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ABSTRACT 

The key objective of sparse and redundant representations is 

all about the introduction of a highly elegant data model with 

well-defined mathematical foundations. The structure of this 

model has been emerged from the conventional transforms 

represented in redundant unitary form. This draws out a new 

flavor of treatment to data. The appeal of this model is 

attributed to compact representation it facilitates. A lot of 

freedom persists in model adaptation to fit the data depending 

on the application.  

Many models are available aiming to serve the data of 

interest. Models can be given as mathematical descriptions or 

the conditions that the underlying signal of interest are 

believed to obey. Models that are available in image 

processing are Discrete Cosine Transform (DCT), Principal 

Component Analysis (PCA), wiener filtering, anisotropic 

diffusion, etc. Posing a new model requires a delicate 

attention to attain the simplest possible and reliable model 

while justifying the actual content of the data. To this 

Sparseland model emerges out as a new universal data model 

serving many applications in image processing. 

A class of applications in image processing demand the 

recovery of clean image from the naturally available perturbed 

images, which are treated as inverse problems. Some 

examples of such problems are image deblurring, image 

inpainting, etc. This paper discusses sparse approach to an 

inverse problem with image deblurring as a case study. The 

comparison of various shrinkage algorithms supporting sparse 

approach, used to serve this application is discussed along 

with the key constraints involved in these algorithms. 
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1. INTRODUCTION 
As linear system of equations are often encountered in many 

engineering problems, a vast literature exists on the subject of 

linear algebra for solving these equations [5], [16], [15] and 

the knowledge of which can be practically deployed in real 

time applications. However, in practice, a system of linear 

equations with matching unknowns are very rare and often 

ends up being sparse. The sparse solution of the equations 

also find numerous applications, especially in image 

processing [25], [9], [4], [17]. The field of sparse 

representation elicits its structure from the conventional 

transforms which ensures simplicity of processing, efficiency 

of representation, speed etc. The main idea of the Sparseland 

model is all about dimensionality reduction aiming to provide 

an alternative and more concise description of the incoming 

data in an attempt to claim that the data worked upon is 

simpler than it may appear. Another dimension to this model 

is redundancy, i.e., using a representation longer than the data. 

In this context, from image processing perspective, the sparse 

model is based on the assumption that a given image has a 

sparse representation w.r.t. a specific redundant dictionary A 

which is described subsequently [10]. 

2. SPARSE APPROACH TO INVERSE 

PROBLEMS IN IMAGE PROCESSING 
There exists a class of problems in image processing that 

demand the recovery of clean image from a corrupted version 

of it. In most applications, the problems are underdetermined. 

Consider an undetermined system Ax=b which has more 

unknowns than equations where A is an m × n (m<n) matrix 

called dictionary, b is the image and x is it’s sparse 

representation. Under the assumption that A is full rank, this 

system has infinitely many solutions and hence is impractical 

to model. This gives rise to the process of regularization in 

which the basic idea is to assign a penalty P(x) to every 

possible solution and select one that gives the lower value. 

While minimizing w.r.t. x, search is made for the sparsest 

solution among those that satisfy the equation Ax=b, i.e., 

 

Wiener filtering is an approach derived based on Minimum 

Mean Squared Error (MMSE) criterion. This approach for 

image restoration needs power spectrum of the undegraded 

image which is generally not available. Alternately solution is 

sought using wiener filter by approximating the ratio of power 

spectrum of degraded to undegraded image [13]. This 

approach is not suitable. On the contrary, sparse approach to 

image recovery overcomes this limitation by a combination of 

l1 (|| ∙ ||1) and l2 ((|| ∙ ||2) - norm constraints against l2-norm 

constraint used in wiener filtering. This results in a convex 

optimization problem and hence yields a global minimum 

solution. Thus, this optimization problem, with reference to 

equation (1), can be formulated as 

 

where ρ(x) is a sparsity promoting function and changing the 

constraint Ax=b in equation (1) to penalty (equation (2)) will 

introduce a parameter λ, the choice of the value of which is 

always controlled by the application. 
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Table 1 : Description of various inverse problems

Various techniques have been proposed to tackle such 

problems, forming a rich and exciting field of research that 

stands at the intersection of signal and image processing, 

estimation theory, optimization, and applied mathematics. 

