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ABSTRACT 
This paper presents a Neural Network based Nepali Speech 

Recognition model. RNN (Recurrent Neural Networks) is 

used for processing sequential audio data. CTC (Connectionist 

Temporal Classification) [1] technique is applied allowing 

RNN to train over audio data. CTC is a probabilistic approach 

of maximizing the occurrence probability of the desired labels 

from RNN output. After processing through RNN and CTC 

layers, Nepali text is obtained as output. This paper also 

defines a character set of 67 Nepali characters required for 

transcription of Nepali speech to text. 
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1. INTRODUCTION 
With the advancement in Machine Learning models, machines 

are being made capable of doing tasks that otherwise required 

human intelligence. Automatic Speech Recognition (ASR) is 

a challenging as well as interesting problem in the field of 

Artificial Intelligence today. ASR is a process of mapping an 

acoustic waveform into text in which the text should have a 

meaning equivalent to the spoken words. It can change the 

way humans interact with computers, which happens mostly 

through text today. A lot of existing systems can be automated 

with Interactive Voice Response systems with speech 

recognition technology.   

The goal of this paper is to present an end to end Nepali 

Speech Recognition model with the use of recurrent neural 

networks. A neural network is an artificial self-learning 

structure modeled to resemble human brain. RNN is a form of 

neural network that is capable of learning sequential data i.e. 

data represented as a time-sequence. Long sequence of audio 

data is divided into small frames and fed in one after another 

to RNN, which is capable of learning patterns in audio 

sequences. Training machine learning models such as RNN 

generally requires pre-labelled data (audio with its 

corresponding text). Since audio data are unsegmented 

(framewise labelling is not possible), CTC layer is applied 

over RNN for training which eliminates the need for 

framewise labelling. CTC layer takes in target text from data 

and maximizes the occurrence probability of the text from 

RNN output.  

 

 

 

2. RELATED WORK 
Speech Recognition has been practiced widely with variety of 

models. In early days, HMM (Hidden Markov Model) was 

used for speech recognition. HMM is a probabilistic model 

that is capable of learning patterns in time-sequence data. 

However, the performance of HMM was only good for 

limited vocabulary within a limited context. With the 

development of efficient training methods of Neural Networks 

[2][3], speech recognition was carried out with neural 

networks and the results were improved. Neural Network 

based models were able handle large vocabularies [4]. Speech 

recognition systems were also able to identify speech from a 

wide range of context. 

Towards End-to-End Speech Recognition with Recurrent 

Neural Networks [5] presents how speech recognition tasks 

can be carried out using Recurrent Neural Networks. It was 

shown that RNNs were much efficient in handling speech data 

compared to previous existing models. The Neural network 

had LSTM cell that could manipulate long range sequences. 

The experiment was carried out on a wall street journal for 

English corpus. For English corpus, a total of 43 characters 

built up the language. CTC layer was used above RNN for 

handling unsegmented data. 

Automatic Speech Recognition for Nepali Language [6] 

project is the outcome of implementation of HMM, Java 

speech grammar format in the acoustic model of Sphinx-4. 

Sphinx-4 is a state-of-the-art speech recognition system 

written entirely in the Java programming language. Training 

of the model composed of Gaussian Acoustic Model for 

filtering phones of a word. Acoustic model consists of 

numeric transformation of each phone in matrix form. So, 

when speaker speaks a word, it first portioned in phones and 

numeric transformation of phones is compared with acoustic 

model. 

HMM Based Isolated Word Nepali Speech Recognition [7] 

project was carried using HMM. The project was built to 

identify 10 distinct Nepali words. 

