
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

1

Nepali Speech Recognition using RNN-CTC Model

Paribesh Regmi
Electronics and Communication

Engineer

Institute of Engineering Tribhuvan
University

Arjun Dahal
Electronics and Communication

Engineer

Institute of Engineering Tribhuvan
University

Basanta Joshi
Assistant Professor Department of

Electronics and Computer
Engineering

Institute of Engineering Tribhuvan
University

ABSTRACT
This paper presents a Neural Network based Nepali Speech

Recognition model. RNN (Recurrent Neural Networks) is

used for processing sequential audio data. CTC (Connectionist

Temporal Classification) [1] technique is applied allowing

RNN to train over audio data. CTC is a probabilistic approach

of maximizing the occurrence probability of the desired labels

from RNN output. After processing through RNN and CTC

layers, Nepali text is obtained as output. This paper also

defines a character set of 67 Nepali characters required for

transcription of Nepali speech to text.

Keywords

Artificial Intelligence, Machine Learning, Automatic Speech

Recognition, Recurrent Neural Network, Connectionist

Temporal Classification, Softmax, Hidden Markov Model,

Nepali Speech Recognition, Long-Short Term Memory

(LSTM), Backpropagation, Character Error Rate

1. INTRODUCTION
With the advancement in Machine Learning models, machines

are being made capable of doing tasks that otherwise required

human intelligence. Automatic Speech Recognition (ASR) is

a challenging as well as interesting problem in the field of

Artificial Intelligence today. ASR is a process of mapping an

acoustic waveform into text in which the text should have a

meaning equivalent to the spoken words. It can change the

way humans interact with computers, which happens mostly

through text today. A lot of existing systems can be automated

with Interactive Voice Response systems with speech

recognition technology.

The goal of this paper is to present an end to end Nepali

Speech Recognition model with the use of recurrent neural

networks. A neural network is an artificial self-learning

structure modeled to resemble human brain. RNN is a form of

neural network that is capable of learning sequential data i.e.

data represented as a time-sequence. Long sequence of audio

data is divided into small frames and fed in one after another

to RNN, which is capable of learning patterns in audio

sequences. Training machine learning models such as RNN

generally requires pre-labelled data (audio with its

corresponding text). Since audio data are unsegmented

(framewise labelling is not possible), CTC layer is applied

over RNN for training which eliminates the need for

framewise labelling. CTC layer takes in target text from data

and maximizes the occurrence probability of the text from

RNN output.

2. RELATED WORK
Speech Recognition has been practiced widely with variety of

models. In early days, HMM (Hidden Markov Model) was

used for speech recognition. HMM is a probabilistic model

that is capable of learning patterns in time-sequence data.

However, the performance of HMM was only good for

limited vocabulary within a limited context. With the

development of efficient training methods of Neural Networks

[2][3], speech recognition was carried out with neural

networks and the results were improved. Neural Network

based models were able handle large vocabularies [4]. Speech

recognition systems were also able to identify speech from a

wide range of context.

Towards End-to-End Speech Recognition with Recurrent

Neural Networks [5] presents how speech recognition tasks

can be carried out using Recurrent Neural Networks. It was

shown that RNNs were much efficient in handling speech data

compared to previous existing models. The Neural network

had LSTM cell that could manipulate long range sequences.

The experiment was carried out on a wall street journal for

English corpus. For English corpus, a total of 43 characters

built up the language. CTC layer was used above RNN for

handling unsegmented data.

Automatic Speech Recognition for Nepali Language [6]

project is the outcome of implementation of HMM, Java

speech grammar format in the acoustic model of Sphinx-4.

Sphinx-4 is a state-of-the-art speech recognition system

written entirely in the Java programming language. Training

of the model composed of Gaussian Acoustic Model for

filtering phones of a word. Acoustic model consists of

numeric transformation of each phone in matrix form. So,

when speaker speaks a word, it first portioned in phones and

numeric transformation of phones is compared with acoustic

model.

HMM Based Isolated Word Nepali Speech Recognition [7]

project was carried using HMM. The project was built to

identify 10 distinct Nepali words.

