
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

24

Model-Driven Software Development Platforms Reviews

Ftoon Kedwan
School of Computing
Queen’s University

Goodwin Hall, Kingston
Ontario, Canada

Chanderdhar Sharma
School of Computing
Queen’s University

Goodwin Hall, Kingston
Ontario, Canada

ABSTRACT

The Model-Driven Software Development Systems (MDSDS)

were initially developed as an attempt to increase software

development productivity and quality. This is because

focusing on the logical solution abstract is more important

than focusing on the pure infrastructure technicalities.

Developers discovered the abstracted modelling technique

that includes both programming and platform tools in the

same time, which is now referred to as MDSDS.

Nowadays, there are plenty of modeling software applications

that almost achieve the same work, yet, the user might not be

aware of the detailed nuances between them. This paper aims

to discover the distinguishing features between four of the

most commonly used MDSDS including; YAKINDU,

Papyrus-RT, Rhapsody, and The State Machine Compiler

(SMC). Analysis of the suitability of those platforms for

modeling structural and behavioral domain specific software

will be investigated.

The same model will be built using the four MDSDSs. Then,

main differences, obstacles, observations, and overall

experience quality using those four environments will be

discussed. Some of the common distinguishing features to be

explored is GUI intuitivism, user friendliness, clarity of

commands and tools, tool learning time needed and learning

curve, model building time consumed, etc.

General Terms

Model-Driven Software Development Systems, YAKINDU,

Papyrus-RT, Rhapsody, The State Machine Compiler-SMC,

Model-Driven Engineering

Keywords

Software Development Systems, Model-Driven Platforms,

State Machine Engineering, YAKINDU, Papyrus-RT,

Rhapsody, State Machine Compiler-SMC.

1. INTRODUCTION
The MDSDSs were initially developed as an attempt to

increase software development productivity and overall

quality. This is achieved through including only the important

characteristics of a system in the resulted software solution

with some degrees of abstraction [‎1].

Instead of using complex programming languages and

machine codes, developers discovered the abstracted

modelling technique that includes both programming

languages and platform technologies in the same time [‎2].

This approach helped them design programs according to their

logical solution abstract rather than focusing on pure

technicalities. Among those MDSDSs is the SMC.

SMC is an event driven Java application, that uses state

patterns to combine Finite State Machines (FSM) with their

Objects. SMC enables the definition of default transitions that

allows objects to handle unexpected events, instead of

crashing and reporting an error. eBus is responsible for

exchanging messages between SMC transitions and FSM

objects, thus, it is considered as a Java middleware. This

automatic message exchange and generation technique

eliminated the need for manual transition matrices, state

transition arrays, or the scattered switch statements. Instead,

state diagrams are directly coded into the SMC Language.

State diagrams in SMC can be easily imported into a file in

order for State Pattern classes to be automatically generated

[‎3].

YAKINDU Statechart (part of state machine formalism) is an

integrated modelling environment that uses Statecharts to

develop interactive event-driven systems. Systems that

contain Components (Statecharts) and Instances of those

Components who have Interfaces containing Ports of

exchange. YAKINDU adopts both graphical (e.g. States,

Transitions) and textual (e.g. Declarations, Actions) notations

to model its state machines and diagrams.

It includes syntax and semantic checks to validate its models

live whilst editing. It also employs simulation techniques for

its state machine models to check their dynamic semantics to

save the time consumed for repetitively debugging the

models. YAKINDU’s state machines code generators use

Java, C and C++ to generate the codes [‎4].

Papyrus-RT is another MDSDS that is an open source toolkit

for a cohesive modeling environment used for the

development of complex real-time systems. It is based on the

Unified Modelling Language, together with its Real-Time

services (UML-RT) which consists of capsules made of active

classes and their composite structures.

Those capsules can communicate through ports using

protocols that specify the messages that can be swapped [‎5]. It

also provides specific tools that facilitates the development

and validation of UML-RT models. Papyrus-RT

programmatic behavior is provided as a C++, C, or Java

action code. The embedded code generator translates the

UML-RT model’s structural elements and the behavior

provided by each capsule's state machine into C++ code [‎6].

Rhapsody is also a visual model-driven development

environment based on UML-RT and used to create real-time

systems. Software applications are built using graphical

models programmed in many languages such as C, C++, Ada,

Java and C#.

Rational rhapsody helps system engineers and software

developers to automate the software development lifecycle

and create model designs by understanding systems’

requirements, validate functionality and identify defects and

design errors beforehand, and finally delivers highly

structured software. Therefore, it gives you the flexibility to

work in your specific domain [‎7].

