
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.3, November 2017

1

Classification of Tweets based on Emotions using Word

Embedding and Random Forest Classifiers

Parth Vora

K.J Somaiya College of
Engineering, Mumbai

Mansi Khara

K.J Somaiya College of
Engineering, Mumbai

Kavita Kelkar

K.J Somaiya College of
Engineering, Mumbai

ABSTRACT

With the large-scale penetration of social media into our daily

lives, it has become a platform for individuals to share and

express their views, feelings, opinions, and thoughts.

Identifying emotions has many applications ranging from

personalized marketing to behavior study. Individuals express

their feelings in a language that is frequently accompanied by

ambiguity and figure of speech, which makes it difficult even

for humans to comprehend. In this paper, we propose a new

approach to classify text into emotion categories. We use

Twitter data as labeled input, this data is labeled using

hashtags and addresses features like emoticons, emoji,

apostrophes, Twitter slang and spelling variations which are a

part of informal language on social media. Our model uses

word vectors generated by architecture like Word2vec, Glove,

and Fasttext to generate word representations of the text. We

then investigate the utility of these models on random forest

classifier. Ultimately we compare the results to find the best

model for text classification based on emotions. We achieve

an overall 91% precision for four emotional classes on a

mined dataset of more than 100,000 tweets. This is a very

useful tool to understand human behavior and a natural step

beyond the positive/negative polarity.

General Terms

Machine Learning, Text Classification, Word Vectors,

Natural Language Processing

Keywords

Keywords Word vectors, random forests, Word2vec, Glove,

emotion, text classification

1. INTRODUCTION
Advancement of smartphone technology and widespread

availability of the internet, has changed people‟s lifestyles.

This has given rise to the single most influential factor in our

life – the social media. Impacts of social media on society as a

whole is just astounding. It has made sharing information so

easy and hassle-free. From news to personal incidents, it takes

seconds to spread across the globe. It can be said that the

social media is the reflection of a society. Across continents

and communities, social media has a very strong footprint.

We choose Twitter for our classification specifically because

Twitter is a very accurate account of emotions. With any

event occurring around the world, tweets are the first thing

that start floating on the internet. By limiting its characters to

only 140, it is a perfect candidate for emotion classification

because of how concisely and briefly the information is

expressed. Also, the use of hashtags makes it easier to

automatically label tweets. And these tweets provide us with a

rich and diverse collection of emotions. They include a

multitude of emotions ranging from fear, happiness, sadness,

anger, love, disgust, surprise, excitement, etc.

The rest of the paper is organized as follows, section 2 gives

the readers an idea about our motivation to create this model.

Section 3 introduces the concept of word vectors, about the

vectors we are going to use and why do we use word vectors.

Section 4 addresses the challenges and how our model will

overcome them. In section 5, the actual implementation of the

model is explained and in section 6 we discuss the results

obtained during experimentation. Section 7 concludes our

paper and in section 8 we put forth our ideas for the future.

2. MOTIVATION
In some cases, the two classes of emotions (positive and

negative) are not adequate to comprehend the nuances of the

underlying tone of the sentence. In this paper, we will explore

a model that efficiently and effectively classifies text into

emotion categories. This model can be used for marketing

purposes, community study, human behavior study, to target

individuals to track their mental health, track customer

emotion over time and much more.

Emotions drive users to purchase. Brands and companies

realize this potential and are shifting to more emotionally

connecting advertisements. These advertisements can be

targeted towards a particular set of customers to get the most

out of advertising revenues. They can also be used to gauge

the success or failure of a product or a service by analyzing

emotions. The stock market also depends on variations of

mood across the public and this model will help with stock

market predictions [1]. Demographic well-being and quality

of life across various cultures and areas can be studied by

analyzing tweets of that area. This normally would be done by

tedious and time consuming door-to-door surveys and

questionnaires. Our method will eliminate such manual effort

and make it easier to draw conclusions. Mental health care

experts and counselors can use this classification to keep track

of patient‟s mental health and effectively combat issues like

depression and chronic anxiety.