With all this well equipped and guaranteed literature, let us 

now see how some of the image processing problems, 

tabulated in table (1), which are modeled such that they seek 

an approximate solution to the proposed model justifying the 

sparsity criterion. 

 In table (1), the squared l2-norm of the difference between the 

original image and it’s estimate HAx is the loss or error, the 

Lagrange multiplier λ is a regularization parameter which 

controls the amount of penalty, using the sparsity promoting 

function ρ(x), that can be added to the loss to sparsify the 

solution. Here, x is the sparse representation of the image, H 

is the blur kernel. This will be an identity operator for image 

denoising and a mask M containing the missing pixels in case 

of image inpainting. All these applications are described 

considering the noise v because of the perturbations in the 

naturally available images. More details on these parameters 

can be found in section 3 

Section 3 gives a description of the parameters involved, 

section 4 addresses the iterative shrinkage algorithms and 

their acceleration methods, section 5 discusses the constraints 

on the parameters for practical point of view and section 6 

summarizes the observations and conclusions drawn. 

3. PARAMETERS FOR UNIQUE 

SOLUTIONS IN SPARSE FRAMEWORK 
With all the problem formulations, there is a lot of flexibility 

in choosing each of the parameters and their constraints. 

These decisions are critical to the success or failure of the 

developed arena. This section gives a brief description of the 

choice of parameters and their constraints as follows: 

3.1 Redundant Dictionary Matrix, A 
In the concept of Sparseland model the dictionary A is 

assumed to be a low rank, unitary and redundant m × n (m < 

n) matrix [23], [7], [22]. The optimal approximation error in 

sparse approximation deteriorates as the number of atoms in 

the dictionary increases. Thus, the amount of redundancy of 

the dictionary attributes to the stronger uniqueness. Some 

examples of the unitary transforms that can be used to create 

the dictionaries are Hadamard bases, DCT, wavelets such as 

Haar and its descendants, viz: curvelets [19], [18], contourlets 

[11], [8], [12] etc. 

It is built with transform co-efficients in order to better 

understand and explore the query data. An ideal transform 

would lead to set of independent co-efficients while 

concentrating most of the energy in as few co-efficients as 

possible. Due to the multitude of choices available, having the 

effective and right choice has always been controlled by the 

application, one is working with. 

A classical method for assessing the quality of a specific 

transform A, as the sparsifying operation, is based on the m-

term approximation. This approximation error is expected to 

decay as m grows. The speed of this decay defines the 

goodness of the transform for handling the query signals. It 

can be observed that this process is based on thresholding 

algorithm as they pursuit in order to evaluate the 

representation. Clearly this is not the best way to estimate the 

signal representation. However, it suits best to analyze 

theoretically [3]. 

In order to get a mathematical expression for the rate of 

decay, the true data must be replaced by a mathematical 

description of it. In the context of images, the model was 

chosen as piecewise smooth regions separated by piecewise 

smooth edges where smoothness was quantified in the 

continuum by the availability of the first two derivatives. For 

such synthetic images, several transforms were analyzed. The 

best decay one could desire is 1/m2. The table (2) presents the 

decay factor of some of the transforms. 

Table 2 : Various transforms and their decay rates 

 

A more acceptable approach is to choose flexible and tunable 

transform such as wavelet packets or bandlets so that the 

methodology could adapt them to the signals under 

consideration [3]. Further as these methods are behavior and 

content driven in these images, the accuracy still remains 

coarse as image acquisition devices fail to render these 

requirements. Hence, it necessitates the deployment of the 

trained dictionaries that enable to adapt this model to 

practically any source. 

3.2 Regularization and Parameters 
Generally, the bound and norm of underdetermined system of 

equations is always ill-posed and ill-conditioned. 

Regularization ascertains conversion of ill-posed to well-

posed via bounded approximation. Similarly, ill-conditioned 

representation due to large norm is replaced by well-

conditioned and small norm using regularization. Thus, 

regularization ensures numerically stable solution for these 

modified set of equations [6]. 

3.2.1 Lagrange Multiplier, λ 
λ is a positive constant, called regularization parameter, which 

controls the amount of penalty that can be imposed on the 

regularization function ρ(x) with smoothness constraints and 

bounds on the vector space norm [1]. The value of λ is found 

empirically, to yield the best quality of the result, and hence 

will be different for different applications. 