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

25

1

2

Figure 1 Ping-Pong Model Built in SMC Modelling

Environment

Rhapsody was frequently investigated and tested by

researches due to its remarkable capabilities and features in

composite and orthogonal states, condition and junction

connectors, and inter-level transitions [‎8].

From the above MDSDSs discerptions, it is clear how similar

they are in structure, functionality, and the sought for

deliverables. However, this was the core reason of this paper,

which is to find out the little nuances between them to, help

the user decide which MDSDS is going to provide them the

ultimate satisfactory based on their specific domain and

desired output. In the coming sections, the four MDSDSs are

going to be explored through active experiments, and then,

observations will be documented. The differences and

similarities will be highlighted in the comparison table, and

the findings will be discussed in further detail in section four.

Finally, conclusion with general advices will take place,

besides the provision of future work suggestions.

2. RELATED WORK
Researchers have been discussing MSDSs and UML-RT

models in terms of their symbolic execution trees analysis,

features modularity, besides the ability of reusing their

analysis results. The Symbolic Analysis of UML-RT Models

(SAUML) was also investigated as an effort to enhance the

current practice of MDSDS with the analyses of UML-RT

models ‎9], or for developing UML-RT modeling design rules

and guidelines to find out the ideal implementation of

complex real-time embedded software systems, and more

importantly, to help improve the quality of those models by

knowing what to avoid during software models building

process [‎10], [‎11], [‎12].

Moreover, Model Driven Development tools that are known

for their hierarchical organization and asynchronous

transitions and communications have been extensively

analyzed in terms of their semantics and syntax characteristics

as an attempt to enhance their behavioral modeling

capabilities (via enhancing state machine diagrams or

statecharts), dimensions, and their final results quality [‎13],

[‎14]. One drawback of UML-RT is that there is no significant

support for models’ debugging at model-level which is an

important limitation for MDSD systems [‎15] This barrier

leads model-driven software developers towards platform-

independent solutions adding an extra dimension of

complexity.

MDSDS capabilities and features are not the only things

needed to be known to consider the selection of any particular

modelling tool. What is more important is the availability of

the high-quality supporting tools to those modeling software.

In 2017, a workshop was held specifically to discuss what

effective supporting tools, materials, and documentations (e.g.

Video tutorials) are available, and what are needed to be

implemented and discovered. Research communities have

realized that supporting MDSDSs software will significantly

increase the chances of success and user-adoption for any new

model development system [‎16].

There is no doubt that any beginner user will need supporting

illustrative materials to understand the new system. Model

driven development use cases proved to be highly beneficial,

especially for scenario-based models [‎17],‎ [18]. In fact, more

evaluative and publicized MDSDS-based research results such

as this paper should be accomplished more often for the sake

of familiarizing the Model Driven Engineering (MDE)

community with the available tools capabilities, especially the

open-source kind of them. Such studies are useful to detect

effective resolutions how to improve the users experience.

Potential resolutions might include changes to the tool itself

or to supporting materials. For example, increasing GUI

friendliness, adding facilitating features, or broadening the

inputs/outputs formats. According to Whittle et al., most

users’ problems range around plug-ins issues, lack of online

tutorials, or interoperability issues (i.e. importing/exporting

files), among other issues as well [‎19]. Likewise, the more

diverse modelling case scenarios the bigger the chances users

are going to use these tools for various projects after realizing

their suitability for their domain specific tasks [‎16].

Eclipse ecosystem is one of the first and most significant

modeling tools supporters, while other supporters tend to be

far more complex and immature. Eclipse offers an extensive

variety of supportive tools, repositories, and information and

documentation sources. It also supports several other aspects

of modeling and MDE (i.e. model transformation) [‎20].

3. EXPERIMENT

ANDMETHODOLOGY

3.1 SMC
The SMC is an open-source tool designed by JAVA, used to

compile FSM projects. SMC is based on a robust and solid

theoretical base, yet, it is not considered to be a new

technology. It is known for its effective handling of Reactive

and Transformational systems. Some of its famous

applications include automobiles, avionics systems, and man-

machine interfaces. The SMC code is generated to support the

targeted application software. However, certain changes need

to be made to the project’s original code such as adding the

SMC class definitions and source file into the targeted project

file [‎3].

SMC is considered one of the simple modeling tools. It is

mostly used in the industry to solve repetitive and tedious

software development problems [‎21]. For example, it proved

efficient performance in detecting patterns in a stream of

characters, or finding tokens (e.g. words, numbers) inside the

sentences. While writing the state classes for those problems

would be long and frustrating, SMC views and edits the entire

FSM problem logic easily in one single file.

The good thing about SMC is that it does not require any code

logic change, making the combination of FSM objects and

SMC codes easy and almost errorless. It also does not require

any inheritance of SMC classes to the original project class.

