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ABSTRACT
In this paper, the maximum likelihood and Bayesian estimations
are developed based on progressive Type-I hybrid censored
sample from the Pareto distribution. The Bayesian estimators for
the unknown parameters are computed using the squared error loss
function. Also, the point and interval Bayesian predictions for the
unobserved failures from the same sample and that from the
future sample are derived. Moreover, a Monte Carlo simulation
study is carried out to compare the performance of the maximum
likelihood and the Bayesian estimators. Finally, numerical example
is presented for illustrating all the inferential procedures developed
here.
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1. INTRODUCTION
In reliability analysis, experiments are often terminated before
all units on test fail based on cost and time considerations. In
such cases, failure information is available and only partial
information is available on all units that have not failed. Such data
are called censored data. There are several forms of censored data.
Two commonly used right censoring schemes are the Type-I and
Type-II censoring, wherein the test terminates, respectively, at a
pre-determined time T and upon observing certain number
of failures. If n is the number identical units on a life-testing
experiment, in the Type-I censoring scheme the experiment is
terminated when a pre-fixed censoring time T is reached. In the
Type-II censoring scheme, the experiment gets terminated when a
pre-specified number m ≤ n of failures is observed. The mixture
of Type-I and Type-II censoring schemes is known as a hybrid
censoring scheme.
Progressive Type-II censoring scheme is a generalization of Type-
II censoring scheme, where n − m units are withdrawn from the
life-test at different time points (rather than all at the time Xm:n).
When the first failure is observed, R1 of the n− 1 surviving units
are randomly selected and removed. At the second observed failure,
R2 of the n − R1 − 2 surviving units are randomly selected and
removed. The experiment finally terminates at the time of the mth

failure when all remainingRm = n−R1−. . .−Rm−1−m surviv-
ing units are removed. The censoring numbers {Ri, i = 1, ..,m}
are prefixed. The resulting m ordered values which are obtained
from this type of censoring are referred to as progressively
Type-II right censored order statistics. Several authors have studied
progressive Type-II censoring and properties of order statistics
arising from such a progressively censored life-test. Some key
references are Aggarwala and Balakrishnan [1], Cramer and
Iliopoulos [2], Raqab et al. [3], Mohie El-Din and Shafay [4], and
Balakrishnan and Cohen [5].
The disadvantages of the progressive Type-II censoring scheme are
that the time of the experiment can be very long if the units are
highly reliable. Therefore, Kundu and Joarder in [6] and Childs et
al. in [7] proposed a progressive Type-I hybrid censoring scheme
(HCS), in this life-testing the experiment is terminated at time
min{Xm:m:n, T}, where T ∈ (0,∞) pre-fixed in advance. Under
progressive Type-I HCS, the time on experiment will be no more
than T . Some recent studies on progressive hybrid censored sample
have been carried out by many authors including Lin et al. [8], Lin
and Huang. [9], and Hemmati and Khorram [10].
In this paper, the underlying distribution is assumed to be the Pareto
distribution which introduced by Pareto in [11] as a model for the
distribution of income, with the probability density function (PDF)
and cumulative distribution function (CDF) given by

f (x|α, σ) =
α

σ

(σ
x

)(α+1)

, x ≥ σ, (1)

and

F (x|α, σ) = 1−
(σ
x

)α
. (2)

where α > 0 and σ > 0.
In recent years, its models in several different forms have been
studied by many authors including Davis and Feldstein[12], Cohen
and Whitten[13], and Grimshaw [14].
The rest of this paper is organized as follows. In Section 2, the
description of the model of the Type-I PHCS is presented. The
maximum likelihood (ML) estimator and the Bayesian estimator
under the squared error loss function for the unknown parameters
are derived in Section 3. In Section 4, the Bayesian prediction is
derived for the failure times of all units that are removed in
all stages of censoring. Bayesian prediction for progressive order
statistics from an unobserved future sample from the same
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distribution is derived in Section 5. Finally, in Section 6, a Monte
Carlo simulation study is carried out to compare the performance
of the ML and the Bayesian estimates, for illustrating all the
inferential methods developed here, numerical example is then
presented.