3. ASR MODEL
The proposed model is illustrated in Figure 1. First layer of

the network takes audio features as input. Audio features are

then processed by layers of Bidirectional RNN. LSTM cells

are used for RNN for their capability of learning long-time

sequence patterns. Output form Bidirectional RNN is

processed by dense layers. The output vector from dense layer

is the same size as the total number of characters in the

defined Nepali character set plus an extra blank character

(discussed in Section 3.4 and 3.5). The output is forwarded to

Softmax layer which assigns occurrence probability to each

character. This probability vector is forwarded to CTC layer

for CTC loss calculation and the network is backpropagated

for minimization of this loss.

http://www.ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

2

Fig 1: Network Architecture for Nepali Speech

Recognition

3.1 Long-Short Term Memory [8]
Standard RNN cells are incapable of learning long time-

dependent patterns i.e. it suffers from Vanishing Gradient

Problem [9]. Long-Short Term Memory cells are widely used

in RNN as they overcome this issue.

Fig 2: An LSTM Cell

The output of an LSTM cell is given by the following set of

equations where 𝐵 term denote biases, 𝑊 term denote weight

matrices (e.g. [𝑊ℎ𝑖] is the hidden-input weight matrix), 𝑓 is

the forget gate, 𝑖 is the input gate, 𝑜 is the output gate, 𝑥 is the

input vector, σ and 𝑡𝑎𝑛ℎ are activation functions. ‘*’ denotes

element-wise multiplication.

[𝑓𝑡] = σ([𝑥𝑡][𝑊𝑖𝑓] + [ℎ𝑡−1][𝑊ℎ𝑓] + [𝐵𝑓]) (1)

[𝑖𝑡] = σ([𝑥𝑡][𝑊𝑖𝑖] + [ℎ𝑡−1][𝑊ℎ𝑖] + [𝐵𝑖]) (2)

[𝑜𝑡] = σ([𝑥𝑡][𝑊𝑖𝑜] + [ℎ𝑡−1][𝑊ℎ𝑜] + [𝐵𝑜]) (3)

[C҄𝑡] = 𝑡𝑎𝑛ℎ([𝑥𝑡][𝑊𝑖�҄�҄] + [ℎ𝑡−1][𝑊ℎc҄]) (4)

[C𝑡] = [𝑓𝑡] ∗ [C𝑡−1] + [𝑖𝑡] ∗ [C҄𝑡] (5)

[h𝑡] = [𝑜𝑡] ∗ tanh ([C𝑡]) (6)

[h𝑡] is emitted as an output from LSTM layer.

3.2 Bidirectional RNN [10]
In regular recurrent neural networks, the output obtained at a

current time step is the function of its current and past history

of inputs. The input information to the network can be

increased if the network also considers the inputs occurring in

future time steps. The concept of BRNN is to have another

recurrent layer, in addition to the forward running layer, that

runs backward in time. The backward running layer first feeds

in the input from last time step and preceding inputs

successively. The two layers run independently and do not

have any connection between them. Bidirectional RNN are

found to outperform unidirectional RNNs in speech

recognition tasks [11].

Fig 3: Structure of a Bidirectional RNN

3.3 Connectionist Temporal Classification
Generally, time-sequence data are trained as frame-wise

classifiers in which the training dataset has target label for

every frame. This is not applicable in speech recognition

problem since the number of frames and total number of label

characters are not equal. For example, an audio clip of 5

seconds has 500 numbers of frames, but the text output might

only be of 30 characters. Also, same text can be read fast or

slow, creating varying number of frames for same text.

Creating framewise alignment of labels is a difficult task.

CTC provides a way to resolve this problem. CTC loss is an

error function that allows RNN to be trained over time-

sequence data that doesn’t have frame-wise alignment

between input and target sequences.

3.4 Training with CTC
There are 67 characters in Nepali language that can represent

sound in the form of text.

L = {'क', 'ख', 'ग', 'घ', 'ङ', 'च', 'छ', 'ज', 'झ', 'ञ', 'ट', 'ठ', 'ड', 'ढ',

'ण', 'त', 'थ', 'द', 'ध', 'न','प', 'फ', 'ब', 'भ', 'म', 'य','र', 'ल', 'व','श', 'ष',

'स', 'ह','अ', 'आ', 'इ', 'ई', 'उ','ऊ', 'ए', 'ऐ', 'ओ', 'औ', 'ा ', 'िा', 'ा ',

'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', '०', '१', '२', '३', '४', '५', '६', '७',

'८', '९','।', ' '}

The character set is indexed from 0 to 66 starting from 'क' as

0 and increasing accordingly.

