
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

28

Optimized Replication Management with Reputation for

Detecting Collusion in Large Scale Cloud Systems

Hanane Bennasar
ENSIAS Laboratory,

ENSIAS
Mohamed V University

Mohammad Essaaidi
ENSIAS Laboratory,

Mohamed V University,
Rabat, Morocco

Ahmed Bendahmane
ITS Laboratory, Faculty of

Science
Abdelmalek Essaadi

University,
Tetouan, Morocco

Jalel Ben-othman

L2ti Laboratory, Paris13
Villetaneuse University

Paris, France

ABSTRACT

Several cloud computing systems used voting techniques to

deal with sabotage issues. However, these techniques become

inefficient, and present some new security vulnerabilities when

malicious resources collude and return the same wrong result.

Usually, this kind of security threats are handled using several

techniques and approaches such as voting techniques. In this

paper, a very efficient approach to overcome sabotage issues is

proposed, especially in the case of very complex attacks. The

performances of this approach are evaluated in a cloud system

model and it is compared against other voting techniques, like

reputation-based voting, using simulations which allowed to

investigate the effect of collusive cloud resources on the

correctness of the results. The obtained results show that the

proposed approach achieves lower error rates and enhanced

performances in terms of overhead and slowdown.

General Terms
Cyber-security.

Keywords

Cloud computing; Cloud model; Voting; Collusion Attacks

1. INTRODUCTION
Cloud Computing is a large-scale distributed computing system

which has initially emerged from financial systems. It consists of

a pool of virtualized dynamically scalable computing power and

storage platforms using virtualization strategies. The fact that

cloud computing is based on distributed systems makes it

vulnerable to several security and privacy threats [1]. Among the

most important cloud computing security challenges there are

Security related to Third Party Resources, Application Security,

Data Transmission Security and Data Storage Security. Among

the many Cloud Computing platforms that can be considered,

this paper focuses on the Cloud system model.

The primary issue that the cloud framework experiences is result

sabotage in the presence of malicious resources, particularly

when they collude together and restores the equivalent flawed

outcome. To overcome this issue, several mechanisms can be

used such as reputation with replication procedures which are the

basis of the proposed approach in this paper.

Replication [2] is utilized for expanding availability and

enhancing execution of the system. Job replications are typically

utilized for sabotaging tolerance to manage accuracy

confirmation of job results in many cloud frameworks.

High-availability is among the main requirements of a cloud.

This means anywhere and anytime access to services, tools and

data. However, availability is one of the very few performance

parameters that are part of the Service Level Agreements

(SLAs) of today’s cloud providers. The used method allowed

the computation of resources availability to optimize their use.
Majority voting and m-first voting [3] replicate a job to many

independent resources and the returned results are verified for

most of the decision. These techniques reduce the performance

of cloud systems because they are very expensive in terms of

resource utilization. To deal with this issue, other complex

voting-based techniques using spot-checking as in credibility-

based voting or combined with reputation system. However,

these techniques rely on the assumption that the cloud resources

behave independently. These techniques [30] are useless where

several collusive resources collectively return the same wrong

results of a job execution. In fact, in distributed cloud systems, a

group of opponents may present some form of collective

misbehaviour. Recently, several approaches were introduced to

deal with collusion issues. A. Bendahmane et al. [4] proposed

the Reputation-based Voting (RBV) scheme that enhances the

credibility-based voting to solve the sabotage of computing

resources.

The reputation mechanism [5] represents a significant technique

for distributed resources behavior evaluation based on previous

practices, and for enhancing reliability. As a major aspect of

security instruments, reputation techniques have been proposed

to improve reliability assessment of different entities in

distributed computing.

In [6], if computing resources are also malicious, a scheduler

does not need result certification only to guarantee the rightness

of results. It uses reputation as well in order to select

trustworthy resources or to eliminate malicious resources. The

basic idea of reputation is to select for each node a trust value

based on its behavior history and save that value properly in the

system.

The proposed approach is named “an optimized replication

management with reputation approach” (ORMR). The main

idea behind ORMR is to optimize the use of replicas. In

distributed systems, the important workload of jobs,

computations, etc., limits the advantage of using replication

especially when the number of replicas is used randomly.

Moreover, if the number of replicas surpasses the best threshold,

the unused replica would produce an overhead due to added

messages communication.