2. THE MODEL DESCRIPTION
The progressive Type-I HCS can be described as follow: Suppose n
identical items are put to test and the lifetime distributions of the n
items are denoted by X1,X2, ...,Xn . The integer m < n is fixed
at the beginnig of the experiment, and R = (R1, R2, ..., Rm) are
m pre-fixed integers satisfying n = m+R1 + . . .+Rm. The time
point T is also fixed beforehand. At the time of first failureX1:m:n,
R1 of the remaining units are randomly removed. Similarly, at the
time of the second failure X2:m:n, R2 of the remaining units are
removed and so on. If the mth failure Xm:m:n occurs before the
time point T , the experiment stops at the time point Xm:m:n. On
the other hand, suppose mth failure does not occur before time
point T and only k failures occur before the time point T , where
0 ≤ k < m ; then, at the time point T all the remaining R∗τ units
are removed and the experiment terminates at the time point T .

Note that R∗τ =
m∑

i=k+1

(Ri + 1) . (see Fig. 1).
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Fig. 1. Schematic representation of progressive Type-I hybrid censoring scheme 

 

Case I:  𝑿𝒎:𝒎:𝒏 < 𝑻 

Case II:  𝑻 < 𝑿𝒎:𝒎:𝒏 

.   .   . 

.   .   . 

𝑇∗ = 𝑋𝑚−1:𝑚:𝑛 

Therefore, in the presence of progressively Type-I HCS, one of the
following types of observations is found:

(1) Suppose that the mth failure occurs before T , then the
experiment terminates at T and {X1:m:n < ...... < Xk:m:n}
are observed.

(2) Suppose that the mth failure occurs before T, then the
experiment terminates at Xm:m:n and {X1:m:n < ...... <
Xm:m:n} are observed.

Given a progressively Type-I HCS, the joint density function for
the different cases are as follows:

fX(x) =

[
D∏
i=1

m∑
j=i

(
R∗j + 1

)]
D∏
i=1

f (xi:D:n)
[
F̄ (xi:D:n)

]Ri [F̄ (T )
]R∗τ , (3)

where

D =

{
k if Xk:m:n ≤ T < Xm:m:n,
m if Xm:m:n < T,

(4)

with R∗τ is the number of surviving units that are removed at T ,
given by

R∗τ =

 n− k −
k∑
j=1

Rj if Xk:m:n ≤ T < Xm:m:n,

0 if Xm:m:n < T,

(5)

and

x =

{
(x1:m:n, ..., xk:m:n) if ,Xk:m:n ≤ T < Xm:m:n

(x1:m:n, ..., xm:m:n) if Xm:m:n < T,
(6)

Upon using (2) and (1) in (3), the likelihood function of α, σ based
on progressively Type-I HCS can be obtained as

L (α, σ|x) =

[
D∏
i=1

m∑
j=i

(
R∗j + 1

)]

αD

(
D∏
i=1

1

xi

)
exp {−α [W (x)− n lnσ]} ,

(7)

where W (x) =
D∑
i=1

(R∗i + 1) lnxi +R∗τ lnT and xi = xi:D:n for

simplicity of notation.

3. THE ML AND BAYESIAN ESTIMATIONS
It is clear that the likelihood function is monotone increasing
function in σ, so its maximum value σ̂ML will be attained at the
minimum value x1:m:m of σ. From (7), The log-likelihood function
of (α, σ) is given by

ln [L (α, σ|x)] = const.+D lnα− α [W (x)− n lnσ] , (8)

to maximize relative to α, differentiate (8) with respect to α and
solve the equation

∂ ln [L (α, σ|x)]

∂α
= 0,

so the ML estimator α̂ML of α is obtained as

α̂ML =
D

W (x)− n lnx1:m:m

. (9)

For the Bayesian estimations, under the assumption that both
parameters α and σ are unknown, the joint prior density function
of α and σ, which was suggested by Lwin in [15] and generalized
by Arnold and Press in [16], is considered. The generalized Lwin
prior or the power-gamma prior is given by

π(α, σ) ∝ αaσ−1 exp[−α(ln g − b lnσ)], α > 0, 0 < σ < h,
(10)

where a, b, g, h are positive constants and hb < g.
Upon combining (7) and (10), given progressively Type-I HCS, the
posterior density function of α, σ is obtained as