3. ASR MODEL 
The proposed model is illustrated in Figure 1. First layer of 

the network takes audio features as input. Audio features are 

then processed by layers of Bidirectional RNN. LSTM cells 

are used for RNN for their capability of learning long-time 

sequence patterns. Output form Bidirectional RNN is 

processed by dense layers. The output vector from dense layer 

is the same size as the total number of characters in the 

defined Nepali character set plus an extra blank character 

(discussed in Section 3.4 and 3.5). The output is forwarded to 

Softmax layer which assigns occurrence probability to each 

character. This probability vector is forwarded to CTC layer 

for CTC loss calculation and the network is backpropagated 

for minimization of this loss. 

http://www.ijcaonline.org/
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Fig 1: Network Architecture for Nepali Speech 

Recognition 

3.1 Long-Short Term Memory [8] 
Standard RNN cells are incapable of learning long time-

dependent patterns i.e. it suffers from Vanishing Gradient 

Problem [9]. Long-Short Term Memory cells are widely used 

in RNN as they overcome this issue. 

 

Fig 2: An LSTM Cell 

The output of an LSTM cell is given by the following set of 

equations where 𝐵 term denote biases, 𝑊 term denote weight 

matrices (e.g. [𝑊ℎ𝑖] is the hidden-input weight matrix), 𝑓 is 

the forget gate, 𝑖 is the input gate, 𝑜 is the output gate, 𝑥 is the 

input vector, σ and 𝑡𝑎𝑛ℎ are activation functions. ‘*’ denotes 

element-wise multiplication. 

[𝑓𝑡] = σ([𝑥𝑡][𝑊𝑖𝑓]  + [ℎ𝑡−1][𝑊ℎ𝑓] + [𝐵𝑓])                    (1) 

[𝑖𝑡] = σ([𝑥𝑡][𝑊𝑖𝑖]  + [ℎ𝑡−1][𝑊ℎ𝑖] + [𝐵𝑖])                      (2) 

[𝑜𝑡] = σ([𝑥𝑡][𝑊𝑖𝑜]  + [ℎ𝑡−1][𝑊ℎ𝑜] + [𝐵𝑜])                    (3) 

[C҄𝑡] = 𝑡𝑎𝑛ℎ([𝑥𝑡][𝑊𝑖�҄�҄]  + [ℎ𝑡−1][𝑊ℎc҄])                          (4) 

[C𝑡]  =  [𝑓𝑡] ∗ [C𝑡−1] + [𝑖𝑡] ∗ [C҄𝑡]                                    (5) 

[h𝑡]  =  [𝑜𝑡] ∗ tanh ([C𝑡])                                                (6) 

[h𝑡]  is emitted as an output from LSTM layer. 

3.2 Bidirectional RNN [10] 
In regular recurrent neural networks, the output obtained at a 

current time step is the function of its current and past history 

of inputs. The input information to the network can be 

increased if the network also considers the inputs occurring in 

future time steps. The concept of BRNN is to have another 

recurrent layer, in addition to the forward running layer, that 

runs backward in time. The backward running layer first feeds 

in the input from last time step and preceding inputs 

successively. The two layers run independently and do not 

have any connection between them. Bidirectional RNN are 

found to outperform unidirectional RNNs in speech 

recognition tasks [11]. 

 

Fig 3: Structure of a Bidirectional RNN 

3.3 Connectionist Temporal Classification 
Generally, time-sequence data are trained as frame-wise 

classifiers in which the training dataset has target label for 

every frame. This is not applicable in speech recognition 

problem since the number of frames and total number of label 

characters are not equal. For example, an audio clip of 5 

seconds has 500 numbers of frames, but the text output might 

only be of 30 characters. Also, same text can be read fast or 

slow, creating varying number of frames for same text. 

Creating framewise alignment of labels is a difficult task. 

CTC provides a way to resolve this problem. CTC loss is an 

error function that allows RNN to be trained over time-

sequence data that doesn’t have frame-wise alignment 

between input and target sequences. 

3.4 Training with CTC 
There are 67 characters in Nepali language that can represent 

sound in the form of text. 