To achieve high scalability and low overhead, job replication is

reduced, consistency checking without using spot checkers is

verified, and reputation can for the most part be formulated as

high parallelized cloud system computations. Thus, security

levels offered to the cloud scales up with its computational

power.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

29

To this end, the following approach is proposed:

 An intra-cloud reputation and replication system for

the proposed cloud architecture is implemented and

evaluated.

 This system approves a data-centric approach that

identifies job and task replica deviations (the

randomly use of job and task replicas).

 The use of replicas is not arbitrary; it depends on the

max of reputation value.

 The use of dynamic blacklisting has been shown to

optimize the blacklisting error metric.

 A distributed computing model illustrates how it can

attain a scalable certification and reputation-tracking

in the cloud.

The remainder of this paper is organized as follows. In section 2

a background and related works are provided, Section 3 is

dedicated to illustrating the system model. In Section 4, the

proposed approach for collusion tolerance is described. Section

5 presents the performance evaluation of the proposed method

using Cloudsim simulations. Section 6 presents the main

conclusions.

2. BACKGROUD AND RELATED

WORKS

2.1 Sabotage Tolerance Mechanisms
To eliminate the effect of fault results, a combination of

sabotage tolerance techniques must be included in the system.

The most popular approaches used for sabotage tolerance are

the voting techniques and replication.

2.1.1 M-First Voting
It's the specific fundamental utilized system for large scale

distributed computing especially when malicious resources do

not communicate with each other [7]. In the M-first voting

technique, a master replicates a job and designates them to a

group of workers. The result which collects m matching values

first is accepted as the final result for the job. Specifically, when

m is set to a minimum value, it has a minimum redundancy, so

the performance of the system may be essentially decreased.

2.2.1 SPOT-CHECKING
In spot-checking [8], a master sometimes assigns spotter jobs

whose correct results are already known to the master. With this

technique, the master can directly check if workers behave

maliciously or not. If a worker [29] returns an incorrect result,

the master considers the worker as a saboteur. In that case, the

master may use the backtracking policy, so it can

countermeasure against the saboteur, so all results returned from

the saboteur are cancelled, as well as the master can use the

blacklisting technique by submitting wrong results is prevented.

2.3.1 CREDIBILITY BASED VOTING
It combines the properties of the two techniques m-first voting

and spot-checking, in order to achieve more reliability. In this

method [9], a master accomplishes a weighted voting, so a

master estimates the reliability of the workers based on their

behaviors during the task. It is like m-first voting, but the

difference is that the number of replications m is dynamically

determined at the runtime in harmony with some credibility

values given to different elements of the system: worker, result,

result group, and task. These credibility values represent the

reliability rates and are mainly based on the number of spot-

checks given to workers and their past behavior.

To have the required capacity to check the credibility of

workers, the master assigns spotters’ task to a worker with

probability p known as spot-check rate. Also, the master

considers the worker as malicious when only one worker returns

a result which does not match with the correct one. This result is

received by the spotter task. For this reason, the master may use

two techniques combined with spot-checking. Blacklisting or

Backtracking. The master may use the backtracking to throw

out all results received from the malicious worker. The master

may use the blacklisting to take in identified malicious workers

into a blacklist for preventing them to return results or taking

more computation tasks.

The credibility-based voting (CBV) is an efficient voting

technique which combines computations redundancy and

reliability. However, CBV has two critical limitations: it leads

to the dispersion of resources as in simple voting scheme,

because it requires more computations to generate the result of a

spotter jobs. It also suffers from the problems of malicious

computing resources which can behave properly for a long

period of time, by returning correct results of spotter jobs, in

order to achieve high credibility and then start to sabotage the

real jobs.

2.4.1 REPUTATION BASED VOTING
In this approach, A. Bendahmane et al. [4] improve the

credibility-based voting technique using a spot checking

technique. The basic idea of RBV is to check the computing

resources without assigning spotter jobs and to consider the

result of voting decision as the one of spot-checking to estimate

the credibility without more computations. This credibility is

considered as reputation which is used in the RBV decision.

This reputation is used as a weight in the voting decision which

is based on the weighted average voting method to improve the

efficiency of replication-based voting techniques.

In RBV, spot-checking is used to check occasionally the

computing resources. The spotter job is sent to those whose

right outcome is known, in order to evaluate the credibility of

each computing resource based on returned result.

In the RBV approach, blacklisting is used to compute a resource

where results are not validated by RBV algorithm, and

backtracking is applied before for all results returned by

malicious resources.