π∗(α, σ|x) = L (α, σ|x)π(α, σ)/

∫
L (α, σ|x)π(α, σ)dαdσ

= I−1αD+aσ−1 exp {−α [W (x)− (n+ b) lnσ + ln g]} ,
(11)

where

I =

x0∫
0

∞∫
0

αD+aσ−1 exp {−α [W (x)− (n+ b) lnσ + ln g]} dαdσ

=
Γ(D + a)

n+ b
[W (x)− (n+ b) lnx0 + ln g]−(D+a) , (12)

with x0 = min(x1, g). By using (11), the Bayesian estimator of α
under the squared error loss function is the mean of the posterior

2



International Journal of Computer Applications (0975 - 8887)
Volume 178 - No.4, November 2017

density function, given by

α̂B =

x0∫
0

∞∫
0

απ∗(α, σ|x)dαdσ

=
D + a

W (x)− (n+ b) lnx0 + ln g
, (13)

and the Bayesian estimator of σ under the squared error loss
function is obtained as

σ̂B =

x0∫
0

∞∫
0

σπ∗(α, σ|x)dαdσ

= I−1x0

∞∫
0

αD+a

α (n+ b) + 1
exp {−α [W (x)− (n+ b) lnx0 + ln g]} dα

=
I−1x0
(n+ b)

[W (x)− (n+ b) lnx0 + ln g]−(D+a)

×
∞∫
0

tD+ae−t

t+ [W (x)− (n+ b) lnx0 + ln g] / (n+ b)
dt

=
x0

Γ(D + a)
Φ

(
D + a,

[W (x)− (n+ b) lnx0 + ln g]

(n+ b)

)
, (14)

where

Φ (x, y) =

∞∫
0

txe−t

t+ y
dt.

A partial tabulation of ψ(x, y) = (y/Γ(x))Φ (x− 1, y) has been
provided by Arnold and Press in [16].

4. ONE-SAMPLE BAYESIAN PREDICTION
For ρ = 1, 2, ..., R∗j , let Xρ:R∗j denote the ρth order statistic out of
R∗j removed units at stage j. Then, the conditional density function
of Xρ:R∗j , given the observed progressively Type-I HCS, is given,
see Basak et al. [17], by

fXρ:R∗
j
(x|x) =

R∗j !

(ρ− 1)!(R∗j − ρ)!

[F (x)− F (xj)]
ρ−1 [1− F (x)]R

∗
j−ρ f(x)

[1− F (xj)]
R∗j

, x > xj ,

(15)
where

j =

{
1, ...,m if Xm:m:n < T,
1, ..., k, τ if Xk:m:n ≤ T < Xm:m:n,

with xτ = T .
By using (2) and (1) in (15), given Type-I PHCS, the conditional
density function of Xρ:R∗j is then given as follows:

fXρ:R∗
j
(x|x) =

ρ−1∑
q=0

C1q
α

x
exp {−α [ηq (lnx− lnxj)]} , x > xj ,

(16)

where C1q =
(−1)q(ρ−1q )R∗j !
(ρ−1)!(R∗j−ρ)!

and ηq = q+R∗j − ρ+ 1 for

q = 0, ..., ρ− 1. Upon combining (11) and (16), the Bayesian
predictive density function of Xρ:R∗j , given progressively Type-I

HCS, is obtained as

f ∗Xρ:R∗
j

(x|x)

=

x0∫
0

∞∫
0

fXρ:R∗
j
(x|x)π∗(α, σ|x)dαdσ

=
I−1Γ(D + a+ 1)

(n+ b)

ρ−1∑
q=0

Cq
x

[W (x)− (n+ b) lnx0 + ln g + ηq (lnx− lnxj)]
−(D+a+1) .

(17)

The Bayesian predictive survival function of Xρ:R∗j , given
progressively Type-I HCS, is given as

F̄ ∗Xρ:R∗
j

(t|x)

=

∞∫
t

f ∗Xρ:R∗
j

(x|x)dx

=
I−1Γ(D + a)

(n+ b)

ρ−1∑
q=0

Cq
ηq

[W (x)− (n+ b) lnx0 + ln g + ηq (ln t− lnxj)]
−(D+a) .