3.2.2 Sparsity Promoting Function, ρ(x) 
Non-smooth surfaces typically signify lack of convexity. The 

bounded and lower norm approximation continues to remain 

smooth resulting into multiple local minima. The objective of 

securing global minima is supported by sparsity promoting 

function. This function promotes convexity. Minimizing a 
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convex function over a convex domain yields an optimal set 

of solutions which concentrate in a convex set with no local 

minima points. If the regularization function is strictly 

convex, then the best solution among the set of solutions for 

Ax=b will be a globally unique and globally minimum 

solution and hence can be implemented using available 

standard mathematical programming tools [2]. 

While the choice of l0 norm for ρ(x) is non-convex and NP-

hard, the l1-norm is used. Even though this is not strictly 

convex, the fact that it provides a sparse solution and the 

available subgradient methods for solving the same makes it 

advantageous. The characteristics of lp-norm for p=0.1, 0.5, 1, 

2 is as shown in the figure (1) [10]. 

 

Fig 1: Behavior of |x|p for different values of p 

3.2.3 Hessian Constraint, c 
Convexity demands hessian to be positive definite in the 

constrained equation. This objective is met with hessian 

constraint c satisfying the condition cI - ATA > 0; the 

violation of this condition results in the unboundedness of 

(ATA)-1 which can cause severe numerical instabilities unless 

additional constraints are added [6]. This is satisfied by the 

choice c > ||ATA||2 = λmax(A
TA).  

4. ITERATIVE SHRINKAGE 

APPROACH AND ALGORITHMS FOR 

INVERSE PROBLEMS 
With all the problem In order to get a mathematical 

expression for the rate of decay, the true The class of sparse 

solution is exercised for inverse problem with ill-posed linear 

set of equations. The solution is sought via a redundant 

dictionary matrix representation characterized by linear 

algebraic full rank property. 

The constraints depicted in equation (2) should ensure unique, 

optimal and possess fast iterative solution. The governing 

factors to these objectives summarize the following 

observations: (i) increased precision demanding increased 

redundancy in dictionary matrix which also entails increased 

sparseness in estimated x (x ) (ii) Generally undercomplete 

system of linear equation can be iteratively solved using 

gradient descent for seeking minimum. To increase the speed, 

parallel co-ordinate descent can also be sought [20], (iii) To 

reduce deviation in descent due to non-smoothness, 

optimization via convexity is the solution, (iv) To have unique 

solution through optimization approach, a combination of l2, l1 

and/or lp-norms are suitable, (v) To have increased sparsity, 

shrinkage is forced. These class of algorithms mainly focused 

on sparsity have been categorized as shrinkage algorithms. 

In this work, out of many possible approaches, the solution to 

linear inverse problems in sparse domain is sought with 

optimal redundant dictionary. Three algorithmic classes of 

Surrogate Separable function (SSF), Parallel Co-ordinate 

Descent (PCD) and Iterative Reweighted Least Squares 

(IRLS) cases are studied. As the descent is on non-smooth 

one, regularization is a need with a combinational norm and 

constrained optimization. This work will consider these cases 

with a case study on image deblurring application. 

The unconstrained convex methods, also known as subset 

selection methods [23]. The key objective of these algorithms 

is to minimize the functional in equation (2). Minimization of 

this optimization problem can be addressed effectively using a 

family of algorithms, called iterative shrinkage methods. 

Roughly speaking, in these iterative methods, each iteration 

comprises of a multiplication by matrix A and its adjoint 

along with a scalar shrinkage step on the obtained result. 

Despite their simple structure, these algorithms are shown to 

be very effective in minimizing the convex optimization 

problems. 

The three algorithms discussed are subjected to performance 

evaluation with image deblurring as a case study with 

qualitative and quantitative evaluation are presented in this 

paper. 

Qualitative evaluation includes Peak Signal to Noise Ratio 

(PSNR), Improvement Signal to Noise Ratio (ISNR) and 

Structural Similarity (SSIM). All the three are used in this 

paper as individually each one has a drawback. PSNR not all 

time guarantees true assessment, ISNR is a relative measure 

with respect to quality of the image. SSIM is opted in recent 

years as an effective assessment metric [24]. SSIM is assessed 

over [0, 1] where value ’1’ corresponds to high quality. 