As a result, the reputation Ri of any computing resource which

returns the accepted result of ki task, when blacklisting is used,

is computed using the following equation [3]:

 

1
1 , 0

1,

1 ,

i

ii i i

f
if k

f k eR CR C k

f otherwise


  

  
 

(1)

Where f is the proportion of malicious computing resources, e

represents the base of the natural logarithm, and k is the number

of times that w survives spot-checking.

The credibility of the worker C (w) is equal to the credibility of

the result C(r):

 C(r) = C (w) (2)

The credibility of result group C(r) is the probability that all

results in result group are correct.

Moreover, in order to check the trustworthiness of a result,

RBV approach uses the m-first voting technique based on

reputation decision. The resulting reputation R(Vj) of a given

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

30

 





otherwise

VcomputeCif
CVT

ji

ij
,0

,1
,

  
1

1

max
n

j i
j m

i

R V R
 



 

result Vj is represented as the sum of the computing resources

reputations’ returning the result Vj.

1

() (,)
n

i

R Vj T Vj Ci Ri


 (3)

Where T(Vj, Ci) is the relationship between the result Vj and

the computing resource Ci, which is computed as follow.

 (5)

In the case of having only one replica of a task (i=j=1, in line

44 of table 1), the broker considers that the received result is

correct if the reputation R1 of a computing resource C1

exceeds the minimum reputation (R1 > Rmin) (line 45 of table

1). Otherwise, the broker applies the reputation-based voting

method for further replications and uses the reputation value of

each computing resource to decide which result is accepted as

correct. To this end, each time the broker receives a new result

Vj for task replica, it recalculates the result reputation value

R(Vj) (line 22 of table 1). Λ is denoted as the desired tolerance

threshold (0 < λ < 1) and the result value is picked with the

highest reputation max j(R(Vj)) as the best result (line 42 of

table 1).

If , then the result value which

represents this maximum is accepted by the broker and is

considered the correct one (lines 49 and 50 of table 1). In

addition, the reputation of all computing resources which

generate this result is updated as follows (line 51):

 (2’)

2.2 Related Works
During the last few years, the problem of collusion tolerance in

large scale distributed computing has been addressed by many

researches. Bendahmane et al. proposed [4] a voting method in

order to deal with the collusion problem in large scale grid

computing systems. Reputation based voting is an

implementation of credibility-based voting and spot-checking.

In RBV method, the behaviour of collusive computing

resources is stable during the computation, each task is

replicated n times and allocated to several computing

resources.

The problem of collusion was also addressed by G. Levitin et

al. [10] where the spot-checking optimization problem has been

formulated and solved for grids subject to the collusive

behavior. Also, an iterative method is proposed to evaluate the

probability of genuine task failure (PGTF) and the expected

overhead in terms of the total number of task assignments for

the considered grid system.

Z. Zhu and R. Jiang [11] proposed a secure anti collusion data

sharing scheme for dynamic groups in the cloud. They offer a

secure way for key distribution without any secure

communication channels, and the users can securely obtain

their private keys from group manager. Also, the proposed

scheme achieves fine-grained access control, any user in the

group can use the source in the cloud and revoked users cannot

access the cloud again. It is also proved that the scheme can

achieve fine efficiency, which means previous users need not

to update their private keys for the situation where either a new

user joins the group, or a user is revoked from the group.

M. Mortazavi and B. Ladani [12] proposed A MapReduce-

based algorithm for parallelizing collusion detection in

Hadoop. A MapReduce-based algorithm for parallel collusion

detection of malicious workers has been proposed. This

algorithm utilizes a voting matrix that is represented as a list of

voting values of different workers. Three phases of majority

selection, correlation counting, and correlation computing are

designed and implemented.

T. Samuel and A. Nizar [13] presented an efficient collusion-

resistant method a credibility-based result verification scheme,

which proceeds by running ‘quiz’ jobs on the slave nodes.

Based on the results of quizzes and regular MapReduce jobs,

the master node assigns credibility values to slave nodes, which

are later used to verify the correctness of results produced by

the nodes. The limitation of the approach is that, the result

verification has to wait until the regular MapReduce jobs,

which are long-running, complete their execution. This

adversely affects the turn-around time, resource utilization and

throughput of the system.

These limitations motivate K. Jiji and A.Nizar [14] to develop

a new approach and to propose a new protocol called

Intermediate Result Collection and Verification (IRCV)

Protocol. This protocol employs quiz jobs and regular jobs to

assign and update credibility of Worker Nodes by identifying

malicious nodes early in the execution line. The protocol

collects intermediate output for result verification and prunes

out erroneous computation.