Although some work has been done to classify text, most of it

is focused on sentiment analysis.

3. WORD VECTORS: BASIC CONCEPT
Sometimes a single word with the same pronunciation and

even the same spelling can have multiple meanings. Like the

word „apple‟ is a company name as well as a „fruit‟. A

solution to these problems is word embedding. When it comes

to humans, we can tackle such ambiguities very intuitively but

humans cannot process millions of sentences and documents

that are generated every single day. So to make computers

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.3, November 2017

2

perform this task effectively and scale tasks like classification,

clustering on textual data we need to be able to convert textual

information which is generally in the form of strings to

numerical representations. Word vectors help to convert text

to numbers. Machine learning algorithms are not capable of

dealing with plaintext in their raw form, they require numbers

for any sort of job. Word vectors extract knowledge from

large text corpuses and build models which have words

effectively represented as continuous vectors of numbers.

Applications of which include language translation, google

search optimization, text classification etc.

Word vector models generally map a word using a dictionary

to a vector. Consider this example, “Word vectors are words

represented as numbers”. Words in this sentence are – „word‟,

„vectors‟, „are‟, „words‟, „represented‟, „as‟, and „numbers‟. A

dictionary is a list of all unique words in the text corpus. The

dictionary for this sentence would look something like

(„word‟, „vector‟, „represented‟, „numbers‟). For simplicity,

consider the one-hot encoded form. This process uses the

binary values to mark the presence and absence of words. The

number 1 is used to mark the presence and the number zero to

mark the absence. Consequently, for the word „numbers‟ the

vector generated in this format, based on dictionary defined

above would be [0,0,0,1]. There is a one in the fourth position

because the word „numbers‟ are present in that position and

similarly the vector for the word „vector‟ would be [0,1,0,0].

This is just a simple illustration of how word vectors are

created from text corpuses. There are different types of word

embeddings which could be classified broadly into Frequency

based Embedding and Prediction based Embedding.

Frequency-based methods were limited in their ability to

effectively generate word representations. Mikolov et al.

introduced Word2vec, which was prediction based embedding

in the sense that they provided probabilities [2]. This model

was capable of word similarities and analogies. For example,

in the Google‟s pre-trained model if we add the vectors of the

word „man‟ to „woman‟ and then subtract the vector of word

„king‟ we get a vector which is closest to the vector of the

word „queen‟. Word embedding use shallow neural networks

that map words to words. These shallow neural networks learn

weights which act as word vectors. Basic functioning includes

taking a text corpus as input and subsequent vectors are

generated as output. It learns a vocabulary and its consequent

word vector through unsupervised learning. In simple terms, a

word vector model can be seen as a matrix where each

column is a feature and each row is a distinct word in the

vocabulary, if you have 10,000 unique words with 400

features, the model will be a 10,000 * 400 sized matrix.

Word vectors is a combination of two techniques – Skip-gram

model and Continuous bag of words model. While the former,

predicts the context given the word, the latter predicts the

word given the context. We will use the Skip-gram model as it

can capture the two semantics of the same word. For example,

it will have two vectors for the word „orange‟. One for the

color orange and other for the fruit. Skip-gram model with

negative sub-sampling performs far superior to other methods

[2]. And these are the models that will be used to create

vectors.

This paragraph briefly explains the three types of word-

embedding models used in the architecture. Word2vec by

Mikolov et al. was published in 2013 [2]. It was one of the

very first models to learn word representations from trillions

of words with relatively low computational costs. It has

significantly outperformed various n-gram models [3,4,5].

Later after a year, Glove was released by natural language

processing lab at Stanford [6]. Glove stands for global vectors

for word representations. It was an improvement over

Word2vec as it trains on global co-occurrence counts instead

of separate local context windows in Word2vec. Lastly, the

Fasttext library was created by the Research Team at

Facebook for classification and learning of word

representations [7,8]. Above two mentioned models i.e.