4.1 Surrogate Functions and the Prox 

Method 
The constrained solution to linear inverse problem can be 

sought by iterative substitution process. The minimizing 

functional to such implementation in inverse problems are 

called surrogate functionals. Further as dictionary matrix A is 

unitary and orthogonal, such functions with dictionary 

matrices are categorized as separable surrogate functionals 

that are subjected to global minimization. However, these may 

demand additional regularization, convex and shrinkage 

conditioning to obtain optimal and sparse solution. 

A class of minimization functional for solving linear inverse 

problem that has been prevailing in sparse theory is a 

surrogate functional that approximates an objective function 

 

An iterative approximation facilitating minimization 

functional with replacement approach is termed as surrogate 

functional. It is computationally observed to be an efficient 

and less complex. It works effectively even when the 

objective function suffers from non-smoothness. It attempts 

towards finding global minima for the objective function 

optimally. Exploring global minima combined with speed 

characterizes the surrogate function based algorithm [14]. 

Equation (3) corresponds to modified minimization function 

in equation (2) with added function d(∙) that promotes 

convexity which is given as 

 

The new objective function will thus be 
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4.2 Parallel Co-ordinate Descent (PCD) 
PCD uses a functional for minimization with an approach to 

update individual elements in the estimate of x or 

minimization functional is updated every time for every new 

element estimate in x. 

 

Generally gradient descent solution heavily depends on initial 

value that one has to choose. This limitation is overcome by 

PCD where initial value of x can be zero. 

This iterative shrinkage approach typically begins with 

several simpler co-ordinate descents and merging into joint 

steps. The algorithm starts by proposing a Coordinate Descent 

(CD) algorithm that updates one entry at a time in x while 

keeping the rest untouched. A sequence of such rounds of m 

steps (addressing each of the entries in x ∈ Rm) is necessarily 

converging. While each co-ordinate direction assumes 

descent, their combination needs to be properly scaled. An 

additional step with directional Line Search (LS) typically 

assumes expected descent 

Compared to the SSF, PCD effectively depends on atom 

normalization in dictionary matrix A for accurate reweighting 

of back projected error. Also the descent is driven by the 

acceleration methods. 

4.3 Iterative Reweighted Least Squares 

(IRLS) 
Equation (2) is minimized for f(x) through l2-norm weighting 

factor as required in place of 1T ρ(x) as the original functions 

are generally non-l2-norms. Accordingly the modified 

functional will be 

 

where W(x) is a diagonal matrix 

 

Solution to IRLS is possible only by l2-norm. This needs 

conversion of non-l2-norms to l2 and is achieved by iteratively 

weighting factor W. This feature makes IRLS more 

preferable. IRLS is sensitive to zero initialization and care 

need to be taken to avoid this initialization. Further, the 

algorithm fails to revail even with isolated zeros in 

intermittent solutions. These isolated zeros correspond to the 

control exercised by local minima. 

 

leading to the iterative equation 

 

4.4 Acceleration Methods 
Speed-up or acceleration methods can be implemented in all 

the algorithms discussed in two ways. Firstly, Line Search 

facilitates in all the algorithms as discussed in PCD algorithm. 

Secondly, a technique called Sequential Subspace 

Optimization (SESOP) provides additional advantage of 

speeding up and is preferred when given a choice. 

In Line Search approach for acceleration, the updates on xk+1 

vector, obtained from xk, requires an error function to be 

added to xk in each iteration. Error function is dependent on 

gradient measure and descent direction. In order to have 

guaranteed descent eventually resulting into optimal 

minimization of the objective function, it necessitates to have 

scaling factor with error function. Generally, scaling factor µ 

is a constant or can be derived from regularization and 

convexity enforcing parameters along with sparse vector xk to 

obtain updated xk+1. 

SESOP seeks update on xk+1 via optimization of minimization 

functional over an affine subspace spanned in q recent steps 

along with prevailing gradient. q+1 dimensional optimization 

is performed with Newton algorithm. SESOP guarantees no 

additional cost with q+1 dimensional computation as these 

can be re-stored in previous iterations (similar to recycled 

storage). 

5. NUMERICAL IMPLEMENTATION 

AND ISSUES 
Place Consider a blurred and noisy version of the ideal image 

z=Ha+v where the blur kernel H and the noise variance σ are 

assumed to be known as this knowledge helps us to achieve 

the better estimate of the solution. Sparse model assumes that 

an ideal image can be represented as a product of dictionary 

matrix ’A’ with sparse vector ’x’. Hence restoration 

corresponds to solution of optimization problem given in (2).  