3. SYSTEM MODEL

2.3 System overview and overview and

architecture
Herein a cloud system model consisting of one private cloud

and one public cloud, is proposed. In the private cloud, a

master node is deployed and a small number of slave nodes

which are called verifiers. The workers are composed of the

other slave nodes and Distributed File System, and they are

deployed on a public cloud. The system model defines three

types of tasks: the main task, the replication task, and the

verification task. The main and replication tasks are executed

by the workers on the public cloud. The verification tasks are

executed by the verifier on the private cloud. The replication

task validates the main tasks’ result, because workers are not

usually trusted. Moreover, the verification tasks ensure the

replication task result by executing the task on the verifier,

because the replication tasks are executed by the untrusted

public cloud worker.

Fig 1. Architecture of proposed Cloud system model

3.2 Attacker model and assumptions
In our system model, the attack model represents several

group of collusive computing resources distributed in diverse

cloud service providers where malicious attackers launch

security attacks in order to cooperate with the provided

resources and exploit some of their weaknesses.

 , 1i i iR CR C k 

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

31

The multiple groups of collusive bad workers behave in

coordination with other malicious workers and return the same

erroneous result according to an agreement made between

them, are assumed.

The verifiers and the DFS are trusted. But the master is not

necessarily trusted. As a solution, it have been considered that

the node that has the highest reputation value as a master.

In addition, it is supposed that the worker is not usually trusted,

a good worker is honest and always returns the correct result

for its task, but a bad worker may behave arbitrarily. If bad

workers could tamper a good one, so this latter is considered as

a bad worker too. Because, it should be able to protect data

from being altered by unauthorized workers. Also, it have been

assumed that the number of good workers is higher than that of

the bad ones.

According to these assumptions, it have been supposed that the

attack model composed of a whole of n bad malicious

computing resources , also each malicious computing resource

has a set of colluders, which is a subset of M denoted by S. In

order to describe the attack model, it have been supposed that:

• Every malicious resource has a fix probability p ϵ

[0, 1] to communicate with other colluders and to provide the

same bad result.

• The probability that behaves correctly is then (1 –

p).

4. THE PROPOSED APPROACH:

OPTIMIZED REPLICATION

MANAGEMENT WITH REPUTATION
The novel approach proposed, namely, Optimized Replication

Management With Reputation (ORMR) is based on reputation

and optimized replications. This approach improves the

reputation-based voting (RBV) [5] by reducing the overhead

and improving the accuracy. In reputation-based voting, each

task is replicated n times and it is allocated to several

computing resources Ci. However, a major limitation of this

approach is inefficient use of resources and time to identify

malicious resources.

The main idea of the approach is to reduce the use of

replicas, by checking the list of computing resources and that

of tasks. If the list of tasks is lower than the list of computing

resources, the task is assigned to the computing resource which

has a higher value of reputation max (R (Vj)).

Moreover, RBV blacklists all resources which return a

reputation value below Rmin. In the approach, a dynamic

blacklisting in the time is used. This is because a resource

could be considered as a false malicious (Blacklisting error).

Thus, a resource is blacklisted only a few minutes according to

a parameter that is fixed during simulations, and it can be

tested another time.

Table 1 represents the algorithm of our approach. Before

the scheduling task, a task verification availability (line 11) is

added, according to M. Haberkorn and K. Trivedi [15], MTTF

and MTTR metrics are computed in order to verify the

availability of resources, this allows to reduce the overhead

with better accuracy.

 Then in the tasks scheduling, the list of computing

resources and the list of tasks are checked to optimize the use

of replicas (line 23 of table 1). Since every replica must

perform all updates eventually, there is a point beyond which

adding more replicas does not increase the throughput, because

every replica is saturated by applying updates. However, if the

replication degree exceeds the optimal threshold, the useless

replicas would generate an important overhead due to extra

communication messages [16,31].

In the tasks related with result retrieval and validation the use

of blacklisting (line 53 of table 1) is improved. However, in

RBV, when a malicious resource is blacklisted, it is no longer

used, and, thus, becomes useless. In ORMR approach, a

blacklisted malicious resource could be trustworthy later.

Therefore, it’s proposed to add a time parameter, and to block

the resource shortly, to use it later and to optimize the use of

resources.