SMC provides high tolerance for unexpected events which

supports the development of robust applications.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

26

Figure 2 Ping-Pong Model Built in YAKINDU Modelling

Environment

Though, the default transition within a state is considered to

be one of the SMC shortcomings. That is because if a

transition is not previously defined, it follows the saved

default transition rules in the default state. This automatic

resolution of missing transition definition might cause some

problems if it conflicts with the overall project workflow.

From Figure 1, which is a high-level description of the SMC

modeling environment, the following is the main windows

descriptions:

1) Text editor building tools used to create an sm. type

of file.

2) The text editing area where the C++ code is written.

3.1.1 Modeling Steps
The SMC tool version used is version v3.2. To generate a

code using SMC compiler, a NotePad++ was used to write the

SMC code. Java language output must be specified, then,

specifying the target directory, and the SM file to be

processed. The second step is writing the application classes.

Instances of FSM context classes must be defined. In this

stage, it is possible to define the “Action Codes” or methods,

their implementation behavior, and the transitions from/to

different parts of the application code. The FSM context class

executes the action codes in the application classes, and vice

versa.

In a nutshell, the state diagram code is first written into an sm.

file. Then, the SMC tool is ran, which will generate the state

pattern code. After that, the action codes are written and

executed. Finally, the FSM is interacted with through

exchanging the transitions and the methods of execution.

3.1.2 Output Results
An sm. file was generated after writing the Ping-Pong C++

code in a notepad text editor. The code included many classes

of state patterns describing the Pinger, Ponger, and the

Referee action plans. The resulted sm. file can be now

executed in an FSM context to compile FSM objects.

3.2 YAKINDU
YAKINDU is an open-source compositional modeling

language. Essentially, it is a statechart editor with source code

generation capabilities from Statecharts to a rich variety of

languages including C++ which is the unified coding language

in this paper experiment.

YAKINDU has a rich graphical editor that supports the

development of compound hierarchical statecharts with

validation and simulation features, in addition to supporting

auxiliary variables, concurrency, and state refinement.

Probably one of the most recent updates of Yakindu is

introducing transition priority concept by specifying a total

ordering of the allocated transitions that gives each outgoing

transition a certain priority in case of a “race condition” [‎22].

However, YAKINDU lacks some advanced features such as

buffering events, message queues, or compositional modeling

that is essential to handle model’s design complexity

especially in the case of embedded reactive systems where

Statecharts need to be composed into a component-based

model. Yet, the comparison can still be managed by

composing YAKINDU’s individual statechart components by

connecting its ports to form a single composite system [22],

‎[23] The following is a high-level description of the

YAKINDU platform:

From Figure 2, which is a high-level description of the

YAKINDU modeling environment, the following is the main

windows descriptions:

1) This area shows our editable Ping-Pong model in a

class diagram format. This part includes the

structuring elements. They are used to build the

model.

2) This side shows the UML-RT elements used to

build our diagram.

3) This side shows the Project and model explorer that

keeps track of the model’s build-up. It also shows

the tree view of our model’s elements

synchronously as editing is presumed. The project

explorer keeps track of all projects and the codes

generated from the model explorer. The project also

explores the projects space, and folders. The project

explorer can also be used to inspect the structure of

the state model.

4) This is the simulation explorer. It is used to select a

certain simulation at a particular state. Selecting a

particular transition will show you what state is

going to be next. It also shows the outline of the

ping pong-model.

3.2.1 Modeling Steps
To create and validate a Ping-Pong model using YAKINDU, a

new project folder should be created, and then, a sub Yakindu

statechart diagram model file should be created under the

main project folder. On the model file, it is possible to import

the C++ code into the model and have the Ping-Pong model

statecharts built up automatically or drag and drop statecharts

and their transitions from the elements panel.

In the latter option, action codes or “events” must be defined

in order for the model to execute. When the model is ready, it

can be running by simulating it. The simulation take place by

manually triggering the events from the simulation explorer

window.

3.2.1 Output Results
Once the events are triggered and the transitions are fired, the

model gets executed and the Pinger and Ponger communicate

by sending and receiving the pongs which is the output of this

interactive event-driven Development systems.

3.3 Papyrus-RT
Papyrus-RT is a modelling development environment for

UML-RT systems. It is an open-source application based on

Eclipse platform and supported by Run-Time Service (RTS)

ibrary [‎24]. Papyrus-RT will be used to generate and represent

1

2

4

3

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

27

a complete Ping/Pong model [‎5], and then, an executable and

customizable code will be generated from this

model.

Figure 3 Ping-Pong Model Built in Papyrus-RT Modelling

Environment

Papyrus-RT is well known for its mixed graphical/textual

notations and other advanced features (e.g. import

capabilities, defer/recall concurrency control, incremental

code generation, and message-pools/buffers), yet, it does not

support behavioral inheritance [‎25], ‎[26], ‎[27] therefore,

composite states will be having to be used for comparison

purposes.