L = {'क', 'ख', 'ग', 'घ', 'ङ', 'च', 'छ', 'ज', 'झ', 'ञ', 'ट', 'ठ', 'ड', 'ढ', 

'ण', 'त', 'थ', 'द', 'ध', 'न','प', 'फ', 'ब', 'भ', 'म', 'य','र', 'ल', 'व','श', 'ष', 

'स', 'ह','अ', 'आ', 'इ', 'ई', 'उ','ऊ', 'ए', 'ऐ', 'ओ', 'औ',  'ा ', 'िा', 'ा ', 

'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', 'ा ', '०', '१', '२', '३', '४', '५', '६', '७', 

'८', '९','।', ' '} 

The character set is indexed from 0 to 66 starting from 'क' as 

0 and increasing accordingly. 

The output from the dense layer is first fed to a Softmax layer 

where a number associated with each output character is 

assigned a probability value for the occurrence of the 

character. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(y𝑖)  =  
exp (y𝑖)

∑ exp (y𝑖)𝑖
                                                    (7) 

The activations of first |𝐿| units are interpreted as the 

probabilities of observing corresponding labels at particular 

times. The activation of one extra label is the probability of 

observing a blank or no label. Together these outputs define 

the probabilities of all possible ways of aligning all possible 

label sequences with the input sequence. A target sequence 

can be obtained by condensing different alignments of 

characters at different time steps. These different alignments 

are called paths. 

http://www.ijcaonline.org/
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Let us assume for a sequence 𝑥 of 𝑇 time frames, we are to 

find probability of a label sequence 𝑙: 

  𝑙 = ′कमल ′ 

Then, we can have many sets of paths from output that can 

converge to this label. Some of them are (‘-’ is the blank 

label): 

𝑝𝑎𝑡ℎ𝑠 = {− −ककक − − − − − मम − − − −लल− − , 

− − −कक − − − म − −ललल− − − − − − , 

− − − − −कक − − − − − −मल− − − − − −, 

− − − − −क − − − − − म − − −लल − − −, 

  . . . . . 𝑒𝑡𝑐}  

All of the above paths correspond to target label l when 

decoded and defined such that 

                                𝐷(𝑝)  =  𝑙 ,     𝑓𝑜𝑟 𝑝 𝑖𝑛 𝑝𝑎𝑡ℎ𝑠             (8) 

The decoding rule is that, first successively repeated similar 

characters are merged to one single character and then blank 

labels are discarded to get the desired label. Let, 𝑛𝑡ℎcharacter 

in path 𝑝 be defined as 𝑝(𝑛) and 𝜋𝑘
𝑡  be the probability of 

occurrence of character k at time t. Then, for each path p in 

paths, the probability of its occurrence can be calculated from 

Softmax output as: 

                                      𝑃(𝑝|𝑥) =  ∏ 𝜋𝑝(𝑡)
𝑡𝑇

𝑡=1                        (9) 

given that the RNN outputs at different times are independent 

of each other. Hence, the total probability of occurrence of the 

label 𝑙 is the total sum of probabilities of occurrence of each 

path p in paths. i.e. 

                   𝑃(𝑙|𝑥) =  ∑ 𝑃(𝑝|𝑥)𝑝 ,    𝑓𝑜𝑟 𝑝 𝑖𝑛 𝑝𝑎𝑡ℎ𝑠         (10) 

                          𝑃(𝑙|𝑥) =  ∑ ∏ 𝜋𝑝(𝑡)
𝑡𝑇

𝑡=1  𝑝

𝐷(𝑝)=𝑙
                   (11) 

The CTC loss function is now defined as: 

𝐶𝑇𝐶(𝑥)  =  −𝑙𝑜𝑔(𝑃(𝑙|𝑥))                                              (12) 

This is our objective function which is to be minimized while 

training. Minimizing this objective function simply means 

maximizing the probability of occurrence of each path in 

paths which ultimately maximizes the probability of 

occurrence of the label 𝑙. 

3.5 The CTC Forward-Backward 

Algorithm 
From equation (12), it seems difficult to recognize every path 

and costly to calculate probability for each one. Forward-

Backward Algorithm is a recursive approach for calculation of  

𝑃(𝑙|𝑥). 