The output from the dense layer is first fed to a Softmax layer

where a number associated with each output character is

assigned a probability value for the occurrence of the

character.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(y𝑖) =
exp (y𝑖)

∑ exp (y𝑖)𝑖
 (7)

The activations of first |𝐿| units are interpreted as the

probabilities of observing corresponding labels at particular

times. The activation of one extra label is the probability of

observing a blank or no label. Together these outputs define

the probabilities of all possible ways of aligning all possible

label sequences with the input sequence. A target sequence

can be obtained by condensing different alignments of

characters at different time steps. These different alignments

are called paths.

http://www.ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

3

Let us assume for a sequence 𝑥 of 𝑇 time frames, we are to

find probability of a label sequence 𝑙:

 𝑙 = ′कमल ′

Then, we can have many sets of paths from output that can

converge to this label. Some of them are (‘-’ is the blank

label):

𝑝𝑎𝑡ℎ𝑠 = {− −ककक − − − − − मम − − − −लल− − ,

− − −कक − − − म − −ललल− − − − − − ,

− − − − −कक − − − − − −मल− − − − − −,

− − − − −क − − − − − म − − −लल − − −,

 𝑒𝑡𝑐}

All of the above paths correspond to target label l when

decoded and defined such that

 𝐷(𝑝) = 𝑙 , 𝑓𝑜𝑟 𝑝 𝑖𝑛 𝑝𝑎𝑡ℎ𝑠 (8)

The decoding rule is that, first successively repeated similar

characters are merged to one single character and then blank

labels are discarded to get the desired label. Let, 𝑛𝑡ℎcharacter

in path 𝑝 be defined as 𝑝(𝑛) and 𝜋𝑘
𝑡 be the probability of

occurrence of character k at time t. Then, for each path p in

paths, the probability of its occurrence can be calculated from

Softmax output as:

 𝑃(𝑝|𝑥) = ∏ 𝜋𝑝(𝑡)
𝑡𝑇

𝑡=1 (9)

given that the RNN outputs at different times are independent

of each other. Hence, the total probability of occurrence of the

label 𝑙 is the total sum of probabilities of occurrence of each

path p in paths. i.e.

 𝑃(𝑙|𝑥) = ∑ 𝑃(𝑝|𝑥)𝑝 , 𝑓𝑜𝑟 𝑝 𝑖𝑛 𝑝𝑎𝑡ℎ𝑠 (10)

 𝑃(𝑙|𝑥) = ∑ ∏ 𝜋𝑝(𝑡)
𝑡𝑇

𝑡=1 𝑝

𝐷(𝑝)=𝑙
 (11)

The CTC loss function is now defined as:

𝐶𝑇𝐶(𝑥) = −𝑙𝑜𝑔(𝑃(𝑙|𝑥)) (12)

This is our objective function which is to be minimized while

training. Minimizing this objective function simply means

maximizing the probability of occurrence of each path in

paths which ultimately maximizes the probability of

occurrence of the label 𝑙.

3.5 The CTC Forward-Backward

Algorithm
From equation (12), it seems difficult to recognize every path

and costly to calculate probability for each one. Forward-

Backward Algorithm is a recursive approach for calculation of

𝑃(𝑙|𝑥).

Let, 𝑙1:𝑠 denote the first 𝑠 characters of a label 𝑙 and forward

variable 𝛼𝑙
𝑡(𝑠) be the probability of occurrence of 𝑙1:𝑠 at time

t.

𝛼𝑙
𝑡(𝑠) = ∑ ∏ 𝜋𝑝(𝑡′)

𝑡′𝑡
𝑡′=1 𝑝

𝐷(𝑝)=𝑙1:𝑠

 (13)

Minimizing 𝐶𝑇𝐶(𝑥) by maximum likelihood, we can assume

that most of the time the output from Softmax layer will have

a high probability of observing blank character (-), which

doesn’t change the output at all. From a well-trained model,

we expect blank character in between successive characters in

the character set. So, it is better we train our model with

modified label 𝑙’ obtained by adding blank (-) at the beginning

and end and in between every character in 𝑙.

Now, network firing a blank will correspond to this blank

between characters. By training with 𝑙’, all labels start with a

blank. We can initialize the 𝛼𝑙′
𝑡 (𝑠) variable as:

𝛼𝑙′
1 (1) = 𝜋𝑏

1 and 𝛼𝑙′
1 (2) = 𝜋𝑙2

′
1

 𝛼𝑙′
1 (𝑠) = 0, ∀𝑠 > 2 (14)

where, 𝑏 is the blank label and 𝑙2
′ is the second character in 𝑙’

i.e. the beginning character in 𝑙. The second initialization is so

because more than one character in 𝑙 cannot be obtained in a

single time step.