Table 1. ORMR Algorithm

1: LT is the list of tasks to compute

2: LC is the list of computing resources

3: LCB is the list of computing resources blacklisted

4: Initialize mins= Timer()

5: M=0 is a time parameter converted to minutes

6: Ri = 1 – f and ki = 0 for each Ci  LC, according to (1)

7: while (there is task Tk LT without accepted result) do

8: Tasks scheduling ()

9: Tasks result receiving and decision for acceptance ()

10: end while

11: Task verification of availability of computing

resources ()

12: for each Ci in LC do

13: Compute MTTF according to (8)

14: Compute MTTR according to (7)

15: Compute A according to (6)

16: if Resource is available then

17: RC_Status= “Available”

18: else

19: RC_Status=”Unavailable”

20: end if

21: end for

22: Tasks scheduling ()

23: while (RC_STATUS = “Available”) ∧ (there is task Tk
LT without accepted result) do

24: if LT < LC then

25: //Optimizing the use of replica

26: Ci= Fetch Ci with most reputation value max (R(Vj))

27: else

28: Ci= next computing resource in LC

29: if Ci is not blacklisted then

30: Tr = a replica of Tk

31: assign Tr to Ci

32: end if

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

32

33: end if

34: end while

35: Tasks result receiving and decision for acceptance ()

36: while (there is a running task) do

37: // waiting to receive a result back from a resource Ci

38: for each Tr executed for a task Tk do

39: receive a result Vj

40: for j = 1 to m do

41: compute R(Vj) according to (1)

42: compute maxj (R(Vj))

43: end for

44: if a task Tk has only one replica with one result V1 then

45: if R(V1) > Rmin then

46: accept V1

47: end if

48: else

49: if maxj (R(Vj)) > λ

 then

50: accept
 which represent this maximum

51: update Ri of all
 which generate

 according to (2’)

and (1)

52: // add bad resources and mins to the blacklist

53: add all
 and mins to the blacklist()

54: LCB = blacklist(

55: for (r=0; r < list.lengh(); r++)

56: if (convert to minutes(mins – LCB(r) = > M) then

57: //remove blacklisted resource while M minutes

58: Remove (r)

59: end if

60: end for

61: // backtrack all the results returned by

62: repeat from line 40 for all Tk that contain the backtracked
results

63: end if

64: end if

65: end for

66: end while

To enhance the quality of computations, a new function called

computing resources availability verification Task is added. in

this step, the algorithm verifies the availability of resources

after the use of computation tasks. To calculate a resource

availability, the equation given below is used [17]:

MTTF
Availability

MTTF MTTR




(6)

Where

Da
MTTR

n


 (7)

Ua
MTTF

m


 (8)

AD is the aggregated downtime; where n is the number of

downtime intervals.

AU is the aggregated uptime; where m is the number of uptime

intervals.

Haberkorn and Trivedi [15] proposed a quantified availability

assurance, based on several approaches. In general, improving

availability means increasing time-to-failure (TTF) and

reducing time-to-recovery (TTR). To increase TTF, proactive

failure avoidance techniques for aging-related bugs are used. To

reduce TTR, it’s proposed instead escalated levels of recovery,

so that most failures are fixed by the quickest recovery method,

and only few by the slowest ones.

5. PERFORMANCE EVALUATION
In order to evaluate the performance of the approach, a VO-

system based cloud simulator, namely, Cloudsim [18] is used.

Cloudsim is considered to be the most suitable simulator for

the problem addressed in this paper. To this end, it have been

developed some Cloudsim classes required for the

implementation of ORMR approach. The aim of these

simulations is to evaluate the efficiency of the proposed

collusive resources tolerance approach and to compare the

obtained results with respect to several performance metrics

and parameters to the ones obtained with the reputation-based

voting and credibility-based voting [19] [28]. Performance

Metrics:

In order to assess the performance of our approach, several

metrics have been considered, namely, the overhead [20], the

slowdown [21], the Accuracy, the Error rate [22], and finally,

the blacklisting error [23]:

 Overhead = # A/B

Where: A = Total numbers of tasks assigned for execution

And B= The original number of tasks.

Slowdown= % of #running times of computations

Accuracy= #C/#D

Where: C= tasks with correct results & D= tasks accepted as

correct.

Error rate=#E/#F

Where E= Number of the accepted erroneous task results and

F= total number of the task results returned at the end.