Let, 𝑙1:𝑠 denote the first 𝑠 characters of a label 𝑙 and forward 

variable 𝛼𝑙
𝑡(𝑠) be the probability of occurrence of 𝑙1:𝑠 at time 

t. 

𝛼𝑙
𝑡(𝑠) =  ∑ ∏ 𝜋𝑝(𝑡′)

𝑡′𝑡
𝑡′=1  𝑝

𝐷(𝑝)=𝑙1:𝑠

                                      (13) 

Minimizing 𝐶𝑇𝐶(𝑥) by maximum likelihood, we can assume 

that most of the time the output from Softmax layer will have 

a high probability of observing blank character (-), which 

doesn’t change the output at all. From a well-trained model, 

we expect blank character in between successive characters in 

the character set. So, it is better we train our model with 

modified label 𝑙’ obtained by adding blank (-) at the beginning 

and end and in between every character in 𝑙.  

Now, network firing a blank will correspond to this blank 

between characters. By training with 𝑙’, all labels start with a 

blank. We can initialize the 𝛼𝑙′
𝑡 (𝑠) variable as: 

𝛼𝑙′
1 (1) = 𝜋𝑏

1 and 𝛼𝑙′
1 (2) =  𝜋𝑙2

′
1   

                                         𝛼𝑙′
1 (𝑠) = 0, ∀𝑠 > 2                       (14) 

where, 𝑏 is the blank label and 𝑙2
′  is the second character in 𝑙’ 

i.e. the beginning character in 𝑙. The second initialization is so 

because more than one character in 𝑙 cannot be obtained in a 

single time step. 

According to our decoding rule defined earlier that, first 

successively repeated similar characters are merged to one 

single character and then blank labels are discarded to get the 

desired label, prefix can only be increased when the last 

character in the prefix and the incoming character are 

different. The recursive equations can be written as: 

𝛼𝑙′
𝑡 (𝑠) = [𝛼𝑙′

𝑡−1(𝑠) + 𝛼𝑙′
𝑡−1(𝑠 − 1)]. 𝜋𝑙𝑠

′
𝑡   𝑖𝑓 𝑙𝑠

′ = 𝑏 𝑜𝑟 𝑙𝑠−2
′ = 𝑙𝑠

′  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   𝛼𝑙′
𝑡 (𝑠) =  [𝛼𝑙′

𝑡−1(𝑠) + 𝛼𝑙′
𝑡−1(𝑠 − 1) +

𝛼𝑙′
𝑡−1 (𝑠 −                                                               2)]. 𝜋𝑙𝑠

′
𝑡           (15)  

When  𝑙𝑠
′  is a blank, we can see the prefix  𝑙1:𝑠

′  at time 𝑡 if 

we’d already seen this prefix at time 𝑡 − 1 or if we’d seen 

prefix  𝑙1:𝑠−1
′  at time 𝑡 − 1. When  𝑙𝑠

′  is a non-blank character 

and different from previous non-blank 𝑙𝑠−2
′ , according to our 

decoding rule, we can avoid the blank in between and make 

transition two steps forward directly from 𝛼𝑙′
𝑡−1(𝑠 − 2) to 

𝛼𝑙′
𝑡 (𝑠). 

 

Fig 4: Showing label transitions for Forward Backward 

algorithm applied to label ′कमल ′ [1] 

In figure 4, white circles and black circles represent blank 

labels and non-blank labels respectively. For this case 𝑙’ =
 _क_म_ल_ . Arrows specify the allowed transitions at every 

time step. The transition between black to black and white to 

white on same horizontal line is for retaining same prefix on 

coming from previous to current time step. One step 

downward transition is for extending prefix in the current time 

step. Downward transition by two steps can also be seen 

between distinct non-blank labels which are for avoiding 

blank between distinct non-blanks to make a two-step 

transition. 

The probability 𝑃(𝑙|𝑥) is the sum of total probabilities of 𝑙’ 
with and without final blank label at time T as given in 

equation (16). 