According to our decoding rule defined earlier that, first

successively repeated similar characters are merged to one

single character and then blank labels are discarded to get the

desired label, prefix can only be increased when the last

character in the prefix and the incoming character are

different. The recursive equations can be written as:

𝛼𝑙′
𝑡 (𝑠) = [𝛼𝑙′

𝑡−1(𝑠) + 𝛼𝑙′
𝑡−1(𝑠 − 1)]. 𝜋𝑙𝑠

′
𝑡 𝑖𝑓 𝑙𝑠

′ = 𝑏 𝑜𝑟 𝑙𝑠−2
′ = 𝑙𝑠

′

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝛼𝑙′
𝑡 (𝑠) = [𝛼𝑙′

𝑡−1(𝑠) + 𝛼𝑙′
𝑡−1(𝑠 − 1) +

𝛼𝑙′
𝑡−1 (𝑠 − 2)]. 𝜋𝑙𝑠

′
𝑡 (15)

When 𝑙𝑠
′ is a blank, we can see the prefix 𝑙1:𝑠

′ at time 𝑡 if

we’d already seen this prefix at time 𝑡 − 1 or if we’d seen

prefix 𝑙1:𝑠−1
′ at time 𝑡 − 1. When 𝑙𝑠

′ is a non-blank character

and different from previous non-blank 𝑙𝑠−2
′ , according to our

decoding rule, we can avoid the blank in between and make

transition two steps forward directly from 𝛼𝑙′
𝑡−1(𝑠 − 2) to

𝛼𝑙′
𝑡 (𝑠).

Fig 4: Showing label transitions for Forward Backward

algorithm applied to label ′कमल ′ [1]

In figure 4, white circles and black circles represent blank

labels and non-blank labels respectively. For this case 𝑙’ =
 _क_म_ल_ . Arrows specify the allowed transitions at every

time step. The transition between black to black and white to

white on same horizontal line is for retaining same prefix on

coming from previous to current time step. One step

downward transition is for extending prefix in the current time

step. Downward transition by two steps can also be seen

between distinct non-blank labels which are for avoiding

blank between distinct non-blanks to make a two-step

transition.

The probability 𝑃(𝑙|𝑥) is the sum of total probabilities of 𝑙’
with and without final blank label at time T as given in

equation (16).

 𝑃(𝑙|𝑥) = 𝛼𝑙′
𝑇 (|𝑙|) + 𝛼𝑙′

𝑇 (|𝑙| − 1) (16)

http://www.ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

4

Similarly, we can define a backward variable 𝛽𝑙
𝑡(𝑠) as the

probability of occurrence of 𝑙𝑠:|𝑙| at time 𝑡 to calculate 𝑃(𝑙|𝑥)

4. DECODING

After the model is trained, the implementation steps are as

shown in Fig 5.

Fig 5: Implementation of a trained model

On implementing a trained model, audio features are

processed by RNN and Softmax layer successively. The

output from Softmax layer is the occurrence probabilities of

different characters at different time steps. The task of

decoding is to find a label with maximum occurrence

probability.

One straightforward method is Best Path Decoding, to pick

the most probable character at each time step. In this case, 𝑦 is

the label corresponding to most probable path in the output.

𝑦 = 𝐷(𝑎𝑟𝑔𝑚𝑎𝑥𝑎 ∏ 𝜋𝑎(𝑡)
𝑡𝑇

𝑡=1) (17)

Best Path decoding in equation (17) is time and space

efficient to compute, however it does not guarantee the most

probable labelling.

Second method is the Prefix Search Decoding algorithm. It is

carried out by expanding prefixes at every time step and

storing them with their probabilities. At the end, the prefix

with highest probability is the desired label. Given enough

time, Prefix Search Decoding always finds the most probable

labeling. However, it is computationally infeasible if the input

sequence length is large because the prefixes grow

exponentially with time.

4.1 Beam Search Decoding
For practical implementation of Prefix Search Decoding,

beam width is defined which keeps only specified number of

most probable prefixes at each time step. Also

threshold probability is set which discards the characters at

each time step from softmax layer with probability not

exceeding a threshold. Prefix Search Decoding with beam

width defined is also known as Beam Search Decoding.