Blacklisting error = #J/H

Where J=The number of non-collusive blacklisted resources

and H= total of blacklisted resources.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

33

5.1 Simulation Settings

As in the RBV approach, 10000 independent tasks have been

considered in the simulations. The job is allocated to four

cloud VOs, with each one consisting of 250 computing

resources.

Also, it have been considered the following assumptions:

• All tasks have the same running time and all

computing resources have the same computing power and can

perform only one task at a time.

• All collusive resources can collude, with other

resources in the same VO, and with collusive resources from

other VOs, with the same probability c to return the same

wrong result.

• For spot-checking rate, we set q to 0.1 as the best

value according to Sarmenta method [9]. The parameter Rmin

is seted to 0.995, which is assumed as a high value that must be

exceeded by only one replica, in order to accept its result as

correct.

Table 2. Simulation parameters

Symbol Explanations Values

f Fraction of malicious

collusion resources in cloud

system

0 ~ 0.5

p Probability that a collusive

resource returns a wrong

result

0 ~ 1

m Redundancy 2

λ Tolerance threshold 0.55 ~ 0.95

q Spot-check rate 0.1

5.2 Results and discussion
5.2.1 Tolerance threshold
To compare our approach with other sabotage tolerance

mechanisms, especially with RBV approach [4] [24] [25],

Table 2 shows the simulations parameters.

Fig 1. allows the determination of the optimized tolerance

value. When λ=0.75 our tolerance mechanism offers high

accuracy, and the blacklisting error turns to zero for any

specified values of f and p.

Fig 1. Blacklisting error as a function of tolerance threshold

for different values of f and p

Fig 2. shows the blacklistig error as a function of tolerance

threshold for several values of f and p. This metric decreases

when λ increases. So, with dynamic blacklisting, the

probability of blacklisting of non malicious resources is

minimized. As a result, the blacklisting of collusive resources

is becoming more efficient.

Fig 2. Overhead as a function of tolerance threshold for

different values of f and p

Fig 3. shows the overhead as a function of the tolerance

threshold, for λ ϵ [0.5,0.9]. The overhead increases slightly for

all cases of f and c. In Figure. 4, the slowdown metric is also

represented as a function of tolerance thresold, for λ ϵ [0.5,0.9

]. The slowdown declines graduatly because of blacklisting,

there are some blacklisted resources which are not used.

It have been noted that there is a significant increase of the

overhead and decrease of the slowdown. Therefore, the

blacklisting error curve suggests that λ=0.75 is the optimum

value corresponding to a better efficiency.

Fig 3. Slowdown as a function of tolerance threshold for

different values of f and p

0

0.05

0.1

0.15

0.2

0.25

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

B
la

ck
li

st
in

g
 E

rr
o

r

Tolerance Threshold

f=0,1 , p=1
f=0,15 , p=0,67

f=0,2 , p=0,5

f=0,25 , p=0,4
f=0,3 , p=0,33

f=0,35 , p=0,29
f=0,4 , p=0,25

f=0,4 , p=0,9

f=0,4 , p=1
f=0,5 , p=0,2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

S
lo

w
d

o
w

n

Tolerance Threshold

f=0,1 , p=1

f=0,15 , p=0,67

f=0,2 , p=0,5

f=0,25 , p=0,4

f=0,3 , p=0,33

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

O
v

er
h

ea
d

Tolerance Threshold

f=0,1 , p=1

f=0,15 ,

p=0,67
f=0,2 , p=0,5

f=0,25 ,

p=0,4
f=0,3 ,

p=0,33
f=0,35 ,

p=0,29

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

34

Fig 4. Accuracy as a function of tolerance threshold for

different values of f and p

Fig 4. shows the accuaracy as a function of tolerance threshold

for several values of f and p. Under collusion when the

fraction of malicious resources increases and λ increases, the

accuaracy declines graduatly. This is because computing

resources need more time to finish the execution of all tasks

launched.

5.2.2 Error rate and Overhead Variation
In Order to assess the performance of the proposed approach,

the error rate and the overhead are computed [26] [27]. Then,

the obtained results are compared with those obtained using

reputation based voting, m-first voting and credibility-based

voting.

Fig 5. Overhead as a function of collusion probability

Fig 6. Error rate as a function of collusion probability

Fig. 5 shows that our method outperforms RBV approach and

other methods considered. The overhead declines considerably,

thanks to the dynamic Blacklisting and the optimization of the

replicas’ number (replicas are not used randomly). In ORMR

approach, when many checks are executed through voting,

computing resources can gain enough high reputation compared

to RBV with the huge number of replicas. Then, the overhead for

ORMR becomes smaller than RBV and other methods

considered.

