in the reverse

order of the shared caches (lines 6 and 7). This makes sure

that the thread with the highest cache requirement is

scheduled with the lowest cache requirement thread to use the

shared cache.

Algorithm 1: Thread Scheduler

1. Sort m threads of T in descending order of their

Cache Requirement (CR)

2. for i = 1 to n/2 do

3. assign the first thread in T to C0 of Si;

4. m = m – 1; //remove the assigned threadend for

5. for i = n/2 to 1 do //assign remaining threads to C1

core of Si

6. assign the first thread in T to C1 core of Si;

7. m = m - 1; //remove the assigned thread

8. end for

4. EXPERIMENTAL METHODOLOGY
The effectiveness of the proposed cache conscious scheduling

algorithm has been evaluated using the Gem5 simulator [16].

A four core CMP with 2 shared LLCs is used as the baseline

system and single threaded cores with L1 private cache. The

L1 instruction cache and Data cache are 4-way 32 KB each,

while the last level cache is a unified 32 way 4 MB cache.

For the evaluation, six benchmarks from SPEC CPU2006

suite based on the characteristics of cache accesses are used.

The description of these benchmarks are given in Table 1.

Table 2 also lists the same six SPEC CPU2006 benchmark

programs and their Misses Per Kilo Instruction (MPKI) in the

L1 cache and LLC when run in isolation. MPKI values give a

measure of the cache utility for an application. In the

selection, all the benchmarks are categorized into three types

namely, high-utility, saturating-utility and low-utility based on

their MPKI values. Benchmarks mcf and libquantum are

categorized into high-utility benchmarks. These applications

have a working set size that is greater than the available LLC

and their performance increases gradually as cache size

increases. Astar and bzip are categorized into saturating-

utility. Their performance saturates with a smaller cache size

and will not improve when the cache size is increased.

Perlbench and dea are categorized into low-utility. They

benefit very less from the last level cache as their working set

always fits into the lower level caches.

The Cache Requirement (CR) analysis of the six CPU SPEC

2006 benchmarks calculated using the stack distance profiling

method as explained in the previous section matched closely

with that of MPKI analysis as in Table 2. This justifies the

usage of cache requirement analysis using stack distance

profiling in the proposed scheduling algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

42

Table 1: SPEC CPU2006 Benchmarks and their

characteristics

Benchmark Description

bzip Data Compression

astar Path Finding

dea
Solution of partial differential equation

using adaptive finite element

perlbench Perl programming language

libquantum Physics / Quantum computing

mcf
Combinatorial optimization /single depot

vehicle scheduling

Table 2: MPKI of Representative SPEC CPU 2006

benchmark applications

Benchmar

ks 
astar bzip dea

perlb

ench

libqu

antu

m

mcf

L1 MPKI

(64 KB) 29.29 19.48 0.95 0.42 38.83 21.51

LLC MPKI

(4MB)
2.02 1.05 0.05 0.60 34.28 18.72

Classificati

on
SAT SAT LOW LOW HIG

HH

HIG

H

Cache

Required
17 10 8 6 31 32

High=High Utility, Sat=Saturating Utility, Low=Low Utility

To evaluate the proposed scheduling algorithm, six

benchmark combinations of four threads each has been

formulated. The best possible combination matrix of six

workloads is selected out of the possible 15 combinations and

are listed in Table 3. These workloads are simulated using the

proposed scheduling algorithm. A worst application schedule

which assigns two high cache requirement applications to the

shared cache was also simulated for comparison purpose.

In order to measure the performance of concurrently

executing applications, the ‘Harmonic Mean Fairness’ metric

has been used. The harmonic mean fairness metric is the

harmonic mean of normalized IPCs which balances both

performance and fairness [17]. This metric is obtained as

follows: 

Harmonic Mean Fairness =

 -- (2)

Where N represents the number of threads, IPCi is ith

application’s IPC when it concurrently runs with other

applications. Solo-IPCi is ith application’s IPC running in

isolation.

Table 3: Benchmark combinations by thread

characteristics

Work

loads

Applications

WL1 libquantu

m

mcf dea perlbench

WL2 libquantu

m

mcf astar dea

WL3 libquantu

m

mcf astar bzip

WL4 libquantu

m

astar bzip perlbench

WL5 libquantu

m

bzip dea perlbench

WL6 astar bzip dea perlbench

5. RESULTS AND ANALYSIS
Figure 6 shows the performance of different workloads over

Default Application Scheduling (DAS). The proposed policy

shows an overall performance improvement of 5%. This

implies a proper combination of workloads that can run on a

shared cache is the key factor of system performance

improvement. As per this policy, WL1 achieves the highest

performance of 8% compared with the default application

scheduling. This consists threads of combination with two

lowest and two highest cache requirement. A severe

performance degradation can be observed in the worst case

scenario in which two threads having the highest cache

requirements are co-scheduled in the same shared cache and

two other threads having the lowest cache requirements are

co-scheduled in the other shared cache. Here, the shared cache

either has cache shortage or waste of its cache capacity

resource.

The proposed scheduling policy effectively prevents this

unfair situation by allocating different shared caches for the

two high cache requirement threads. With respect to the WL6

combination, the proposed scheduling policy doesn’t perform

well, as the threads in this group have saturating utility and low

utility cache requirement and a proper cache space can be

allocated to them by the default scheduler. The results show

that the cache conscious scheduling policy performs better

than the default case policy in other workload cases. If the

cache capacity has not been considered, dynamic cache

partitioning would degrade the thread performance

significantly. Therefore, the proposed scheduling policy has

shown to be effective in preventing this problem.