Let us define beam width 𝑊 and threshold probability 𝑃𝑡.

𝑆(𝑐, 𝑡) be the softmax output for character 𝑐 at time step 𝑡 and

𝐿𝑚(𝑥) be the probability from language model for sequence

𝑥. 𝑃𝑏(𝑥, 𝑡), 𝑃𝑛𝑏(𝑥, 𝑡) are the probabilities of sequence 𝑥 at

time 𝑡 ending in blank and non-blank characters respectively.

Let, 𝑤𝑠 be white space (space character) and lastly define 𝑙𝑒 as

the last character in 𝑙.

Algorithm 1: Beam Search Decoding

Initialize 𝑳 ← {Ф}, 𝑷𝒃(Ф, 𝟎) ← 𝟏

for 𝒕 = 𝟏 𝒕𝒐 𝑻 do

𝑳′ ← 𝑾 𝒎𝒐𝒔𝒕 𝒑𝒓𝒐𝒃𝒂𝒃𝒍𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒊𝒏 𝑳

𝑳 ← {}

𝑪𝒕 ← {𝒄 ∶ 𝑺(𝒄, 𝒕) > 𝑷𝒕}

for 𝒍 𝝐 𝑳′ do

for 𝒄 ϵ 𝑪𝒕 do

if 𝒄 = Ф then

 𝑷𝒃(𝒍, 𝒕) ← 𝑺(𝒄, 𝒕) ∗ [𝑷𝒃(𝒍, 𝒕 − 𝟏) + 𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏)]
if 𝒄 = 𝒍𝒆 then

 𝑷𝒏𝒃(𝒍 + 𝒄, 𝒕)← 𝑺(𝒄, 𝒕) ∗ 𝑷𝒃(𝒍, 𝒕 − 𝟏)

 𝑷𝒏𝒃(𝒍, 𝒕) ← 𝑺(𝒄, 𝒕) ∗ 𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏)

if 𝒄 = 𝒘𝒔 then

 𝑷𝒏𝒃(𝒍 + 𝒄, 𝒕)←𝑳𝒎(𝒍 + 𝒄) ∗ 𝑺(𝒄, 𝒕) ∗ [
 𝑷𝒃(𝒍, 𝒕 − 𝟏)

+ 𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏)
]

else

 𝑷𝒏𝒃(𝒍 + 𝒄, 𝒕)←𝑺(𝒄, 𝒕) ∗ [𝑷𝒃(𝒍, 𝒕 − 𝟏) + 𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏)]
𝑳 ← {𝒙 ∶ 𝑷𝒏𝒃(𝒙, 𝒕) > 𝟎}Ս {𝒚 ∶ 𝑷𝒃(𝒚, 𝒕) > 𝟎 }

return 𝒂𝒓𝒈𝒎𝒂𝒙𝒍𝝐𝑳 [𝑷𝒃(𝒍, 𝑻) + 𝑷𝒏𝒃(𝒍, 𝑻)]

At the beginning L is initialized to null and expanded as

prefixes are grown. The basis for prefix expansion in the

current time step is the list of prefixes obtained in previous

time step. Each prefix obtained in previous time step is grown

with characters in current time step. At last, the sequence in L

with highest total probability is returned as the most probable

labeling for given input sequence.

4.2 Language Model
Transcription from RNN-CTC network may not always be

grammatically correct or may not contain a valid word or

phrase. It is the task of language model to check the validity

of a word or sentence. It can be defined as a conditional

probability distribution of occurrence of next word/character

in a sequence given the series of previous words/characters.

Language model is integrated in beam search decoding

algorithm (Algorithm 1). Every time a prefix is extended with

a space character, the probability of occurrence of last word in

that sequence is calculated.