(18)

The Bayesian point predictor ofXρ:R∗j under the squared error loss
function is the mean of the predictive density, given by

X̂ρ:R∗j =

∞∫
0

xf ∗Xρ:R∗
j

(x|x)dx, (19)

where f ∗(x|x) is given as in (17).
The Bayesian predictive bounds of 100(1− γ)% two-sided
equi-tailed (ET) interval for Xρ:R∗j can be obtained by solving the
following two equations:

F̄ ∗Xρ:R∗
j

(LET |x) =
γ

2
and F̄ ∗Xρ:R∗

j

(UET |x) = 1− γ

2
,

(20)
where F̄ ∗(t|x) is given as in (18), and LET and UET denote the
lower and upper bounds, respectively. On the other hand, for
the highest posterior density (HPD) method, the following two
equations need to be solved:

F̄ ∗Xρ:R∗
j

(LHPD|x)− F̄ ∗Xρ:R∗
j

(UHPD|x) = 1− γ

and

f ∗Xρ:R∗
j

(LHPD|x)− f ∗Xρ:R∗
j

(UHPD|x) = 0,

where f ∗(x|x) is as in (17), andLHPD andUHPD denote the HPD
lower and upper bounds, respectively.

5. TWO-SAMPLE BAYESIAN PREDICTION
Let Y1:`:N ≤ Y2:`:N ≤ . . . ≤ Y`:`:N be a future independent
progressive Type-II censored sample from the same population
with censoring scheme S = ( S1, ... , S`). In this section, a
general procedure for deriving the point and interval predictions
for Ys:`:N , 1 ≤ s ≤ `, based on the observed progressively Type-
I HCS, is developed. The marginal density function of Ys:`:N is
given by Balakrishnan et al. in [18] as

fYs:`:N (ys) = c (N, s)

s−1∑
q=0

cq,s−1[1− F (ys)]
Mq,s−1f(ys), (21)
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where 1 ≤ s ≤ ρ,
c (N, s) = N (N − S1 − 1) ... (N − S1...− Ss−1 + 1) ,
Mq,s = N − S1 − ...− Ss−q−1 − s+ q + 1,
and cq,s−1 = (−1)q{[

q∏
u=1

s−q+u−1∑
υ=s−q

(Sυ + 1)

][
s−q−1∏
u=1

s−q−1∑
υ=u

(Sυ + 1)

]}−1
.

Upon substituting (2) and (1) in (21), the marginal density function
of Ys:`:N is then obtained as

fYs:`:N (ys) = c (N, s)

s−1∑
q=0

cq,s−1
α

ys
exp

{
−α
[
Mq,s ln

(ys
σ

)]}
, ys > 0.

(22)
Upon combining (11) and (22), given progressively Type-I HCS,
the Bayesian predictive density function of Ys:`:N is obtained as

f ∗Ys:`:N (ys|x) =

{
f ∗1Ys:`:N (ys|x), 0 < ys ≤ x0,
f ∗2Ys:`:N (ys|x), ys > x0,

(23)

where

f ∗
1Ys:`:N

(ys|x)

=

ys∫
0

∞∫
0

fYs:`:N (ys|x)π∗(α, σ|x)dαdσ

= I−1Γ(D + a+ 1)c (N, s)

s−1∑
q=0

cq,s−1
(n+ b+Mq,s) ys

× [W (x)− (n+ b) ln ys + ln g]−(D+a+1) , (24)

and

f ∗
2Ys:`:N

(ys|x)

=

x0∫
0

∞∫
0

fYs:`:N (ys|x)π∗(α, σ|x)dαdσ

= I−1Γ(D + a+ 1)c (N, s)

s−1∑
q=0

cq,s−1
(n+ b+Mq,s) ys

× [W (x)− (n+ b+Mq,s) lnx0 +Mq,s ln ys + ln g]−(D+a+1) .