However, in this paper‎9, only common features among the 4

MSDSs will be discussed to facilitate the comparison of tools.

The following is a high-level description of the Papyrus-RT

platform:

From Figure 3, which is a high-level description of the

Papyrus-RT modeling environment, the following is the main

windows descriptions:

1) This area shows our editable Ping-Pong model in a

class diagrams format.

2) This side shows the UML-RT elements used to

build our diagram.

3) At the bottom lies the property editing area where

model’s elements properties are specified.

4) This side shows the model explorer that keeps track

of the model’s build-up. It also shows the tree view

of our model’s elements synchronously as editing is

presumed.

5) The project explorer keeps track of all projects and

the codes generated from the model explorer.

3.3.1 Modeling Steps
To start building the Ping-Pong model, first build two

capsules "active classes”, Pinger and Ponger. Those two

players will communicate to hit the ball, each in their assigned

turn. Next, “Protocols” are created.

Protocols play the role of messages that keep track of who’s

turn it is to send the Pong, and how? A unique feature about

Papyrus-RT is the port logs. They allow the code to print out

messages to the user, possibly to assure them that the code is

up and running.

Once the state machines, the state machines attributes and

transitions, transitions triggers and guards, and their action

codes are ready for execution, the model code is generated.

The project then can be running through the terminal window,

and by using the "make" and then "./TopMain" commands

will compile and run the C++ code generated from the model.

3.3.2 Output Results
The model results in the Pinger and the Ponger being able to

communicate by exchanging the Pong through the Referee

which is keeping trach of the number of Pongs sent and

received until the 5th round.

3.4 Rhapsody
IBM Rational Rhapsody Developer MDE Tool was used for

the modeling which is considered to be one of the most

successful tools and frameworks that is widely used for its

capabilities to support model-driven development [‎28]. After

the modeling step, a C++ code can be automatically

generated. Although Rhapsody has a wide variety of domain

specific diagrams, Statecharts and Object Model Diagram

(similar to UML’s Class Diagrams) will be used to describe

the software system.

The system structure and the Statecharts relationships will be

specified between the classes and objects in the constructed

model. The model’s top-level object (root class) is a

composite class called Ping/Bong Class. The default

semantics of the Rhapsody Statecharts was kept as is to

develop the model.

The model’s transitions are labelled by action triggers and

guards based on special events similarly as in the other

MSDSs models. However, Rhapsody has special features (e.g.

composite states, concurrent states, actions for entering or

exiting states, OR-connectors) that don’t exist in the other

MSDSs discussed in this paper. Hence, any feature that is

uniquely existing in only one single MSDS but not the others

will not be used.

From Figure 4, which is a high-level description of the

Rhapsody modeling environment, the following is the main

windows descriptions:

1) This area shows our editable Ping-Pong model in a

class diagrams format.

2) This side shows the UML-RT elements used to

build our diagram.

3) This side shows the Project and model explorer that

keeps track of the model’s build-up. It also shows

the tree view of our model’s elements

synchronously as editing is presumed. The project

explorer keeps track of all projects and the codes

generated from the model explorer.

4) The code debugging and error viewing side. Also,

the code execution output is viewed from this

window.

3.4.1 Modeling Steps
IBM Rational Rhapsody Architect was used to build the Ping-

Pong model. First, a new C++ project folder is created and its

default properties (e.g. Display Options) are fixed. Then, the

Ping-Pong C++ code is imported and bound with a model.

This model is now called the Ping-Pong model. The classes

are directly built in the model and it is able to make structural

changes at this stage in case the right classes weren’t imported

properly. The structural changes can be done by dragging and

dropping the classes and their transitions, for instance, from

the elements panel. Whenever the model is ready, the model

can be built and ran.

4

3

5

1 2

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

28

2

3.4.2 Output Results
The output of this Rhapsody model is a structured Ping-Pong

model with Pinger-Ponger classes communication capability.

4. RESULTS AND DISCUSSION
It is important to highlight here that this paper will only cover

the comparison of the common features among the four

MDSDSs for validation purposes. Yet, the unique features

will be mentioned as well, but outside the comparison zone.

Figure 4 Ping-Pong Model Built in Rhapsody Modelling

Environment

4.1 Similarities
The four MSDSs are similar in that they all employ state

machines to visualize systems as a state-based formalism,

showing the system behavior in an interactive way. They all

support event-driven real-time software applications as well.

However, they also include some unique features that

differentiate each of them from the others.