Word2vec and Glove, treat words as smallest atomic units.

However, Fasttext uses a different approach where it treats

each individual word as being made of n-gram characters. For

example, „happy‟ is made of „h‟, „ha‟, „hap‟, „happ‟ and

„happy‟. Here n could range from one individual character to

the length of the entire word. This renders it more powerful

than other two models as it can effectively handle rare words

which are not present in the dictionary. For example, the word

„marvellouslyfantastic‟ would have word vector that is close

to vectors of marvelous and fantastic. This kind of

representations is useful especially when there are a lot of rare

words in the text corpus. Like a text corpus with different

names of companies.

4. PROPOSED METHODOLOGY
This section presents a model which uses unsupervised

learning and shallow neural networks to learn word

representations and ensemble classifiers to classify these

vectors that are aggregated over each tweet, into emotion

category. The solution is proposed to address the following

challenges.

1) Automatic Class labeling

In most cases, emotion class labeling is done with human

annotators. However as studied by M Hasan et al.

hashtags, which are keywords preceded by the hash

symbol can be used to collect labeled data [9]. Hashtags

are used to tag text to make it more accessible or to label

it with a particular theme. These hashtags were originally

created to make content more search friendly - by using

these keywords as search parameters. Usage of hashtags

is very common and almost 15% of tweets include at

least one hashtag [9]. Hence, hashtags are used as labels

for collecting and labeling tweets.

2) Handling casual Twitter language, emojis, and

emoticons

The language used over social media in most cases is

informal. Given the 140-character limit on tweets, they

are almost always replete with apostrophes, slang words,

spelling mistakes, improper grammar, use of rare words,

emoji (graphics used to describe objects and feelings)

and emoticons (punctuations used to express facial

gestures). This paper employs different pre-processing

techniques which include the use of regular expressions,

removal of stop words and spell correction to make

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.3, November 2017

3

tweets uniform and easy to translate into vectors leaving

no information untouched.

3) Capturing semantic and syntactic information

In text classification, semantic and syntactic information

plays a huge role. We use relatively high dimensional

vectors along with a window size of 10 to ensure that

words that appear in context with each other are

represented accurately in the word vectors. Given the

small character count of each tweet, such measures

effectively capture all the relevant information. For

example, in the tweet “#happy finally a long holiday

after a tiring week”, word vectors are able to relate

“holiday” and “happy” in context of each other.

In brief, this model makes the following contributions:

 Design and implement a model that effectively

classifies text into emotion category.

 To build word vectors from Twitter corpuses and

aggregate them over tweets to represent the tweet as

a feature set of n-dimensions.

 And, to finally train a classifier over the extracted

feature set to create a model that detects emotion in

tweets with the highest accuracy.

5. IMPLEMENTATION
Emotion recognition in tweets can be simply considered a

classification problem of text according to pre-labeled

emotions. In this case, it requires collecting tweets, labeling

them, cleaning the tweets to extract most information

possible, generating word vector models from tweet data

corpuses and then ultimately training the ensemble classifiers

to classify tweets. Figure 1 shows the architecture of the

model. Steps are as follows:

Fig 1: Architecture of the model

5.1 Collection and Labelling of Tweets
Availability of data is the primary requirement to train any

machine learning algorithm. For a classification problem, one

needs a proper label for each entry in the dataset. This

experiment requires data labeled on four emotions –

happiness, sadness, anger, and surprise. One approach to this

problem would be to use manual annotations, where each

tweet is analyzed by a person and then labeled. This is very

time consuming and ineffective for a relatively large dataset.