As far as the error rate is concerned, as illustrated in Fig. 6, in

ORMR, RBV and CBV it tends to zero. However, it is noted that

with a high collusion probability, the worst results are attained

because the probability of reliable wrong results from collusive

resources increases as the collusion probability increases.

These results mean that our approach provides much better

performances compared to RBV, m-first voting and CBV

approaches.

6. CONCLUSIONS
Security is usually listed as the number one concern for cloud

computing adoption. Cloud security issues persistently rank

above cloud reliability, network issues, availability and worries

about the cloud financial profit.

We have presented in this paper an optimized approach for faulty

tolerance sabotage system. This approach allowed to enhance

RBV approach by using dynamic blacklisting, available

resources and also by optimizing the number of replicas in order

to achieve lower overhead and error rate with an acceptable

accuracy. A low error rate and overhead were achieved against

RBV, CBV and m-first voting approaches. In order to obtain

high scalability, all trust management computations are

formulated as distributed cloud computations. Therefore, our

tolerance system for detecting collusive computing resources can

be considered more accurate and more trustworthy.

As a future work, we propose to investigate the efficiency of our

approach against a more complex attacks model based on a

Hadoop system in the presence of collusive and malicious

behaviors.

7. REFERENCES
[1] Z. Lei, C. Zuo-Ning, “MapReduce Implementation Based

on vStarCloud”, Journal of Advances in Computer

Network, Vol. 1, No. 3, September 2013,pp 162-167.

[2] S.Zhao , V.Lo, “Result Verification and Trust-based

Scheduling”, Fifth IEEE International Conference on

Peer-to peer Computing, IEEE Computer Society,

Washington, pp. 31–38, 2005.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
cc

u
a

ra
cy

Tolerance Threshold

f=0,1 , p=1
f=0,15 , p=0,67
f=0,2 , p=0,5
f=0,25 , p=0,4
f=0,3 , p=0,33
f=0,35 , p=0,29

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

O
v

er
h

ea
d

Colusion Probability

overhead: ORMR

overhead: RBV

overhead: CBV (εacc=0.01)

overhead: 3-First voting

overhead: 2-First voting

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

E
ro

r
ra

te

Collusion Probability

Error rate: ORMR

Error rate: RBV

Error rate: : CBV
(εacc=0.01)
Error rate: : 3-First voting

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 30, July 2019

35

[3] C. Kumar, “Optimization of Data Storage and Fault

Tolerance Strategies in Cloud Computing”,

International Journal of Science and Research (IJSR),

6.391 Volume 6, January 2017, pp 1320- 1324.

[4] A. Bendahmane, M. Essaaidi. “The Effectiveness of

Reputation-based Voting for Collusion Tolerance in

Large-Scale Grids”, IEEE Transactions on Dependable

and Secure omputing, Computing, 12, 6, (665), (2015).

[5] W.Jiang, H.Wan, S.Zhao, Reputation Concerns of

Independent Directors: Evidence from Individual Director

Voting, The Review of Financial Studies 29 (3), 655-696 ,

2015.

[6] S.Choi, H.Kim, A Taxonomy of Desktop Grid Systems

Focusing on Scheduling,Columbia Business school

Reaserch 2015.

[7] K. Watanabe, M. Fukushi, and S. Horiguchi, “Collusion-

Resistant Sabotage-Tolerance Mechanisms for Volunteer

Computing Systems,” IEEE International Conference on

e-Business Engineering, Macau, pp. 213 –218, 2009.

[8] K. Watanabe, M.Fukushi, Optimal Spot-checking for

Computation Time Minimization in Volunteer

Computing,Springer, Graduate School of Information

SciencesTohoku UniversityAoba-ku SendaiJapan, Grid

Computing 7: 575.2009.

[9] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for

volunteer computing systems,”Future Generation

Computer Systems, 18(4 Future Gener. Comput.

Syst. 18(4), 561–572 (2002) .

[10] G.Levitin, L.Xing,”Optimal Spot-Checking for Collusion

Tolerance in Computer Grids”, IEEE Transactions on

Dependable and Secure Computing,

doi:10.1109/TDSC.2017.2690293, 2017.

[11] Z.Zhu,R. Jiang, “A Secure Anti Collusion Data Sharing

Scheme for Dynamic Groups in the Cloud”, IEEE

Transactions on Parallel and Distributed Systems, VOL.