4.2 Differences
The experiments’ results will be presented in a tabular format

(see Table 1) for easier comprehension. Each column

represents one of the MDSDSs, and each raw is a unique

feature. Across the table, there are the developer’s notes,

opinions, observations, and experience documentation. Based

on that, the table includes a rough estimate of the best

application areas suited for each MDSDS based on the results

and discussion. This feature comparison distribution fashion is

believed to make it easier for the targeted readers (Beginner

Developers) to navigate through the table based on the

criteria.

5. CONTRIBUTION
While most literature concentrated on the technicality of the

model-driven development software, this research focus on

the user-friendliness, easiness and the comprehensibility of

those software. The original motivation of this research is to

benefit those who are newly introduces to MSDSs, or just

beginning to specialize on them, this paper will enlighten

them of what sort of software is available and what are some

of the general similarities and differences between them.

6. CONCLUSIONS
Among the most commonly used MDSDSs, Papyrus-RT,

Rhapsody, YAKINDU, MSC. The first choice a beginner

modeler needs to make is which modeling tool they should

start with, and why? In general, all modeling tools enable you

to model, but the question is which tool is best for my specific

domain or precise resolution. This paper explored some of the

high-level differences that was discovered while

implementing the same Ping-Pong model in all the modeling

tools.

However, even if the modeling purpose changed in the future,

or the selected MDSDS turned to be limited in a certain scope,

it is always possible to change the modeling tool to another.

Nonetheless, due to some difference problems, it would be

necessary to adjust the generated code from the older model

according to the new modeling tool translation guidelines in

order to obtain the same model execution behavior.

While most literature focus on technical differences and

limitations, this paper covered the discussion about couple of

modeling tools differences and similarities. This is because

the authors believe that the social factor in the modeling tool

development and success is just as significant as the

effectiveness of the tool itself.

Furthermore, this paper presents the results of an informal

comparative study of four MDSDSs with real illustrative

modelling examples. Main classifications of feature

differences were discussed according to the developer’s

experiences, in addition to careful examination of other

academic researches and experiments.

As for future work, additional MDSDS competitors could be

included in the comparison study (e.g. Simulink, MetaEdit+,

objectiF). Furthermore, comparison of detailed syntactic and

semantic differences (e.g. conjunction transitions, composite

statecharts) could be included since only high-level

comparison of those two features was covered.

7. THREATS OF VALIDITY
This experiment has been accomplished by one model

developer only on Linux environment. User experience might

differ according to the computer machine specifications (e.g.

hard drive capacity, RAM size, etc.), the operating system

installed, and the user’s depth of knowledge and experience

with the modelling tools in general. In that regard, opinions

and experience quality might fall under the gray area, and not

be absolutely accurate. However, technical and modelling

comparison were based on sound model development

processes and not related to a user opinion, which makes it

valid and reliable to the best of our knowledge.

8. REFERENCES
[1] Sendall, S., & Kozaczynski, W. (2003). Model

transformation: The heart and soul of model-driven

software development. IEEE software, 20(5), 42-45.

[2] Schmidt, D. C. (2006). Model-driven engineering.

COMPUTER-IEEE COMPUTER SOCIETY-, 39(2), 25.

[3] Home of SMC, The State Machine Compiler,

http://smc.sourceforge.net/, accessed on April 12th,

2018.

[4] Selic, B. (1998). Using UML for modeling complex real-

time systems. In Languages, compilers, and tools for

embedded systems (pp. 250-260). Springer, Berlin,

Heidelberg.

[5] Papyrus-RT/User/User Guide/Getting Started, Getting

Started with Papyrus for Real Time v1.0,

https://wiki.eclipse.org/Papyrus-

RT/User/User_Guide/Getting_Started#Our_project:_Pin

gPong, last accessed April 15th, 2018.

[6] Kahani, N., Hili, N., Cordy, J. R., & Dingel, J. (2017,

May). Evaluation of UML-RT and Papyrus-RT for

modelling self-adaptive systems. In Modelling in

Software Engineering (MiSE), 2017 IEEE/ACM 9th

International Workshop on (pp. 12-18). IEEE.

3

1

4

https://wiki.eclipse.org/Papyrus-RT/User/User_Guide/Getting_Started#Our_project:_PingPong
https://wiki.eclipse.org/Papyrus-RT/User/User_Guide/Getting_Started#Our_project:_PingPong
https://wiki.eclipse.org/Papyrus-RT/User/User_Guide/Getting_Started#Our_project:_PingPong

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

29

[7] Gery, E., Harel, D., & Palachi, E. (2002, May).

Rhapsody: A complete life-cycle model-based

development system. In International Conference on

Integrated Formal Methods (pp. 1-10). Springer, Berlin,

Heidelberg.