A possible solution could be to crowdsourcing and paying

groups of people to do the task. Again, this is not an ideal

solution as it is costly, slow and does not maintain consistency

throughout the datasets because of subjective nature of how

people interpret tweets. A novel and effective solution were

offered by M Hasan et al. [9]. They used hashtags as

keywords for labeling tweets. This paper adopts this approach

to collect tweets for each category. For each emotion

category, a set of hashtag keywords is shortlisted which are

most likely to appear in those tweets and then use them with

the Twitter API to collect tweets. Some examples are shown

in Table 1.

Table 1. Examples of hashtags used to mine tweets

Category Hashtags

Happy
#happy, #veryhappy, #awesome, #amazing,

#blessed, #delighted

Sad

#bored, #sad, #depressed, #depress,

#lonely, #rip, #missyou, #tragedy,

#miserable, #hopeless, #unhappy

Angry

#angry, #furious, #bothered, #annoying,

#mad, #irritated, #annoyed, #infuriated,

#enraged, #fuming, #raging

Surprise

#surprised, #shocked, #confused, #baffled,

#astonished, #startled, #flabbergasted,

#disbelief, #numb, #shaken, #stunned

Common English words like „and‟, „the‟, „a‟, etc. are used to

collect large textual data to train word vector models. Since

these are a common part of any sentence in English, most of

the tweets mined would be in English. This reduces tweets

that are eliminated during preprocessing.

5.2 Pre-processing Text
Pre-processing is a very important step in producing text that

is free from noise and hence does not create problems for the

word representation learning models. Language over social

media is clouded by a lot of shorthand notations and spelling

errors. This architecture processes the raw tweet data through

a variety of steps to get the most features out of them.

Following is the sequence of steps:

5.2.1 Keeping only English Tweets
The architecture is restricted only to the English domain.

Tweets mined with a particular hashtag as search query at

times include tweets in other languages. This language is

encoded in a two-letter form as „en‟ for English in the tweet

JSON object that is mined. Only those tweets which have „en‟

in their language field are kept. This helps remove any

ambiguity introduced by non-English words.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.3, November 2017

4

5.2.2 Removing duplicates
Many times a tweet is mined multiple numbers of times. This

is because people retweet. This can be the case when someone

influential on Twitter posts something, and people simply

repost their tweets. These repeated tweets need to be

eliminated to ensure that word representations are not biased

towards words that are repeated because of duplicate tweets.

5.2.3 Removing URL’s
Tweets often contain links to other websites. This is the case

when these websites contain content, referencing which the

tweet was posted. These are just unwanted noise and

contribute in no positive way to classification and hence must

be removed. This architecture uses regular expressions to

remove any URL that is present in tweets.

5.2.4 Removing reserved word
Retweets are often preceded by a reserved keyword “RT” and

this adds unnecessary noise to the textual data and must be

filtered out using regular expressions.

5.2.5 Replacing mentions
Twitter allows users to mention other users in their tweets.

Like “@carljones very happy to hear your story!”, includes a

mention to the user with handle “carljones”. These mentions

need to be handled but they do have semantic meaning and

contribute to the structure of the sentence as subjects. But to

make the text more uniform, we replace such mentions with

the text “Username” so the ambiguity is removed and the

structure is maintained.

5.2.6 Remove hashtags
Sometimes people use normal words preceded by hashtags in

sentences. For example, “Finally time to eat some #cake!”.

These sentences when tokenized are broken down along with

the hashtag, and the words “cake” and “#cake” have different

word representations. One must remove the hashtag

punctuation symbol and interpret it as a plain word. This

again is done by using regular expressions.

5.2.7 Replace Apostrophes
Because of the limited character count on Twitter, people

usually sought to use apostrophes extensively. On tokenizing

words like “we‟re” are taken as a single entity and hence these

apostrophe words need to be uncoupled and explicitly

replaced. These are replaced using regular expressions. Some

examples of which are shown in Table 2.