 𝑃(𝑙|𝑥) =  𝛼𝑙′
𝑇 (|𝑙|) + 𝛼𝑙′

𝑇 (|𝑙| − 1)                                     (16) 

http://www.ijcaonline.org/
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Similarly, we can define a backward variable 𝛽𝑙
𝑡(𝑠) as the 

probability of occurrence of 𝑙𝑠:|𝑙| at time 𝑡 to calculate 𝑃(𝑙|𝑥) 

4. DECODING 

After the model is trained, the implementation steps are as 

shown in Fig 5. 

 

Fig 5: Implementation of a trained model 

On implementing a trained model, audio features are 

processed by RNN and Softmax layer successively. The 

output from Softmax layer is the occurrence probabilities of 

different characters at different time steps. The task of 

decoding is to find a label with maximum occurrence 

probability. 

One straightforward method is Best Path Decoding, to pick 

the most probable character at each time step. In this case, 𝑦 is 

the label corresponding to most probable path in the output. 

𝑦 = 𝐷(𝑎𝑟𝑔𝑚𝑎𝑥𝑎  ∏ 𝜋𝑎(𝑡)
𝑡𝑇

𝑡=1 )                                         (17) 

Best Path decoding in equation (17) is time and space 

efficient to compute, however it does not guarantee the most 

probable labelling. 

Second method is the Prefix Search Decoding algorithm. It is 

carried out by expanding prefixes at every time step and 

storing them with their probabilities. At the end, the prefix 

with highest probability is the desired label. Given enough 

time, Prefix Search Decoding always finds the most probable 

labeling. However, it is computationally infeasible if the input 

sequence length is large because the prefixes grow 

exponentially with time. 

4.1 Beam Search Decoding 
For practical implementation of Prefix Search Decoding, 

beam width is defined which keeps only specified number of 

most probable prefixes at each time step. Also 

threshold probability is set which discards the characters at 

each time step from softmax layer with probability not 

exceeding a threshold. Prefix Search Decoding with beam 

width defined is also known as Beam Search Decoding. 

Let us define beam width 𝑊 and threshold probability 𝑃𝑡. 

𝑆(𝑐, 𝑡) be the softmax output for character 𝑐 at time step 𝑡 and 

𝐿𝑚(𝑥) be the probability from language model for sequence 

𝑥.  𝑃𝑏(𝑥, 𝑡),  𝑃𝑛𝑏(𝑥, 𝑡)  are the probabilities of sequence 𝑥 at 

time 𝑡 ending in blank and non-blank characters respectively. 

Let, 𝑤𝑠 be white space (space character) and lastly define 𝑙𝑒 as 

the last character in 𝑙. 

 

 

 

 

 

 

Algorithm 1: Beam Search Decoding 

Initialize 𝑳 ← {Ф},  𝑷𝒃(Ф, 𝟎) ← 𝟏 

for 𝒕 =  𝟏 𝒕𝒐 𝑻 do 

𝑳′  ←  𝑾 𝒎𝒐𝒔𝒕 𝒑𝒓𝒐𝒃𝒂𝒃𝒍𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒊𝒏 𝑳 

𝑳 ← {} 

𝑪𝒕 ← {𝒄 ∶  𝑺(𝒄, 𝒕)  >  𝑷𝒕} 

for 𝒍 𝝐 𝑳′ do 

for  𝒄 ϵ 𝑪𝒕 do 

if 𝒄 = Ф then 

 𝑷𝒃(𝒍, 𝒕) ← 𝑺(𝒄, 𝒕) ∗ [ 𝑷𝒃(𝒍, 𝒕 − 𝟏) +  𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏)] 
if 𝒄 = 𝒍𝒆 then 

 𝑷𝒏𝒃(𝒍 + 𝒄, 𝒕)← 𝑺(𝒄, 𝒕) ∗ 𝑷𝒃(𝒍, 𝒕 − 𝟏) 