(25)

From (23), the predictive survival function of Ys:`:N , given
progressively Type-I HCS, is obtained as

F̄ ∗Ys:`:N (t|x) =

{
F̄ ∗1Ys:`:N (t|x), 0 < t ≤ x0,
F̄ ∗2Ys:`:N (t|x), t > x0,

(26)

where

F̄ ∗
1Ys:`:N

(t|x)

=

x0∫
t

f ∗1Ys:`:N (ys|x)dys +

∞∫
x0

f ∗2Ys:`:N (ys|x)dys

= I−1Γ(D + a)c (N, s)

s−1∑
q=0

cq,s−1
(n+ b) (n+ b+Mq,s)Mq,s

×
{

(n+ b+Mq,s) [W (x)− (n+ b) lnx0 + ln g]−(D+a)

− Mq,s [W (x)− (n+ b) ln t+ ln g]−(D+a)
}
, (27)

and

F̄ ∗
2Ys:`:N

(t|x)

=

∞∫
t

f ∗2Ys:`:N (ys|x)dys

= I−1Γ(D + a)c (N, s)

s−1∑
q=0

cq,s−1
Mq,s (n+ b+Mq,s)

× [W (x)− (n+ b+Mq,s) lnx0 +Mq,s ln t+ ln g]−(D+a) .

(28)

The Bayesian point predictor of Ys:`:N , 1 ≤ s ≤ m, under the
squared error loss function is the mean of the predictive density,
given by

Ŷs:`:N =

∞∫
0

ysf
∗
Ys:`:N

(ys|x)dys, (29)

where f ∗Ys:`:N (ys|x) is given as in (23).

6. NUMERICAL RESULTS
Before progressing further, how to generate the progressively Type-
I HCS, for a given set n, m, R1, R2, ..., Rm and T , is described.
The following transformation, suggested in Balakrishnan and
Aggarwala [19], is used:
Z1 = nX1:m:n

Z2=(n−R1 − 1)(X2:m:n-X1:m:n)
.
.
.
Zm=(n−R1 − 1)(Xm:m:n-Xm−1:m:n).
It is known that if Xi’s are i.i.d. , then the spacings Zi’s are also
i.i.d. random variables. Then it follows that
X1:m:n= 1

n
Z1

X2:m:n= 1
n−R1−1

Z2 + 1
n
Z1

.

.

.
Xm:m:n= 1

n−R1−...−Rm−1−m−1
Zm + ...+ 1

n
Z1.

Thus, the progressively Type-I HCS can be easily generated as
follows. If Xm:m:n < T , then the progressive Type-I hybrid
censored sample X1:m:n,...,Xm:m:n is obtained. If T <
Xm:m:n, then the progressive Type-I hybrid censored sample
X1:m:n, ...,Xk:m:n is obtained where Xk:m:n < T < Xk+1:m:n.

6.1 Monte Carlo Simulation
In this section, a Monte Carlo simulation study is carried out to
compare the performance of the ML and the Bayesian estimates
under different sampling schemes. Different values for n, m and
T is used to generate 1000 generalized progressive Type-I hybrid
censored samples from the Pareto distribution (with α = 4 and σ =
6). For comparison, the estimated risk (ER) for each estimate, by
using the root mean square error, and the estimated bias (EB) for
each estimate are computed. Tables 1 and 2 present the values of EB
and ER of the ML and Bayesian estimates for α and σ, respectively.
A Monte Carlo simulation study is performed using different
sample sizes (n), different effective samples sizes (m) and the
following two censoring schemes
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(1) Scheme 1: Ri = 2(n−m)
m

if i is odd and Ri = 0 if i is even.

(2) Scheme 2: Ri = 2(n−m)
m

if i is even and Ri = 0 if i is odd.
(3) Scheme 3:R1 = R2 = ... = Rm−1 = 1 andRm = n−2m+

1.

All Bayesian results are computed based on two different choices
of the hyperparameters (a, b, g, h), namely,

(1) Informative prior (IP ) : a = 1.78, b = 0.33, g = 3.48 and
h = 11.40.

(2) Noninformative prior (NIP ) : a = −1, b = 0, g = 1 and
h =∞.

6.2 Numerical example
In this numerical example, a progressive Type-I hybrid censored
sample from a sample of size n = 25 is generated. Suppose
m = 15 and R = (1, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 3), then the
following generated data: 6.0034, 6.0641, 6.2204, 6.2437, 6.2638,
6.2939, 6.3944, 6.3949, 6.5048, 6.5280, 6.7037, 6.7572, 7.9157,
8.5940, and 9.1067 are obtained. Different values for k and T
are considered to obtaine the following three different progressive
Type-I HCS:

(1) Scheme 1: Suppose T = 6.500, sinceT < X15:15:25, then
the experiment would have terminated at X8:15:25, with R∗τ =
13, and the following data: 6.0034, 6.0641, 6.2204, 6.2437,
6.2638, 6.2939, 6.3944, and 6.3949 are obtained.