Table 2. Examples of apostrophe replacements

Before Pre-processing After Pre-processing

isn‟t is not

he‟s he is

we‟ll we will

I‟ve I have

5.2.8 Replace Emoticons
When it comes to expressing emotions on Twitter, emoticons

are a huge sign of such expression. Emoticons are

combinations of punctuations arranged to express a facial

expression. They cannot be interpreted by word representation

learning models. M Hasan et al. used this as emotion features

[10]. This architecture adopts the same approach and replaces

emoticons with emotion classes they portray. Some of which

are shown in Table 3.

Table 3. Class-wise emoticons

Class Emoticons

Happy
:) :-) :-] :] :p :-p :D :-D :-> :> =)

;) ;-) ;^) ;-D

Sad :(:-(=(:^(;‟-(:< :-< :‟(

Angry >:-(>:(>:S x-@ ;@ :/

Surprise :O :-O O_O :$

5.2.9 Replace Emoji
A picture can speak a thousand words. Emoji are small

graphics that are extensively used on social media to depict a

variety of things. From a facial expression to some food item,

there are hundreds of emojis each portraying a different idea

or an object. F Barbieri et al. developed a vector skip-gram

model for emoji [11]. Tweets that are mined are in UTF-8

encoding. These emoji also appear in the text in the form of

these encodings. We use Unicode Consortium‟s emoji

definitions and replace these UTF-8 codes with their textual

meaning. This will help capture more details when creating

word vectors as tweets become more verbose. A few emojis

and their interpretations are shown in Table 4.

Table 4. Emoji Unicode and short names

Emoji Unicode Short Name

U0001F601 Smiling face

U0001F914 Thinking face

U0001F632 Astonished face

U0001F621 Angry face

U00002764 Love

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.3, November 2017

5

5.2.10 Handling misspelling and repeated

characters
Tweets are filled with misspellings like - “todau” is used

instead of “today” and “saddddd” is used instead of “sad”.

These arise due to small cellular keyboards and the repeated

characters are just a way of showing stronger emotion. This

architecture replaces characters that repeat more than twice

with a single occurrence. For example, the word “happyyyyy”

will be replaced by “happy” and the word “tedddyyy” with

“tedy”. Peter Norvig‟s spell corrector is used on these

replaced words to get the correct spelling of the word [12]. In

the above example, the word “happy” remains the same,

however, the word “tedy” becomes “teddy”. This ensures that

the implied meaning, in spite of incorrect spelling, is captured.

5.2.11 Handling punctuations
Emotion-laden text is always coupled with exclamation marks

and question marks. Exclamation marks, often are used to

display strong emotion and feeling. They are used to make the

statements more impactful. Question marks when used

atomically are just an indication of questions, however, when

used with exclamation mark they indicate surprise and even

sometimes are used interchangeably with exclamation marks.

These punctuations are replaced with their literal meaning

using regular expressions. Exclamation marks get replaced by

“exclamation” and question marks get replaces by “question”.

This helps in learning word representations and preserves the

semantic meaning of the text.

5.2.12 Lowercase
The final step in pre-processing is to convert all the text to

lowercase. This ensures that the words that are in capitals, or

even with the first letter capitalized are interpreted like their

lowercase counterparts. Basically, it ensures, the word vector

of each word is not affected by their case. This helps maintain

uniformity throughout.

5.3 Learning Word Representations
There are two ways to create word representations, one is to

custom create a model based on text corpus as input. Second

is to use pre-trained models which have been trained on very

large text corpus which have been derived from various

sources like news, Twitter, Wikipedia etc. Advantage of using

a custom trained model is that they learn words in the domain

of application. For example, if one trains a model based on

text corpus from Twitter, words will be learned in the domain

of Twitter. However, a downside to this is that it is very time

consuming to mine enough data and then train vectors on it.

This paper discusses the use of both custom and pre-trained

data to create word representations. These models differ by a

variety of factors like dimension of word vectors, size of

context window, number of negative samples and loss

function. Experiments with different dimensions and different

models are also discussed later.