[8] Khalil, A., & Dingel, J. (2017). Optimizing the Symbolic

Execution of Evolving Rhapsody Statecharts. Advances

in Computers.

[9] Zurowska, K., & Dingel, J. (2011, November). SAUML:

A tool for symbolic analysis of UML-RT models. In

Proceedings of the 2011 26th IEEE/ACM International

Conference on Automated Software Engineering (pp.

604-607). IEEE Computer Society.

[10] Das, T. K., & Dingel, J. (2016). Model development

guidelines for UML-RT: conventions, patterns and

antipatterns. Software & Systems Modeling, 1-36.

[11] Das, T. K., & Dingel, J. (2015, September). State

machine antipatterns for UML-RT. In Model Driven

Engineering Languages and Systems (MODELS), 2015

ACM/IEEE 18th International Conference on (pp. 54-

63). IEEE.

[12] Das, T. K., & Dingel, J. (2016). Model Development

Guidelines for UML-RT.

[13] Dingel, J., Paen, E., Posse, E., Rahman, R. R., &

Zurowska, K. (2010, June). Definition and

implementation of a semantic mapping for UML-RT

using a timed pi-calculus. In Proceedings of the Second

International Workshop on Behaviour Modelling:

Foundation and Applications (p. 1). ACM.

[14] Crane, M. L., & Dingel, J. (2005, October). UML vs.

classical vs. Rhapsody statecharts: Not all models are

created equal. In International Conference on Model

Driven Engineering Languages and Systems (pp. 97-

112). Springer, Berlin, Heidelberg.

[15] Bagherzadeh, M., Hili, N., & Dingel, J. (2017, August).

Model-level, platform-independent debugging in the

context of the model-driven development of real-time

systems. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering (pp. 419-430).

ACM.

[16] Bagherzadeh, M., Bordeleau, F., Bruel, J. M., Dingel, J.,

Gérard, S., Hili, N., & Voss, S. Summary of Workshop

on Model-Driven Engineering Tools (MDETools’ 17).

[17] Liang, H., Dingel, J., & Diskin, Z. (2006, May). A

comparative survey of scenario-based to state-based

model synthesis approaches. In Proceedings of the 2006

international workshop on Scenarios and state machines:

models, algorithms, and tools (pp. 5-12). ACM.

[18] Dingel, J., & Filkorn, T. (1995, July). Model checking

for infinite state systems using data abstraction,

assumption-commitment style reasoning and theorem

proving. In International Conference on Computer Aided

Verification (pp. 54-69). Springer, Berlin, Heidelberg.

[19] Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H.,

& Heldal, R. (2013, September). Industrial adoption of

model-driven engineering: Are the tools really the

problem? In International Conference on Model Driven

Engineering Languages and Systems (pp. 1-17).

Springer, Berlin, Heidelberg.

[20] Kahani, N., Bagherzadeh, M., Dingel, J., & Cordy, J. R.

(2016, October). The problems with eclipse modeling

tools: a topic analysis of eclipse forums. In Proceedings

of the ACM/IEEE 19th International Conference on

Model Driven Engineering Languages and Systems (pp.

227-237). ACM.

[21] SMC Home Page, The State Machine Compiler,

http://smc.sourceforge.net/, last accessed April 14th,

2018.

[22] Graics, B., & Molnár, V. (2017). Formal Compositional

Semantics for Yakindu Statecharts.

[23] Yakindu Statechart Tools, http://statecharts.org/, last

accessed April 15th, 2018.

[24] Hili, N., Dingel, J., & Beaulieu, A. (2017, May).

Modelling and code generation for real-time embedded

systems with UML-RT and papyrus-RT. In Software

Engineering Companion (ICSE-C), 2017 IEEE/ACM

39th International Conference on (pp. 509-510). IEEE.

[25] Kahani, N., Hili, N., Cordy, J. R., & Dingel, J. (2017,

May). Evaluation of UML-RT and Papyrus-RT for

modelling self-adaptive systems. In Modelling in

Software Engineering (MiSE), 2017 IEEE/ACM 9th

International Workshop on (pp. 12-18). IEEE.

[26] Papyrus for real time (Papyrus-RT),

https://www.eclipse.org/papyrus-rt, accessed: 2018-03-

25

[27] Posse, E. (2015). PapyrusRT: modelling and code

generation. In Workshop on Open Source for Model

Driven Engineering (OSS4MDE’15).