(2) Scheme 2: Suppose T = 10, since X15:15:25 < T , then the
experiment would have terminated atX15:15:25, with R∗τ =
0, and the following data: 6.0034, 6.0641, 6.2204, 6.2437,
6.2638, 6.2939, 6.3944, 6.3949, 6.5048, 6.5280, 6.7037,
6.7572, 7.9157, 8.5940, and 9.1067 are obtained.

These data are assumed to have come from the Pareto distribution
with α and σ are unknown. Based on the above generated
progressive Type-I hybrid censored sample, Table 3 presents the
point predictor and 95% ET and HPD prediction intervals ofXρ:R∗j
and Table 4 presents the point predictor and 95% ET and HPD
prediction intervals of Ys:`:N from the future progressive censored
sample of size ` = 10 from a sample of size N = 20 with
progressive censoring scheme S = (2, 0, 2, 0, 2, 0, 2, 0, 2, 0 ).

6.3 Conclusions and discussion
From Tables 1 and 2, it can be seen that the performance of the ML
estimators is quite close to that of the Bayesian estimators based
noninformative priors, as expected. Thus, if no prior information
on the unknown parameters is found, then it is always better to use
the ML rather than the Bayesian estimators, because the Bayesian
estimators are computationally more sensitive. Also, the Bayesian
method with informative priors is the best method for estimation
under all different censoring schemes. Moreover, mean-squared
error decreases when n and m increase.
From the results in Tables 3 and 4, it can be seen that the point
predictor of mean is between the upper and lower bounds
of the prediction intervals. Also, the lower bounds are relatively
insensitive while the upper bounds are more sensitive. Moreover,
a comparison of the results for the informative priors with the
corresponding ones for non-informative priors reveals that the
former produce more precise results. Finally, the HPD prediction
intervals seem to be more precise than the ET prediction intervals.
In this paper, the maximum likelihood and Bayesian estimators are
derived for the two unknown parameters of the Pareto distribution

based on progressive Type-I hybrid censored sample. Even though
many results of interest in estimation and prediction have been
addressed in this paper, there are many problems in this direction
are open further study. One possible problem that will be of interest
is to use the progressive Type-I hybrid censoring scheme for
developing the estimation and prediction problems for some other
continuous distribution such as (1) Weibull distribution, (2) Burr
Type-XII distribution, (3) Inverted exponential distribution,
and (4) Generalized inverted exponential distribution. Another
possible problem that will be of interest is to consider the
estimation and prediction problems based on some other forms of
censoring schemes such as (1) Progressive Type-II hybrid
censoring scheme, (2) Adaptive progressively Type-I censoring
scheme, and (3) Unified hybrid censoring scheme.
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Table 1. The values of EB and ER of the ML and Bayesian estimates for α.
α̂B

α̂ML IP NIP

n m Scheme ER EB ER EB ER EB

T = 7.000

20 10 1 2.44575 1.11372 1.23717 0.27455 1.95453 0.40553
2 2.40738 1.09626 1.23783 0.27863 1.93682 0.40716
3 2.51717 1.14502 1.24940 0.27455 2.00024 0.41336

25 10 1 2.33048 1.11390 1.24673 0.31269 1.93416 0.46489
2 2.24738 1.05504 1.23877 0.31073 1.88182 0.45005
3 2.22559 1.02791 1.24640 0.32500 1.87576 0.46747

40 20 1 1.43949 0.52874 1.05784 0.19179 1.30707 0.21219
2 1.40926 0.51900 1.04273 0.19192 1.28062 0.21086
3 1.42540 0.52076 1.05283 0.18952 1.29593 0.20862

50 20 1 1.36742 0.49942 1.01794 0.19162 1.24093 0.21341
2 1.33914 0.48348 1.00652 0.18737 1.21852 0.20676
3 1.27661 0.43686 0.97987 0.17375 1.17202 0.18784