27, NO. 1, JANUARY 2016.

[12] M. Mortazavi, B. Ladani A MapReduce-based algorithm

for parallelizing collusion detection in Hadoop, IEEE

International Conference, 145-154, 2015.

[13] T.Samuel, A.Nizar,”Credibility-Based Result Verification

for Map-Reduce”, India Conference (INDICON), 2014

Annual IEEE, pp. 1–6,2014.

[14] K. JIJI, A.Nizar, “An Efficient Approach for MapReduce

Result Verification”, Springer Science+Business Media

Singapore, volume 412 2016.

[15] M.Haberkorn, K.Trivedi, “Availability Monitor for a

Software Based System”,IEEEXplore Conference: High

Assurance Systems Engineering Symposium, 2007.

HASE '07. 10th IEEE, 2007.

[16] M.Durrani ,A. Shamsi,” Volunteer computing:

requirements, challenges, and solutions”, Journal of

Network and Computer Applications archive Volume 39,

March, 2014.

[17] M.Siebenhaar, O.Wenge, “Verifying the Availability of

Cloud Applications”, pp. 489-494, 2013.

[18] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,

Cesar A. F. De Rose, and Rajkumar Buyya, CloudSim: A

Toolkit for Modeling and Simulation of Cloud Computing

Environments and Evaluation of Resource Provisioning

Algorithms, Software: Practice and Experience (SPE),

Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644,

Wiley Press, New York, USA, January, 2011.

[19] K.Watanabe, M.Fukushi,” Adaptive group-based job

scheduling for high performance and reliable volunteer

computing”. Journal of Information Processing, Volume

19, 2011.

[20] B. Ismail, D. Jagadisan, “Determining Overhead,

Variance & Isolation Metrics in Virtualization for IaaS

Cloud”, Springer Science+Business Media, LLC , Pages

315-330, 2011.

[21] Kukanov, Alexey (2008-03-04). "Why a simple test can

get parallel slowdown". Retrieved 2015-02-15

[22] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L. M.

Silva, G. Fedak, and F. Cappello, “Characterizing result

errors in internet desktop grids,“ In Euro-Par 2007,

Parallel Processing, 13th International Euro- Par

Conference, France, Proceedings, volume 4641 of LNCS,

pp. 361 371.Springer, 2007.

[23] M. Kuhn, S. Schmid, and R. Wattenhofer, “Distributed

asymmetric verification in computational grids,” in IEEE

International Symposium on Parallel and Distributed

Processing, p.1-10, 2008.

[24] A.Quamar, A.Deshpande, J.Lin, “NScale: Neighborhood-

centric Large-Scale Graph Analytics in the Cloud”, VLDB

J., vol. 25, no. 2, pp. 125–150, 2016..

[25] J. Rittinghouse, J.Ransome, “Cloud computing:

implementation, management, and security”, CRC Press,

Boca Raton, 2016.

[26] N.Bonvin, T.Papaioannou, K.Aber,” A self-organized,

fault-tolerant and scalable replication scheme for cloud

storage”. In Proc. the 1st ACM Symposium on Cloud

Computing, Indianapolis, IN, USA, June 10-11, 2010,

pp.205-216.

[27] L. C. Canon, E. Jeannot, and J. Weissman, “A scheduling

and certification algorithm for defeating collusion in

desktop grids,” In International Conference on Distributed

Computing Systems, pp. 343–352, 2011.

[28] Jyothsna V., Rama Prasad V.V. FCAAIS: Anomaly based

network intrusion detection through feature correlation

analysis and association impact scale ICT Express, 2016,

pp. 103-116.

[29] Mapper API for Google AppEngine.

http://googleappengine.blogspot.com

/2010/07/introducing-mapper-api.html (site visited

January 2016).

[30] Y. Chen, V. Paxson, and R. Katz. 2010. What's New

About Cloud Computing Security. Technical Report

UCB/EECS-2010-5, Berkeley,2014, pp 20-29.

[31] A. Matsunaga, M. Tsugawa, and J. Fortes. Cloudblast:

Combining mapreduce and virtualization on distributed

resources for bioinformatics. Microsoft eScience

Workshop, 2008, pp 222-229.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhongma%20Zhu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rui%20Jiang.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016294
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016294
https://www.researchgate.net/deref/http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2Ffreeabs_all.jsp%3Farnumber%3D4404756