 𝑷𝒏𝒃(𝒍, 𝒕)  ← 𝑺(𝒄, 𝒕) ∗ 𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏) 

if 𝒄 = 𝒘𝒔 then 

 𝑷𝒏𝒃(𝒍 + 𝒄, 𝒕)←𝑳𝒎(𝒍 + 𝒄) ∗  𝑺(𝒄, 𝒕) ∗ [
 𝑷𝒃(𝒍, 𝒕 − 𝟏)

+ 𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏)
] 

else 

 𝑷𝒏𝒃(𝒍 + 𝒄, 𝒕)←𝑺(𝒄, 𝒕) ∗ [ 𝑷𝒃(𝒍, 𝒕 − 𝟏) +  𝑷𝒏𝒃(𝒍, 𝒕 − 𝟏)] 
𝑳 ← {𝒙 ∶  𝑷𝒏𝒃(𝒙, 𝒕) > 𝟎}Ս {𝒚 ∶  𝑷𝒃(𝒚, 𝒕) > 𝟎 } 

return 𝒂𝒓𝒈𝒎𝒂𝒙𝒍𝝐𝑳 [𝑷𝒃(𝒍, 𝑻) +  𝑷𝒏𝒃(𝒍, 𝑻)] 
 

 

At the beginning L is initialized to null and expanded as 

prefixes are grown. The basis for prefix expansion in the 

current time step is the list of prefixes obtained in previous 

time step. Each prefix obtained in previous time step is grown 

with characters in current time step. At last, the sequence in L 

with highest total probability is returned as the most probable 

labeling for given input sequence. 

4.2 Language Model 
Transcription from RNN-CTC network may not always be 

grammatically correct or may not contain a valid word or 

phrase. It is the task of language model to check the validity 

of a word or sentence. It can be defined as a conditional 

probability distribution of occurrence of next word/character 

in a sequence given the series of previous words/characters. 

Language model is integrated in beam search decoding 

algorithm (Algorithm 1). Every time a prefix is extended with 

a space character, the probability of occurrence of last word in 

that sequence is calculated. 

N gram modelling is the concept of looking back to 𝑁 

previous elements in the sequence. In N gram modelling, 

probability of next element is calculated as in equation (18): 

𝑃(𝑤𝑖|𝑤𝑖−(𝑁−1) … … 𝑤𝑖−1)                                                (18) 

Let us assume the case of simple one-gram model, we need to 

check the probability of occurrence of a sequence: 

𝐿 = < 𝑤1 𝑤2 𝑤3 … 𝑤𝑛 > 

  < 𝑎𝑛𝑑 >  𝑎𝑟𝑒 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 

Probability of occurrence of  𝐿 can be split into conditional 

probabilities as in equation (19): 

𝑃(𝐿) = 𝑃(𝑤1 | <) ∗ [∏ 𝑃(𝑤𝑝|𝑤𝑝−1)𝑛
𝑝=2 ] ∗  𝑃(> |𝑤𝑛)    (19) 

The individual conditional probabilities occurring above are 

based on frequency count of words in the large dataset. If 

𝐶(𝑤1) is the total number of occurrences of the 

word/character 𝑤1 and 𝐶(𝑤1 𝑤2) is the total occurrence of 

sequence  𝑤1 𝑤2 , the conditional probability is given as: 

𝑃(𝑤2 |𝑤1) =  
𝐶(𝑤1 𝑤2) 

𝐶(𝑤1)
                                                 (20) 
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5. ERROR MEASUREMENT 
There should be a mathematical measure of how accurate our 

model is in speech to text transcription tasks. Edit distance 

(ED) is a measure of error in sequence transcription tasks. If, 

< 𝑎1, 𝑎2, 𝑎3, … … 𝑎𝑛 > is the most probable sequence 

obtained from the model and < 𝑏1, 𝑏2, 𝑏3, … … 𝑏𝑛 > is the 

target sequence, then edit distance between two sequences is 

the total number of operations (deletions, insertions and 

substitutions) required to transform obtained sequence to 

target sequence. 