[28] IBM Rational. Rational Rhapsody Developer,

http://www03.ibm.com/software/products/en/ratirhap/.

http://smc.sourceforge.net/
http://statecharts.org/
https://www.eclipse.org/papyrus-rt
http://www03.ibm.com/software/products/en/ratirhap/

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

30

9. APPENDIX
Table 1 MDSDSs Features Comparison Table

Features Papyrus-RT YAKINDU Rhapsody MSC

1 Availability Open source Open source Not an open source program. Open source

2
Clarity of

Commands
Moderately clear Very clear Complex Very clear

3
GUI

Intuitivism
Moderately intuitive Very intuitive Moderately intuitive Not applicable

4
User

Friendliness
Very user friendly Very user friendly Complex Moderately complex

5

Overall

Experience

Quality

Productive Satisfying Comparatively Struggling Positively productive

6

Tool

Learning

Time Needed

1 week 5 days 10 days 4 days

7

Model

Building

Time

Consumed

2 hours 2:30 hours 4 hours 1:30 hours

8
Learning

Curve

The learning curve in

Papyrus-RT is not so

fast, because the user

must familiarize

themselves with every

process they are about

to implement, and every

tool they are about to

use.

The learning curve in

YAKINDU is

proportional to the

time spent learning it.

The learning curve in

Rhapsody is negatively

proportional to the time spent

using the tool due to its

broad and wide options

which the user can use from.

This could help some users

but could also be confusing

to others.

The learning curve in

SMC is relatively fast if

the user knew the

programming language

used to code. Using the

SMC tool is simple and

bound to writing the code

and generating the state

chart patterns.

9
Semantic

Differences

Its RTS library lacks

support for

implementing the

different phases of the

control loop usually

implemented for

monitoring and

triggering the different

adaptation of SAS

systems.

It employs simulation

techniques for its

state

machine models to

check

their dynamic

semantics to save the

time consumed for

repetitively

debugging the

models.

It allows the users to make

their own design decisions

and support powerful

execution semantics to code

generation capabilities. It can

scale up to handle larger

systems.

SMC is based on a robust

and solid theoretical base.

State diagrams are directly

coded into the SMC

Language. State diagrams

in SMC can be easily

imported into a file in

order for State Pattern

classes to be automatically

generated. In addition, it

has effective handling of

Reactive and

Transformational systems.

10
Syntactic

Differences

Mixed graphical/textual

notations and other

advanced features (e.g.

import capabilities,

defer/recall concurrency

control, incremental

code generation, and

message- pools/buffers).

Does not support

behavioral inheritance.

Composed

statecharts, it lacks

the ability to

compose statecharts

into component-

based model, but it is

a rich language to

model a single

hierarchical

statecharts. Does not

support buffering

events, message

queues, or

compositional

modeling. Compound

hierarchical

Statecharts and Object

Model Diagrams. Special

syntactic features include

composite states, concurrent

states, actions for entering or

exiting states, and

ORconnectors.

The default transition

within a state is considered

to be one of the SMC

shortcomings. That is

because if a transition is

not previously defined, it

follows

the saved default transition

rules in the default state.

This automatic resolution

of missing transition

definition might cause

some problems if it

conflicts with the overall

project workflow. Also,

guarded transitions have

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

31

statecharts with

validation and

simulation features. It

supports auxiliary

variables,

concurrency, and

state refinement.

higher priority of

execution than unguarded

ones.

11
Code

Interpretation

Direct & clear

interpretation
Basic interpretation Embedded interpretation

Direct & clear

interpretation

12

Code

Generation

Ability

C++ Java, C and C++ C, C++, Ada, Java and C#
C++, Java, TCL, VB,

CSHARP

13
Installation

Requirements

JDK8, JRE, and Linux

OS for easy installation

It is a plug in that

could be added on top

of Eclipse from the

“Help” tap and

selecting “Install

New Software”. So,

its installation

requirements are the

same as the

requirements for

installing Eclipse,

JDK8 and JRE.

It is based on Eclipse, we

need CDT, and then install

the Rhapsody.

Java 8.0 (JDK 8),

SMC.JAR.

(SMC Compiler), text

editor (e.g. notepad++)

14
Constructing

Elements

State diagrams’

elements. Consists of

capsules made of active

classes and their

composite structures.

Those capsules can

communicate through

ports using protocols

that specify the

messages that can be

swapped.

Systems containing

Components

(Statecharts) and

Instances of those

Components who

have

Interfaces containing

Ports of exchange. It

adopts both graphical

(e.g. states,

transitions) and

textual (e.g.

declarations, actions)

notations to model its

state machines and

diagrams.

Sequence diagrams, use-case

diagrams, and State

diagrams.

Contains composite and

orthogonal states, condition

and junction connectors, and

inter-level transitions.

State diagrams and State

Pattern classes. eBus (a

Java middleware) is

responsible for exchanging

messages between SMC

transitions and FSM

objects. SMMC supports

disconnected, connecting,

connected, and

disconnecting type of

states. For the file transfer

process, it connects

/disconnects with

transitions for sending the

data.

