
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 28, June 2019

15

Comparative Study of Data Compression Techniques

Anshul Anup Rajput
M.C.A. Department

TYMCA
Sardar Patel Institute of

Technology Andheri, Mumbai,
India

Ravi Ashok Rajput
M.C.A. Department

(TYMCA)
Sardar Patel Institute of

Technology Andheri, Mumbai,
India

Pooja Raundale, PhD
M.C.A. Department

(Head of Department)
Sardar Patel Institute of

Technology Andheri, Mumbai,
India

ABSTRACT

This document discusses data compression and some of the

data compression techniques. Data Compression is a

technique of reducing the amount of space data occupies, to

ease the process of storage and communication. This involves

but is not limited to interpretation and elimination of

redundancy in data. The fundamental process of compression

involves using a well drafted technique to convert the actual

data into the compressed data (smaller size). Depending upon

how well a compression technique works and how much data

can be regenerated from the compressed data given by a

certain technique, the technique is classified as either as a

lossy data compression technique or lossless data compression

technique.

Keywords

Data Compression, Lossless Data Compression.

1. INTRODUCTION
Data compression is a process of converting a particular data

into another form of representation which has a lesser storage

requirement. Data compression is the process of applying

some compression algorithm on a data or information for

changing it’s bits representation in such way of it reduces the

size of information while storing on disk. Data compression

technique is used in the cloud computing mainly for the

following two reasons:

1. Increase in the transfer speed of data.

2. Decrease the storage space required to store data.

Figure 1: Pictorial Representation of Data Compression

In Lossless data compression, no actual information is lost

because the bits are reduced by identifying the redundancy of

data and eliminating only the redundancy. This technique is

mostly applied for text document because any loss in a text

document is acceptable. For example; zipping documents into

one zip file compresses the data without any loss of a data

while decompressing it. Lossless data compression technique

is also known as a reversible compressing technique. Lossy

compression reduces data size by eliminating the less valuable

or unessential part of the data i.e. In a lossy data compression

technique when data is compressed, some data or information

is permanently removed. As a result, while doing

decompression on the compressed data, we get back data

which does not match the original data and the loss of data is

clearly visible to the user. This technique is used for the

compressing some large media file such as audio, video, jpeg

file. Mp3 is yet another form of compression technique

applied on audio. For e.g.: while sharing images clicked on

our smartphones with the high mega pixels (size of pictures

are high) and sharing them on WhatsApp application, the

application decompresses the image to increase the transfer

speed between the sender and receiver, thus resulting in a

lower quality mega pixel image at the receiver’s end.

Figure 2: Levels of Lossy Compression

2. CLASSIFICATION OF LOSSLESS

DATA COMPRESSION
Please Lossless data compression techniques can be classified

further into Entropy based data compression technique and

Dictionary based data compression technique.

In Entropy based data compression technique, the frequency

of repeating data is first found and the repeating sequences are

encoded.

In Dictionary based data compression, a dictionary is

maintained and the encoder looks for any entry for every

piece of data [4]. If there is an entry the encoder replaces the

piece of data with the mapped encoding. If the entry is not

present a new entry is made in the dictionary.

3. RUN-LENGTH ENCODING (RLE)
Please This is lossless data compression algorithm in which

algorithm is applied on data in such way that large repeating

pattern is caprice into small number of character of string,

algorithm produce two bytes of output for each repeating

character in data, one byte says that the total number character

present in repeating pattern, and another bytes says that actual

repeating character in string it’s also called as run, (and its

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 28, June 2019

16

count called as run count.)

If we consider an image which has a lot of colors in it. A

hypothetical line representing the pixel colors is as follows -

WWWWWWRRRGGGGGWWWWWBBBBBBWWW

WWWWWRRRRR

Once the Run length data compression algorithm is applied to

the above line it can be represented as -

6W3R5G5W6B8W5R

Hence the large string is compressed into a smaller string.

As evident in the above example that the data was compressed

efficiently. But this is not always the case. In RLE algorithm

the worst case situation can result into the output being double

the size of the Input string. For example if WRGB is to be

encoded using RLE than its output will be 1W1R1G1B which

means that the size of encoded string is more than the original

string.

 This formula is incredibly simple to implement and doesn't

need abundant mainframe power unit. RLE compression is

merely economical with files that contain numerous repetitive

information. These are often text files if they contain

numerous areas for indenting however line-art pictures that

contain Pieris brassicae or black area units are much more

appropriate.

4. SHANNON-FANO ALGORITHM
This algorithm is mainly used to compress text files, it is

similar to Huffman Coding(HC) algorithm; the only

difference is that the SF algorithm uses the top-down

approach while HC algorithm uses the bottom-up approach on

the text. SF algorithm is rarely used as it is not useful for all

the data formats as compared to Huffman Coding algorithm

which is faster and better.