Character Error Rate (CER) is defined as the average of edit 

distance over the total number of samples. For test dataset of 

total 𝑁 characters over L number of samples, the CER is 

defined as: 

𝐶𝐸𝑅 =
1

𝑁
∑ 𝐸𝐷(𝐿

𝑖=0 𝑥𝑖)                                                       (21) 

Where 𝐸𝐷(𝑥𝑖) is the edit distance between obtained sequence 

for sample 𝑥𝑖 and its target sequence. 

6. EXPERIMENT 
Each sentence was encoded with respective index of 

characters. The text was encoded as in table 1, forming integer 

array for each sentence. The array is a target sequence to be 

used in training. 

Table 1: Text encoding example 

िवर टनगर ५ िवक टल  

पर िजत 

[28, 44, 26, 43, 10, 19, 2, 26, 66, 

60, 66, 28, 44, 0, 49, 10,27, 49, 66, 

20, 26, 43, 7, 44, 15] 

 

The scrapped text had 1320 words with 617 distinct words 

and since the dataset was small, one-gram language modeling 

was carried out. 

The obtained text was recorded with three different male 

speakers. The entire text was recorded twice by each speaker 

which made it a total of two hours of continuous speaking. 

Recording was carried out in audacity on which noise removal 

was carried out. The voice was windowed into frames and 15 

MFCC features [12] were extracted from each frame which 

was the input to the network. The data was trained in the 

model described in figure 1, coded in Python programming 

language [13] using Tensorflow [14] platform. One advantage 

of Tensorflow was once we compute the objective function, it 

automatically computed gradients for backpropagation. Final 

size of the model had two layers of LSTM cells and a dense 

layer each having 300 units. 

Table 2 shows CER for data predicted by model in different 

cases. Test data was made from the same speaker (one who 

was involved in training set preparation) and different 

speakers. The error calculated in the two cases were different. 

Table 2: CER for different cases 

Without Language Modeling (Same 

Speaker) 

0.42 

With Language Modeling (Same Speaker) 0.34 

With language Modeling (Different 

Speaker) 

0.52 

 

Figure 6 shows the character probabilities emitted by a trained 

model. The dotted line in the graph represents probability of a 

blank label which is maximum in most of the frames. 

Probabilities for different characters are plotted in different 

colors. The spikes occurring for short times represent sudden 

increase in non-blank character probabilities at those frames 

and this is where blank probability drops down. The 

characters represented by those spikes are at the top of the 

figure lying above the corresponding spike. ‘__’ represents 

probability for space character giving spikes at the beginning, 

end and in between words. It can be seen that labels 'द ','िव','क ' 

'िल' occurs very close together suggesting that the network 

learned them as single sounds although they are multiple 

characters. Smaller spikes occurring elsewhere are errors. 

Some of the outputs obtained from the trained model is shown 

in Table 3. 

 

Fig 6: Showing character probabilities emitted by the softmax layer plotted against frame number for a target label ‘दुई विकेट 

वलए’. 
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Table 3: Outputs from model after training 

Target Text Obtained Text 

र िसद ख नल   र द ा नल  

द ई िवक ट िलए द इ िवक  िलए 

य व  तथ  ख लक द मन्त्र लयक  य व थ  ख लद मनत लय 

सन्द पल  बिलङम  िदनिदन  सन्द पल  बिलम  िदनसन  

स ध र गदै गईरह क  छ ा ब र गदै गईएक  छ 

 

7. DISCUSSION 
Speech Recognition is one of the challenging tasks in 

Artificial Intelligence. RNN in this case has to learn the 

phonetic combinations of mixed sound patterns. Figure 6 

clearly illustrates how CTC algorithm trains RNN to learn 

these sound patterns. However, it requires huge amount of 

data for such models to accurately transcribe speech to text. 

The major limitation for this case is the unavailability of data. 