N gram modelling is the concept of looking back to 𝑁

previous elements in the sequence. In N gram modelling,

probability of next element is calculated as in equation (18):

𝑃(𝑤𝑖|𝑤𝑖−(𝑁−1) … … 𝑤𝑖−1) (18)

Let us assume the case of simple one-gram model, we need to

check the probability of occurrence of a sequence:

𝐿 = < 𝑤1 𝑤2 𝑤3 … 𝑤𝑛 >

 < 𝑎𝑛𝑑 > 𝑎𝑟𝑒 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

Probability of occurrence of 𝐿 can be split into conditional

probabilities as in equation (19):

𝑃(𝐿) = 𝑃(𝑤1 | <) ∗ [∏ 𝑃(𝑤𝑝|𝑤𝑝−1)𝑛
𝑝=2] ∗ 𝑃(> |𝑤𝑛) (19)

The individual conditional probabilities occurring above are

based on frequency count of words in the large dataset. If

𝐶(𝑤1) is the total number of occurrences of the

word/character 𝑤1 and 𝐶(𝑤1 𝑤2) is the total occurrence of

sequence 𝑤1 𝑤2 , the conditional probability is given as:

𝑃(𝑤2 |𝑤1) =
𝐶(𝑤1 𝑤2)

𝐶(𝑤1)
 (20)

http://www.ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

5

5. ERROR MEASUREMENT
There should be a mathematical measure of how accurate our

model is in speech to text transcription tasks. Edit distance

(ED) is a measure of error in sequence transcription tasks. If,

< 𝑎1, 𝑎2, 𝑎3, … … 𝑎𝑛 > is the most probable sequence

obtained from the model and < 𝑏1, 𝑏2, 𝑏3, … … 𝑏𝑛 > is the

target sequence, then edit distance between two sequences is

the total number of operations (deletions, insertions and

substitutions) required to transform obtained sequence to

target sequence.

Character Error Rate (CER) is defined as the average of edit

distance over the total number of samples. For test dataset of

total 𝑁 characters over L number of samples, the CER is

defined as:

𝐶𝐸𝑅 =
1

𝑁
∑ 𝐸𝐷(𝐿

𝑖=0 𝑥𝑖) (21)

Where 𝐸𝐷(𝑥𝑖) is the edit distance between obtained sequence

for sample 𝑥𝑖 and its target sequence.

6. EXPERIMENT
Each sentence was encoded with respective index of

characters. The text was encoded as in table 1, forming integer

array for each sentence. The array is a target sequence to be

used in training.

Table 1: Text encoding example

िवर टनगर ५ िवक टल

पर िजत

[28, 44, 26, 43, 10, 19, 2, 26, 66,

60, 66, 28, 44, 0, 49, 10,27, 49, 66,

20, 26, 43, 7, 44, 15]

The scrapped text had 1320 words with 617 distinct words

and since the dataset was small, one-gram language modeling

was carried out.

The obtained text was recorded with three different male

speakers. The entire text was recorded twice by each speaker

which made it a total of two hours of continuous speaking.

Recording was carried out in audacity on which noise removal

was carried out. The voice was windowed into frames and 15

MFCC features [12] were extracted from each frame which

was the input to the network. The data was trained in the

model described in figure 1, coded in Python programming

language [13] using Tensorflow [14] platform. One advantage

of Tensorflow was once we compute the objective function, it

automatically computed gradients for backpropagation. Final

size of the model had two layers of LSTM cells and a dense

layer each having 300 units.

Table 2 shows CER for data predicted by model in different

cases. Test data was made from the same speaker (one who

was involved in training set preparation) and different

speakers. The error calculated in the two cases were different.

Table 2: CER for different cases

Without Language Modeling (Same

Speaker)

0.42

With Language Modeling (Same Speaker) 0.34

With language Modeling (Different

Speaker)

0.52

Figure 6 shows the character probabilities emitted by a trained

model. The dotted line in the graph represents probability of a

blank label which is maximum in most of the frames.

Probabilities for different characters are plotted in different

colors. The spikes occurring for short times represent sudden

increase in non-blank character probabilities at those frames

and this is where blank probability drops down. The

characters represented by those spikes are at the top of the

figure lying above the corresponding spike. ‘__’ represents

probability for space character giving spikes at the beginning,

end and in between words. It can be seen that labels 'द ','िव','क '

'िल' occurs very close together suggesting that the network

learned them as single sounds although they are multiple

characters. Smaller spikes occurring elsewhere are errors.

Some of the outputs obtained from the trained model is shown

in Table 3.