In SF algorithm, the letter from string is converted to its

binary form from their respective ASCII value; then the

probability of the occurrence of each letter is calculated and

then the tree is created based on the frequency (probability

value)(starting from the top and descending till only leaf

nodes are left).

Following are steps in the technique:

1 It parses the input data string and find total

occurrence of each character in given input.

2 Find out probability of each repeated character

3 Sort the probability in descending order

4 Spawn leaf node for each and every symbol

5 Partition the list into 2 parts so probability of the

first part is almost equal to the second part of

partition

6 Prepend 0 to first part and 1 to second part

7 Repeat step 5 and 6 to first and second partition of

tree till each node in tree is leaf. It doesn’t give

guaranty of optimal code

Considering the same string that was used in run length

algorithm:

WWWWWWRRRGGGGGWWWWWBBBBBBWWWWWW

WWRRRRR

Calculating the total number of times each character has

occurred and arranged it in descending order of their

frequency.

Then a tree can be created for the characters:

Figure 3: Frequency of letters in the considered sequence

Figure 4: Tree for Shannon-Fano Encoding

The value of the characters becomes as follows:-

W - 0 R - 10 B - 110 G – 111.

Hence the encoded string becomes:-

000000101010111111111111111000001101101101101

10110000000001010101010.

The size of this output string is 68 bits i.e. 8.5 bytes

5. HUFFMAN CODING
The idea is founded on assigning variable length of code to

input character length of code is depends on size frequency of

character the highest repeatable code gets smallest code and

smallest repeatable code get largest code. It is working is

same as Shannon-Fanon Algorithm.[3] In Huffman coding the

most repeatable word gets least binary number and least

repeatable word get highest binary number. In Huffman

coding the more often a symbol occurs in the original data the

shorter the binary string used to represent it in the compressed

data. Huffman coding requires two passes one to build a

statistical model of the data and a second to encode it so is a

relatively slow process. It is similar to Shannon Fano but it

follows bottom up approach instead of top down approach.

Considering the same string that was used in run length

algorithm:

WWWWWWRRRGGGGGWWWWWBBBBBBWWWWWW

WWRRRRR

Firstly the total number of times each character has occurred

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 28, June 2019

17

should be counted and the frequencies should be arranged in

descending order. Refer figure 3 for the character count.

We then create the tree for the characters

Figure 5: Huffman Tree

The value of the characters becomes as follows :-

W - 00 R - 01 B - 10 G - 11

Hence the encoded string becomes –

00000000000001010111111111110000000000101010101010

0000000000000000101010101

The size of this output string is 76 bits i.e. 9.5 bytes

6. LEMPEL-ZIV-WELCH
This algorithm is used in PDF and TIFF (Tagged Image

File Format), it’s mostly used in UNIX file compression

utility and is used in GIF Format [1]. LZW reads a sequence

of symbol and performs grouping of the symbols into string

and then converts into code, so code takes less space than

actual string.

In this algorithm, as the input data being processed, a

dictionary keeps track of all the corresponding words and

where they are encountered and converts them into a code

value. The words are replaced by their corresponding codes

and so the input file is compressed and decompression creates

the same string table and by analyzing the input stream it

decodes and translates the code back to the original string or

text.

LZW Compression

Start with first character in the string

Dictionary = store characters together to check if the sequence

is repeated again and remove redundant values

Current = 1st input character

Till string is not over

 Next = 2nd input character

If current + next = string in table

Group them together

Else

Add current value to output

Add current + next to dictionary

Current = next

Next = next + 1

Output for current = reduced bits of data in numerical form

LZW Decompression

Start from the first value in the output array (compressed data)

Current = 1st value

Till output string is not over

Next = 2nd value

If Current +Next not present in dictionary

Add = Current + Next

Add to Dictionary

Add column ASCII value begins from 256 (255 is the last

ASCII value + 1)

Output current

Else Search in dictionary for ASCII value (Current + Next) &

add to dictionary after current (Current + value from

dictionary) Current searched value ASCII value +1 Compare

with next value. Output table = string.

Considering the same string as example:

WWWWWWRRRGGGGGWWWWWBBBBBBWWWWWW

WWRRRRR

Create Small Table/ Sample Table as follows. This table

defines codes for each distinct character in the data. Small

table is used as as initializer of the process.

Figure 6: Sample Table for Lempel-Ziv-Welch

Then, a complete dictionary is made as in the figure 7.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 28, June 2019

18

Figure 7: Dictionary for Lempel-Ziv-Welch

Encoded Output is:

1,5,6,2,8,3,10,10,5,5,4,15,16,13,13,8.