The description of each of the parameters is as follows:         

A is a full rank m × n (m < n) matrix under which the signal 

representation x (of size n × 1) is known to be sparse. It is 

built with the 2×2 masks [0.5, 0.5; 0.5, 0.5], [0.5, 0.5; -0.5, -

0.5], [0.5, -0.5; -0.5, 0.5] and [0.5, -0.5; 0.5, -0.5]. These are 

extended for 4×4 masks. The number of rows (m) should be 

equal to the length of the vector (Rm) containing the pixels of 

the available image (image with perturbations). This matrix is 

constructed by creating the vectors of length Rm, called atoms, 

one-by-one and inserting them column-wise and are 

normalized to have unit norm. 

The noise v is assumed to be a random vector of size Rn 

containing white Gaussian noise as this turns the maximum 

likelihood criterion to least-squares criterion which is 

practically implementable [21]. 

The blur kernel H used here is a 15 × 15(mH × nH) filter with 

values 1/(i2 +j2 +1)for -7 ≤ i; j ≤ 7, normalized to have unit 

sum. The circulant version of H of size 400×400 when 

multiplied with the ideal image results in the circulant blurred 

image. This can be avoided by appending the last (nH/2) 

columns of the ideal image (y0) at the beginning and the first 

(nH/2) columns of y0 at the end and the similar treatment to 

the rows of the resultant image yields a 35 × 35 image. this is 

then convolved with H and only the part of the convolution 

computed without the zero padded edges is considered. 

The sparsity promoting function ρ(x) used for all these 

algorithms is ρ(x) = |x| - slog(1+|x|/s) where s=0.01 is a 

constant. 

A generalized iterative shrinkage algorithm for solving the 

inverse problems comprise the following steps: 

Initialization: For all the algorithms, the initial signal 

representation x is initialized to be zero. For IRLS, x is 

assumed to be a vector of ones. 
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Back projection:e = AT r 

Shrinkage: es=S(x+e/c) 

For SSF, the values of e are weighted by (1/c). 

For PCD e is weighted by random iid (independent and 

identically distributed) values are used. 

For IRLS these weights depend on each entry of x 

Line Search or SESOP: These are the acceleration methods 

to increased speed of convergence and to 

Updating the solution: For kth iteration xk=xk-1+µ(es-xk-1) 

Updating the residual: r=b-HAx 

Here, the shrinkage function S maps each value of the input 

vector to the desired output value x opt. The proper design of 

this function ensures a globally minimum solution even 

though the input vector is non-convex. The shrinkage function 

used is 

 

More details on each of these algorithms can be found in [10]. 

5.1 Convergence Issues 
The minimization objective function in equation (2) is 

unconstrained and open ended function that lacks unique 

solution in it’s generalized form having pure l2-norm penalty 

term. Driving this objective penalty function to meet desired 

applications, multiple additional terms are required such as 

regularization terms, convexity norms etc. (2) corresponds to 

penalty term added with convex enforcing l1-norm. 

Optimal sparse solution for estimating sparse vector x is 

sought in two steps. Step 1 corresponds to promoting 

convergence with optimal estimation of x. Step 2 is an 

additional enforcement on x with hard thresholding that 

increases sparseness in vector x. 

The key issue in seeking sparse solution can be attributed to 

imposing optimal convexity that guarantees convergence. The 

objective function in equation (2) and optimal sparse vector x 

estimation as in equation in section 5 have to be convex 

specific. To this end, robust formulations in choosing 

regularization λ, imposing additional norm terms along with 

sparsity promoting function ρ(x) and shrinkage with hard 

thresholding have been well established in literature [10]. 

Hence convergence has never been a major issue as long as 

convexity enforcing parameters combined with sparsity 

promoting functions are suitably embedded in the objective 

function. In addition, computation efficiency and speed-up 

can also be addressed in multiple ways within different 

choices of algorithms. 

6. RESULTS AND INFERENCES 
The experimented results are presented graphically, the 

behavior of all the discussed algorithms showing the squared 

l2-norm of the error (in the objective function), as a function 

of iteration for the resized 60 × 60 cameraman, football and 

lena images. These plots are very similar to the 20 × 20 and 

40 × 40 images. 