Figure 6: Performance Comparison on Proposed Policy to

Default Application Schedule (DAS)

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 21, June 2019

43

6. CONCLUSION
In this paper, a cache conscious friendly scheduling policy is

proposed. The policy classifies the threads based on their

cache requirements and schedules them intelligently to the

shared last level caches. This ensures the threads demanding

higher cache ways are distributed uniformly among the

different shared LLCs along with threads that require less

cache ways, so that the available cache space is optimally

allocated. Accordingly, the shared cache contention is reduced

and the performance improves. The contiguous cache memory

allocation for the application threads in the shared last level

cache is ensured by this proposed scheduler. This makes it

Cache Friendly in nature to the application whether it’s

classified in the range as a high utility or as a low utility

thread.

Experimental results show a performance improvement of 8%

for a particular workload and an average of 5% for the

proposed scheduling algorithm compared to the default

application scheduling.

Future work involves developing a dynamic profiling and

scheduling algorithm which can take care of the requirements

of the applications in real time.

7. REFERENCES
[1] P. Kongetira, et al, 2005 “A 32-Way Multithreaded

SPARC Processor”, IEEE Micro, vol. 25 Mar, (2005).

[2] J. Mars, L. Tang, and M. L. Soffa, 2011 “Directly

characterizing cross core interference through contention

synthesis”, In Proceedings of the 6th International

Conference on High Performance and Embedded

Architectures and Compilers, Pages 167–176.

[3] Y. Xie and G. H. Loh, 2008 “Dynamic classification of

program memory behaviors in CMPs”, In Proceedings of

CMP-MSI.

[4] Ed Suh, Larry Rudolph, Srini Devadas, 2001 “Dynamic

cache partitioning for simultaneous multithreading

systems”, in the proceedings of 13th IASTED

International Conf. on Parallel and Distributed

Computing and Systems, 116–127.

[5] M. K. Qureshi and Y. N. Patt, 2006 “Utility-based cache

partitioning: A low-overhead, high-performance, run-

time mechanism to partition shared caches”, in the

proceedings of 39th Annual IEEE/ACM International

Symposium on Microarchitecture, 423–432.

[6] S. Kim, D. Chandra, and Y. Solihin, 2004 “Fair cache

sharing and partitioning in a chip multiprocessor

architecture”, in the proceedings of 13th International

Conference on Parallel Architecture and Compilation

Techniques, 111–122,

[7] X. Jia, J. Jiang, T. Zhao, S. Qi, and M. Zhang, 2010

“Towards online application cache behaviors

identification in CMPs”, in the Proceedings of the 12th

IEEE International Conference on High Performance

Computing and Communications, pages 1 – 8.

[8] James H. Anderson, J M Calendrino, and U C Devi, 2006

“Real time scheduling on multi core platforms”, in the

proceedings of the 12th IEEE Real Time and Embedded

Technology and Applications Symposium (RTAS ’06),

San Jose California, USA, April 4-7.

[9] S. Shekofteh, H. Deldari, and M. B. Khalkhali, 2010

“Reducing cache contention in a multi-core processor via

a scheduler”, International Conference on Advanced

Computer Theory and Engineering.

[10] J. Kihm, A. Settle, A. Janiszewski, and D. Connors, 2005

“Understanding the impact of inter-thread cache

interference on ILP in modern SMT processors”, The

Journal of Instruction-Level Parallelism, 7.

[11] Carol-Jean Wu, Margaret Martonosi, 2011 “Adaptive

Timekeeping Replacement: Fine Grained Capacity

Management for Shared CMP Caches”, ACM

Transactions on Architecture and Code Optimization

(TACO), Vol. 8, Issue 1, Article 3.

[12] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai

Shen 2015, “Data sharing or resource contention: toward

performance transparency on multicore systems”, in the

Proceedings of the 2015 USENIX Annual Technical

Conference (USENIC ATC ’15)”, July 8–10, 2015, Santa

Clara, CA, USA, pp. 529-540.

[13] Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi,

Nicolas Palix, Redha Gouicem, 2017 “Towards Proving

Optimistic Multicore Schedulers”, HotOS 2017 - 16th

Workshop on Hot Topics in Operating Systems, ACM

SIGOPS, Whistler, British Columbia, Canada.

[14] D. Chandra, F. Guo, S. Kim, and Y. Solihin, 2005

“Predicting inter-thread cache contention on a chip multi-

processor architecture”, In the proceedings of 11th

International Symposium on High Performance Computer

Architecture, pp.340–351.

[15] H. Kobayashi, I. Kotera, and H. Takizawa 2005 “Locality

analysis to control dynamically way-adaptable caches,”

ACM SIGARCH Computer Architecture News, vol.33,

no.3, pp.25–32.

[16] Nathan Binkert, Bradford Beckman, Gabriel Black,

Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek. R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad

Shoaib, Nilay Vaish, Mark D. Hill and David A. Wood.

2011 "The gem5 simulator", ACM SIGARCH Computer

Architecture News, Vol. 39, No. 2 pp. 1-7.

[17] K. Luo, J. Gummaraju, and M. Franklin, 2001 “Balancing

throughput and fairness in SMT processors”, In ISPASS,

pages 164–171.

IJCATM : www.ijcaonline.org