Fig 6: Showing character probabilities emitted by the softmax layer plotted against frame number for a target label ‘दुई विकेट

वलए’.

http://www.ijcaonline.org/

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 31, July 2019

6

Table 3: Outputs from model after training

Target Text Obtained Text

र िसद ख नल र द ा नल

द ई िवक ट िलए द इ िवक िलए

य व तथ ख लक द मन्त्र लयक य व थ ख लद मनत लय

सन्द पल बिलङम िदनिदन सन्द पल बिलम िदनसन

स ध र गदै गईरह क छ ा ब र गदै गईएक छ

7. DISCUSSION
Speech Recognition is one of the challenging tasks in

Artificial Intelligence. RNN in this case has to learn the

phonetic combinations of mixed sound patterns. Figure 6

clearly illustrates how CTC algorithm trains RNN to learn

these sound patterns. However, it requires huge amount of

data for such models to accurately transcribe speech to text.

The major limitation for this case is the unavailability of data.

Also, network identified the voice it was trained with giving

lower error rate and voice from different speaker was

transcribed with higher error rate. This is straightforward to

explain that the model was well adapted to the training pattern

and it could identify patterns from same speaker more

accurately.

8. CONCLUSION
This paper has demonstrated that Nepali Speech Recognition

can be carried out with RNN without having to explicitly

make phonetic alignments between speech and audio

sequences. We can conclude that CTC algorithm can be well-

used for Speech Recognition with Nepali language.

Furthermore, the set of 67 Nepali characters defined in the

paper is sufficient to transcribe Nepali speech to text.

In the future, the model can be trained with large context-

independent dataset which is expected to make recognition

task accurate enough for use in automated Nepali-language

systems.

9. ACKNOWLEDGEMENT

We would like to thank Department of Electronics and

Computer Engineering, IOE for helping us undertake this

research and allowing us to access the computing resources

we used for training the model.

10. REFERENCES
[1] A. Graves, S. Fernandez, F. Gomez and J. Schmidhuber.

2006. Connectionist Temporal Classification: Labelling

Unsegmented data with Recurrent Neural Networks. In

ICML '06 Proc. of the Int. Conf. on International

Conference on Machine Learning, Pittsburgh

Pennsylvania USA

[2] E Hinton, Geoffrey & Osindero, Simon & Teh, Yee-

Whye. 2006. A Fast Learning Algorithm for Deep Belief

Nets. Neural computation, 18, pp. 1527-54.

[3] Bourlard, Herve A. and Morgan, Nelson. Connectionist

Speech Recognition: A Hybrid Approach. Kluwer

Academic Publishers, Norwell, MA, USA, 1993.

[4] G. E. Dahl, D. Yu, L. Deng and A. Acero. 2012.

Context-Dependent Pre-Trained Deep Neural Networks

for Large Vocabulary Speech Recognition. In Proc. IEEE

Transactions on Audio, Speech and Language

Processing, 20, pp. 30-42.

[5] A. Graves and N. Jaitly. 2014. Towards End-to-End

Speech Recognition with Recurrent Neural Networks. In

ICML 14 Proc. of the Int. Conf. on International

Conference on Machine Learning, Beijing China

[6] A. Kalakheti, K. P. Bhattarari, S. Kuwar and S. Adhikari,

Automatic Speech Recognition for Nepali Language.

Tribhuvan University, Nepal

[7] B. Joshi, A. Gajurel, A. Pokhrel and M. K. Sharma.

2017. HMM Based Isolated Word Nepali Speech

Recognition. In Intern. Conf. on Machine Learning and

Cybernetics. Ningbo, China.

[8] S. Hochreiter and J. Schmidhuber. 1997. Long Short-

Term Memory. Neural Computation, 9(8), pp. 1735-1780

[9] Hochreiter, Sepp. (1998). The Vanishing Gradient

Problem During Learning Recurrent Neural Nets and

Problem Solutions. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems. 6. 107-116.

[10] M. Schuster and K. K. Paliwal. 1997. Bidirectional

Recurrent Neural Networks. IEEE Transactions on

Signal Processing, 45.

[11] A. Graves, S. Fernandez and J. Schmidhuber. 2005.

Bidirectional LSTM networks for improved phoneme

classification and recognition. In Proceedings of the 2005

International Conference on Artificial Neural Networks.

Warsaw, Poland.

[12] S. Magre, P. Janse, and R. Deshmukh. 2014. A Review

on Feature Extraction and Noise Reduction Technique.

International Journal of Advanced Research in Computer

Science and Software Engineering

[13] The Python Tutorial,

https://docs.python.org/3/tutorial/index.html

[14] Tensorflow, https://www.tensorflow.org

IJCATM : www.ijcaonline.org

http://www.ijcaonline.org/