The binary encoding can be written as:

00001,00101,00110,00010,01000,00011,01010,01010,00101,

00101,00100,01111,010000,01101,01101,01000

Thus, the compression converts the string into a sequence of

80 bits i.e. 10 bytes

The idea of this technique is such that, as the number of long

repetitive sequences increase the efficiency of the algorithm

increases.

7. COMPRESSION PERFORMANCE
While measuring the compression performance many factors

have to be taken into consideration but the main two factors

are space and time efficiency. By finding the compression

ratio, compression factor, data saving percentage,

compression time and the code efficiency of each algorithm

we can compare them and measure their performance.

Lossless data compression is categorized into two parts

Dictionary based and entropy based encoding

Measurement parameters

Compression ratio =

Compression factor =

Saving percentage is given by the following formula,

 %

Compression time is the time (in milliseconds) which an

algorithm takes to compress a file

Decompression time is the time (in milliseconds), which an

algorithm takes to retrieve the original file from the

compressed file.

The factors like compression time and decompression time are

relative since different CPU speed can cause variations in

performance results and hence cannot be recorded as standard

results.

Size of Uncompressed Data is 38 bytes which is same for all

the techniques since the string sequence used to study

compression is same for all techniques.

Compression ratios for different Compression techniques are

as in the table 1.

Table 1: Compression Ratios of different compression

techniques

Technique Compressed

Data Size

(bytes)

Compression

Ratio

Run Length

Encoding
14 2.7

Shannon

Fano
8.5 4.5

Huffman

Coding
9.5 4

Lempel Ziv

Welch
10 3.8

The compression factor for the studied techniques is as in

table 2:

Table 2: Compression Factor for different compression

techniques

Technique Compression Factor

Run Length

 Encoding
0.37

Shannon

 Fano
0.22

Huffman

Coding
0.25

Lempel Ziv

 Welch
0.26

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 28, June 2019

19

The saving percentage for the studied techniques is as in table

3.

Table 3: Saving Percentage for different compression

techniques

Technique Saving Percentage

Run Length

 Encoding
63.1

Shannon

 Fano
77.6

Huffman

Coding
75.0

Lempel Ziv

 Welch
73.6

8. CONCLUSION
Various lossless data compression techniques studied in depth

from various research papers and authors thus resulting that

text data can be compressed more easily and efficiently by

various techniques. For sequences with different levels of

repetition and for different lengths of repeating sequences,

different algorithms work differently. For instance, Shannon-

Fano algorithm’s compression and decompression time for

text files is less as compared to Huffman coding. Run-length

encoding works around consecutively repeating bits of data

but does not consider all the redundancy in the data. Also,

Shannon-Fano algorithm is better in terms of performance as

compared to RLE but reliability is low since it can generate

two different encoding sequence for same data. Hence, output

is inconsistent. Huffman encoding requires two passes and

hence is slow as compared to LZW which can do the

encoding in a single pass. Also, one more fact can be inferred

that is the data compression algorithms work on redundancy

reduction by encoding redundant data. Employing better

algorithms for pattern deduction or redundancy deduction

using machine learning can help improve compression ratios

even better.

9. REFERENCES
[1] Dea Ayu Rachesti, Tito Waluyo Purboyo, Anggunmeka

Luhur Prasasti, “Comparison of Text Data Compression

Using Huffman, Shannon-Fano, Run Length Encoding” ,

Lecturer, Faculty of Electrical Engineering, Telkom

University, Bandung, Indonesia.

[2] M R Hasan , M I Ibrahimy , S M A Motakabber , M M

Ferdaus and M N H Khan, Comparative data

compression techniques and multi compression results,

Dept. of Electrical and Computer Engineering,

International Islamic University Malaysia, Gombak,

Malaysia.

[3] S.R. KODITUWAKKU, U. S.AMARASINGHE,

COMPARISON OF LOSSLESS DATA

COMPRESSION ALGORITHMS FOR TEXT DATA,

Department of Statistics & Computer Science, University

of Peradeniya, Sri Lanka.

[4] Arup Kumar Bhattacharjee ,Tanumon Bej, Saheb

Agarwal, Comparison Study of Lossless Data

Compression Algorithms for Text Data, Comparison

Study of Lossless Data Compression Algorithms for Text

Data.

[5] Data compression using dynamic Markov modeling,

Cormak, V. and S. Horspool, 1987. Comput. J., 30: 541–

550

[6] Mohammad Hosseini, “A Survey of Data Compression

Algorithms and their Applications”, Applications of

Advanced Algorithms, At Simon Fraser University,

Canada, January 2012

[7] Blelloch, E., 2002. Introduction to Data Compression,

Computer Science Department, Carnegie Mellon

University.

IJCATM : www.ijcaonline.org