Among all the algorithms and their acceleration methods, all 

the three algorithms with SESOP acceleration along with PCD 

gives the better results. It can be seen from the figures (2, 3 

and 4) that among these algorithms, PCD converge faster for 

about 10 iterations with an improvement of about 7.3dB, 

5.3dB and 8dB in PSNR value for cameraman, football and 

lena images respectively 

 

Fig 2: The value of the squared l2-norm of the error (in the 

objective function), as a function of iteration for resized 60 

× 60 cameraman image 

 

Fig 3: The value of the squared l2-norm of the error (in the 

objective function), as a function of iteration for resized 60 

× 60 football image 

 

Fig 4: The value of the squared l2-norm of the error (in the 

objective function), as a function of iteration for resized 60 

× 60 lena image 

.
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Table 3 : Image deblurring using various Iterative Shrinkage algorithms and their quality measures for a 20 × 20, resized 

cameraman image with PSNR=18.088641

Table 4.: Image deblurring using various Iterative Shrinkage algorithms and their quality measures for a 40 × 40, resized 

cameraman imagewith PSNR=19.52821

Table 5 : Image deblurring using various Iterative Shrinkage algorithms and their quality measures for a 60 × 60, resized 

cameraman image with PSNR=20.112524

For a quantitative analysis of the obtained results, the 

algorithm uses PSNR, ISNR and SSIM and these values for 

cameraman, football and lena images each with dimensions 

20 × 20, 40 × 40 and 60 × 60 are tabulated in the Tables (3-5). 

Due to space constraint, only tabulated results for Cameraman 

are presented. This work gave an improvement of 6-7dB in 

PSNR for all the three images of dimensions 20 × 20, 40 × 40 

and 60 × 60 respectively. (The experiments here are restricted 

to the smaller dimensions of the image because of the 

constraints on the cache). 

These algorithms are tuned with λ to get the better results and 

are stopped at the iteration that gives a comparatively better 

values of PSNR and SSIM. However, if proceeded or stopped 

at the earliest, the value of these measures deteriorates. 

Finally, the results of all the algorithms for all the three 

images of dimensions 20 × 20, 40 × 40 and 60 × 60 are 

presented. As stated above, all the algorithms with SESOP 

acceleration gives better results. 

7. NOTE ON SPARSITY AND IT’S 

RELEVANCE IN RESEARCH 
With the availability of vast redundant atomized dictionary 

matrix, several possible approximations of sparse vector for 

the target image are possible. Additionally, with multiple 

avenues in choosing the optimal approach the objective 

minimization functional can be suitably defined within 

sparsity framework for optimal approximation. Further, the 

choice of kernels in dictionary atoms along with optimal 

framework can be suitably steered to cover large applications. 

Thus, there is a lot of freedom in how to relate Sparseland 

model to the real world problems. The path from theory to 

practice is not direct and hence fitting various applications to 

this model is the art. Several applications have emerged from 

past decades based on this model. With this vast potential 

offered by sparse theory combined with multitude of 

applications, especially to linear inverse problems, can be 

seen as an independent area of study. 

 

Fig 5: Original resized 20 × 20 cameraman, football and 

Lena images (First row), their blurred versions (second 

row), Restored images using: SSF (third row), SSF-LS 

(fourth) PCD-LS (fifth) and IRLS-LS (sixth) 
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Fig 6: Original resized 20 × 20 cameraman, football and 

Lena images (First row), their blurred versions (second 

row), Restored images using: SSF-SESOP (third row), 

PCD-SESOP (fourth) and IRLS-SESOP (fifth) 

 

Fig 7: Original resized 40 × 40 cameraman, football and 

Lena images (First row), their blurred versions (second 

row), Restored images using: SSF (third row), SSF-LS 

(fourth) PCD-LS (fifth) and IRLS-LS (sixth) 

 

Fig 8: Original resized 40 × 40 cameraman, football and 

Lena images (First row), their blurred versions (second 

row), Restored images using: SSF-SESOP (third row), 

PCD-SESOP (fourth) and IRLS-SESOP (fifth) 

 

Fig 9: Original resized 60 × 60 cameraman, football and 

Lena images (First row), their blurred versions (second 

row), Restored images using: SSF (third row), SSF-LS 

(fourth) PCD-LS (fifth) and IRLS-LS (sixth) 
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Fig 10: Original resized 60 × 60 cameraman, football and 

Lena images (First row), their blurred versions (second 

row),  Restored images using: SSF-SESOP (third row), 

PCD-SESOP (fourth) and IRLS-SESOP (fifth) 
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