Once the models are generated, they are loaded using the

genism module [13]. Next task is to represent each tweet in

the training dataset, which is cleaned by several pre-

processing steps, as a vector of features. This is done as

follows:

5.3.1 Tokenizing Each Tweet into Words
Each tweet is made up of sentences and each sentence of

multiple words. Sentences are broken down into word tokens

to process each word separately. NLTK tokenizer is used to

break sentences into individual words [14].

5.3.2 Removing Stop Words
Stop words are a set of commonly occurring words in any

language. They typically are prepositions, conjunctions and

determiners like “the”, “a”, “an”, etc. The basic intuition for

using stop words is that once they are removed, one can focus

on other words that hold more information instead.

5.3.3 Removing Numbers
Numbers hold no value when detecting emotions in text. In

most cases, they simply convey some time or date or quantity

and are totally irrelevant for in the current domain. They

simply add noise and hence must be removed. Again regular

expressions are employed to replace them with blanks.

5.3.4 Vector Averaging
This is the most important step, after tokenizing and removing

stop words, what remains is each tweet broken into words.

Vector for each word in the list is added and vector operations

are used to average the resultant vector over the number of

words. The result is a vector of a particular dimension (based

on the model) for each tweet and a label for each vector. This

will be used to train the classifiers.

For custom trained vectors, the models are trained using 1

million tweets collected with random queries and no specific

emotion tags, this ensures all kind of Twitter language is

captured by the models. They will be tested against pre-

trained vectors. Models experimented with include Word2vec

model trained over google news data with 300 dimensions,

Glove model with 200 dimensions trained over 2 billion

tweets and Fasttext model with 300 dimensions [2,6,7].

5.4 Classification
Many statistical classification algorithms have been used for

text classification including regression models, decision trees,

Bayesian classifiers, neural networks, support vector

machines, etc. But with an increase in computational capacity

one can use more compute intensive classifiers. One such

classifier is Random Forest Classifier. It can be seen as a

bootstrapping algorithm which uses Decision Tree (CART:

classification and regression tree) model. It will create CART

model with random samples and random initial variables.

Final classifier is a function of all predictions. Random forests

are used because they give more accurate results when

compared to pure CART and CHAID (Chi-Squared

Automated Interaction Detection) algorithms, especially with

a large number of variables and huge dataset in text

categorization [15]. The classifier is trained with resultant

average vectors explained in the previous section and uses the

trained model to make predictions on test samples using

Scikit-learn‟s ensemble package [16]. Out of 160138 samples,

112096 samples as training data and 48042 samples as test

data with a varying number of estimators, the results of which

are discussed in the next section.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.3, November 2017

6

6. RESULTS
A total of 160138 tweets were mined. Table 5 shows the

distribution of these tweets in each category.

Table 5. Number of Tweets of each category

Class Number of tweets

Happy 119858

Sad 67694

Angry 74328

Surprise 58396

Classification results of Random Forest Classifiers by

changing estimators for the Fasttext model are shown in Table

6.

Table 6. Variations in Precision and Recall

No of Estimators Precision Recall

5 0.78 0.75

50 0.89 0.86

100 0.88 0.88

200 0.91 0.90

From the results, 200 estimators give the best training time

and highest precision and accuracy. The same settings are

used to train classifiers for labeled vectors. Table 7 shows

precision and recall achieved after training on vectors

generated by different word embedding models.

Table 7. Precision and Recall results across all models

Model Dimension Precision Recall

Word2vec

(pre-trained)
300 0.90 0.89

Glove

(pre-trained)
200 0.88 0.88

Fasttext

(pre-trained)
200 0.88 0.87

Fasttext 300 0.91 0.90

From the results, it is clear that out of all the models, the

Fasttext model performs best with 300-dimension model and

200 estimators. Table 8 shows the confusion matrix for that

model.