Also, network identified the voice it was trained with giving 

lower error rate and voice from different speaker was 

transcribed with higher error rate. This is straightforward to 

explain that the model was well adapted to the training pattern 

and it could identify patterns from same speaker more 

accurately. 

8. CONCLUSION 
This paper has demonstrated that Nepali Speech Recognition 

can be carried out with RNN without having to explicitly 

make phonetic alignments between speech and audio 

sequences. We can conclude that CTC algorithm can be well-

used for Speech Recognition with Nepali language. 

Furthermore, the set of 67 Nepali characters defined in the 

paper is sufficient to transcribe Nepali speech to text. 

In the future, the model can be trained with large context-

independent dataset which is expected to make recognition 

task accurate enough for use in automated Nepali-language 

systems. 

9. ACKNOWLEDGEMENT 

We would like to thank Department of Electronics and 

Computer Engineering, IOE for helping us undertake this 

research and allowing us to access the computing resources 

we used for training the model. 

10. REFERENCES 
[1] A. Graves, S. Fernandez, F. Gomez and J. Schmidhuber. 

2006. Connectionist Temporal Classification: Labelling 

Unsegmented data with Recurrent Neural Networks. In 

ICML '06 Proc. of the Int. Conf. on International 

Conference on Machine Learning, Pittsburgh 

Pennsylvania USA 

[2] E Hinton, Geoffrey & Osindero, Simon & Teh, Yee-

Whye. 2006. A Fast Learning Algorithm for Deep Belief 

Nets. Neural computation, 18, pp. 1527-54. 

[3] Bourlard, Herve A. and Morgan, Nelson. Connectionist 

Speech Recognition: A Hybrid Approach. Kluwer 

Academic Publishers, Norwell, MA, USA, 1993.  

[4] G. E. Dahl, D. Yu, L. Deng and A. Acero. 2012. 

Context-Dependent Pre-Trained Deep Neural Networks 

for Large Vocabulary Speech Recognition. In Proc. IEEE 

Transactions on Audio, Speech and Language 

Processing, 20, pp. 30-42. 

[5] A. Graves and N. Jaitly. 2014. Towards End-to-End 

Speech Recognition with Recurrent Neural Networks. In 

ICML 14 Proc. of the Int. Conf. on International 

Conference on Machine Learning, Beijing China  

[6] A. Kalakheti, K. P. Bhattarari, S. Kuwar and S. Adhikari, 

Automatic Speech Recognition for Nepali Language. 

Tribhuvan University, Nepal 

[7] B. Joshi, A. Gajurel, A. Pokhrel and M. K. Sharma. 

2017. HMM Based Isolated Word Nepali Speech 

Recognition. In Intern. Conf. on Machine Learning and 

Cybernetics. Ningbo, China. 

[8] S. Hochreiter and J. Schmidhuber. 1997. Long Short-

Term Memory. Neural Computation, 9(8), pp. 1735-1780 

[9] Hochreiter, Sepp. (1998). The Vanishing Gradient 

Problem During Learning Recurrent Neural Nets and 

Problem Solutions. International Journal of Uncertainty, 

Fuzziness and Knowledge-Based Systems. 6. 107-116. 

[10] M. Schuster and K. K. Paliwal. 1997. Bidirectional 

Recurrent Neural Networks. IEEE Transactions on 

Signal Processing, 45. 

[11] A. Graves, S. Fernandez and J. Schmidhuber. 2005. 

Bidirectional LSTM networks for improved phoneme 

classification and recognition. In Proceedings of the 2005 

International Conference on Artificial Neural Networks. 

Warsaw, Poland. 

[12] S. Magre, P. Janse, and R. Deshmukh. 2014. A Review 

on Feature Extraction and Noise Reduction Technique. 

International Journal of Advanced Research in Computer 

Science and Software Engineering 

[13] The Python Tutorial, 

https://docs.python.org/3/tutorial/index.html 

[14] Tensorflow, https://www.tensorflow.org

 

IJCATM : www.ijcaonline.org 

http://www.ijcaonline.org/