15
Behavior

Executability

State diagram execution

can be seen at log port.

The embedded code

generator translates the

UML-RT model’s

structural elements and

the behavior provided

by each capsule's state

machine into C++ code

The highlighted state

and highlighted

transition show the

execution of

statechart diagram.

Variables can be seen

on the simulation tap.

Execution of state diagram

consists of highlighting the

state as well as showing the

events in the events section

when they are triggered.

A default behavior can be

defined in the state and be

executed in higher priority

than the default behavior

definitions in locked or

unlocked states. The logic

of the state diagram

is distributed across the

classes That makes seeing

all of the state diagram

can’t be seen from a single

point.

Working around this issue

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

32

is a tedious coding.

16
Execution

Style

Its models’ applications

can be executed on an

embedded platform, or

selectively logging parts

of the execution. In

general, Linux executes

Papyrus-RT better than

if models were built in

Windows or MacOS.

Transition priority

concept by specifying

a total ordering of the

allocated transitions

that gives each

outgoing

transition a certain

priority in case of a

“race condition”.

The test execution and

verification engine execute

test cases defined by

sequence diagrams, flow

charts,

statecharts, and source code.

During execution, it verifies

the results against the

defined requirements.

It simulates the user’s

activity during test execution

by automatically sending the

message to the debugger to

provocate a reaction.

The automatic message

exchange and generation

technique eliminated the

need for manual transition

matrices, state transition

arrays, or the scattered

switch statements. To

generate a code using

SMC compiler, Java

language output must be

specified, then, specifying

the target directory, and

the SM file to be

processed.

17

Object

Creation/

Destruction

Doesn’t show error on a

new state even though it

is not reachable.

It shows the error

while building the

model.

Complex to create elements

because they are all

connected. It doesn’t delete

anything recursively.

SMC provides high

tolerance for unexpected

events which supports the

development of robust

applications.

18

Bugs

Identification

& Debugging

It provides specific tools

that facilitates the

development and

validation of UML-RT

models. You have to

regenerate the model to

remake the file and get

the potential errors.

It adopts dynamic

debugging. It shows

errors instantly. It

includes syntax and

semantic checks to

validate its models

live whilst editing.

Automatic debugging while

editing.

By combining virtual

methods with the state

pattern, SMC enables the

definition of default

transitions that allows

objects to handle

unexpected events, recover

and continue providing

service, instead of

crashing.

19 Output

To create models that

fully and correctly

generate code for

complex embedded and

real-time applications.

Development of

interactive event-

driven systems.

Rational rhapsody helps

system engineers and

software developers to

automate the software

development lifecycle and

create real-time model

designs by understanding

systems’ requirements,

validate functionality and

identify defects and design

errors beforehand, and

finally delivers highly

structured software.

SMC is an event driven

application, that uses state

patterns to combine FSMs

with their Objects. Hence,

it is used to compile FSM

projects. Although only

one file is produced, the

actual code contains many

classes of state patterns.

The generated table

produces HTML table

illustration of the .sm file.

It also outputs a graph in a

GraphViz .dot file format

containing the state

machine logic.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

33

20 Usages

Small Industry

Education/Academy

Workflow Prototyping

UML-RT modelling

Spiral development

style

Small Industry

Workflow

Prototyping Agile

development style

Large Industry

Beginners/Intermediate

developers

Education/Academy DSL

modelling Waterfall

development style

Education/Academy Small

Industry Agile

development style

21

Level of

Model

Abstraction

Moderately abstracted.
Moderately

abstracted.
Highly abstracted. Barely abstracted.

22

Level of

Model

Automation

Composite states

construct automatically

by double clicking any

state diagram.

Generally, the user has

to initiate every task to

take place.

One of the automatic

actions is error

detection. Entry/exit

transitions of the state

are automated and

predefined in the

state chart. Interfaces

(protocols) like

“always” and “never”

are created

automatically.

Generally, the user

can use the

automated generated

protocol in statecharts

without defining

them.

Double clicking any class

diagram will automatically

generate a composite class.

Generally, the user has to

initiate every task to take

place.

State diagrams are coded

into Java language,

making the code importing

into a file easy and direct.

State Pattern classes will

then be automatically

generated in the other

MDSDS tool.

23
Proper

Tooling

Papyrus-RT is generally

properly tooled.

However, tools for

sequence diagrams and

class diagrams need to

be made available.

Yakindu has proper

tools for its

statecharts, but no

plug-in tools are

available for

sequence diagrams or

class diagrams.

Rhapsody is generally

properly tooled.

SMC tools support state

diagrams, but additional

tools are needed to create

class diagrams and

sequence diagrams.

IJCATM : www.ijcaonline.org