Table 8. Confusion Matrix Fasttext model

Actual Class

P
r
ed

ic
te

d
 C

la
ss

 Happy Surprise Angry Sad

Happy 17573 65 234 99

Surprise 780 7077 578 284

Angry 540 96 10111 381

Sad 600 94 924 8606

7. CONCLUSION
The proposed model successfully classifies tweets based on

emotions expressed by their authors with a highest possible

precision of 91%. It can also handle variations in linguistic

styles like sarcasm, slang, emoticons, emoji, incorrect

spellings and even figures of speech. And it does so with

relatively high computational efficiency. Processing textual

data at almost million words per second.

8. FUTURE SCOPE
The proposed model can detect up to four emotions in the text

with high accuracy, however, this is just a very broad

classification. In future, we aim to classify text into more fine-

grained categories and capture nuanced differences with the

power of word embedding. We also, plan to apply other

concepts of machine learning to optimize the model to an

even greater accuracy using concepts from unsupervised

learning. We had discussed various applications of emotion

classification and are interested in applying them to various

tasks like stock market prediction and demographic mental

health study with the help of text and content from various

sources including data from other social media.

9. REFERENCES
[1] Bollen, Johan, Huina Mao, and Xiaojun Zeng. "Twitter

mood predicts the stock market." Journal of

computational science 2.1 (2011): 1-8.

[2] Mikolov, Tomas, et al. "Efficient estimation of word

representations in vector space." arXiv preprint

arXiv:1301.3781 (2013).

[3] Bengio, Yoshua, et al. "A neural probabilistic language

model." Journal of machine learning research 3.Feb

(2003): 1137-1155.

[4] Schwenk, Holger. "Continuous space language models."

Computer Speech & Language 21.3 (2007): 492-518.

[5] Mikolov, Tomáš, et al. "Empirical evaluation and

combination of advanced language modeling

techniques." Twelfth Annual Conference of the

International Speech Communication Association. 2011.

[6] Pennington, Jeffrey, Richard Socher, and Christopher

Manning. "Glove: Global vectors for word

representation." Proceedings of the 2014 conference on

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.3, November 2017

7

empirical methods in natural language processing

(EMNLP). 2014.

[7] Bojanowski, Piotr, et al. "Enriching word vectors with

subword information." arXiv preprint arXiv:1607.04606

(2016).

[8] Joulin, Armand, et al. "Bag of tricks for efficient text

classification." arXiv preprint arXiv:1607.01759 (2016).

[9] Hasan, Maryam, Emmanuel Agu, and Elke

Rundensteiner. "Using hashtags as labels for supervised

learning of emotions in Twitter messages." Proceedings

of the Health Informatics Workshop (HI-KDD). 2014

[10] Hasan, Maryam, Elke Rundensteiner, and Emmanuel

Agu. "Emotex: Detecting emotions in twitter messages."

(2014).

[11] Barbieri, Francesco, Francesco Ronzano, and Horacio

Saggion. "What does this Emoji Mean? A Vector Space

Skip-Gram Model for Twitter Emojis." LREC. 2016.

[12] Norvig, Peter. "How to write a spelling corrector." De:

http://norvig. com/spell-correct. HTML (2007).

[13] Rehurek, Radim, and Petr Sojka. "Software framework

for topic modelling with large corpora." In Proceedings

of the LREC 2010 Workshop on New Challenges for

NLP Frameworks. 2010.

[14] Bird, Steven, Ewan Klein, and Edward Loper. Natural

language processing with Python: analyzing text with the

natural language toolkit. " O'Reilly Media, Inc.", 2009.

[15] Xu, Baoxun, et al. "An Improved Random Forest

Classifier for Text Categorization." JCP 7.12 (2012):

2913-2920.

[16] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning

in Python." Journal of Machine Learning Research

12.Oct (2011): 2825-2830.

IJCATM : www.ijcaonline.org