T = 8.000

20 10 1 2.25603 1.09667 1.23202 0.35875 1.86925 0.52784
2 2.21011 1.05822 1.22587 0.35849 1.84251 0.52003
3 2.22140 1.07310 1.22867 0.36060 1.84872 0.52342

25 10 1 2.24444 1.11382 1.22361 0.38062 1.85137 0.56178
2 2.21236 1.08997 1.22564 0.37414 1.83850 0.54902
3 2.21065 1.06875 1.21911 0.39370 1.82759 0.57908

40 20 1 1.28555 0.48218 0.96860 0.20748 1.16251 0.23242
2 1.26620 0.47754 0.95948 0.21048 1.14627 0.23455
3 1.27434 0.47836 0.96396 0.20818 1.15350 0.23235

50 20 1 1.28035 0.49801 0.96394 0.22785 1.15387 0.25777
2 1.25753 0.48588 0.95272 0.22514 1.13542 0.25328
3 1.25050 0.50064 0.94368 0.24261 1.12334 0.27530

Table 2. The values of EB and ER of the ML and Bayesian estimates for σ.
σ̂B

σ̂ML IP NIP

n m Scheme ER EB ER EB ER EB

T = 7.000
20 10 1 0.10765 0.07313 0.08297 0.01201 0.11201 0.03022

2 0.10765 0.07313 0.08317 0.01124 0.11029 0.02731
3 0.10765 0.07313 0.08307 0.01155 0.11054 0.02837

25 10 1 0.08571 0.05835 0.06561 0.00822 0.07406 0.01734
2 0.08571 0.05835 0.06544 0.00772 0.07169 0.01564
3 0.08571 0.05835 0.06555 0.00706 0.07107 0.01397

40 20 1 0.05456 0.03856 0.03956 0.00177 0.04058 0.00385
2 0.05456 0.03856 0.03950 0.00163 0.04045 0.00360
3 0.05456 0.03856 0.03952 0.00174 0.04050 0.00378

50 20 1 0.04356 0.03081 0.03132 0.00112 0.03183 0.00237
2 0.04356 0.03081 0.03133 0.00107 0.03182 0.00228
3 0.04356 0.03081 0.03127 0.00092 0.03167 0.00199

T = 8.000

20 10 1 0.10765 0.07313 0.08074 0.00705 0.08476 0.01404
2 0.10765 0.07313 0.08064 0.00660 0.08413 0.01296
3 0.10765 0.07313 0.08070 0.00676 0.08441 0.01338

25 10 1 0.08571 0.05835 0.06424 0.00530 0.06697 0.00982
2 0.08571 0.05835 0.06439 0.00509 0.06686 0.00920
3 0.08571 0.05835 0.06416 0.00448 0.06614 0.00797

40 20 1 0.05456 0.03856 0.03904 0.00051 0.03856 0.00149
2 0.05456 0.03856 0.03900 0.00039 0.03932 0.00166
3 0.05456 0.03856 0.03898 0.00045 0.03931 0.00158

50 20 1 0.04356 0.03081 0.03110 0.00016 0.03133 0.00089
2 0.04356 0.03081 0.03109 0.00022 0.03132 0.00098
3 0.04356 0.03081 0.03106 0.00009 0.03123 0.00053
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Table 3. Bayesian point predictor and 95% ET and HPD prediction intervals for Xρ:R∗j .
IP NIP

Sch. R∗j ρ X̂ρ:R∗j
ET interval HPD interval X̂ρ:R∗j

ET interval HPD interval

1 1 1 8.070 (6.037,15.940) (6.003,12.887) 8.247 (6.036,16.714) (6.003,13.205)
6 1 6.855 (6.306,8.715) (6.294,8.119) 6.868 (6.305,8.854) (6.294,8.185)

2 7.838 (6.426,12.056) (6.302,10.671) 7.898 (6.420,12.569) (6.300,10.926)
3 10.689 (6.756,23.831) (6.227,18.682) 11.169 (6.730,26.135) (6.239,19.733)

9 1 6.624 (6.503,7.007) (6.500,6.893) 6.626 (6.503,7.033) (6.500,6.906)
2 6.761 (6.478,7.354) (6.503,7.189) 6.525 (6.525,7.414) (6.502,7.222)
3 6.915 (6.569,7.724) (6.482,7.494) 6.923 (6.565,7.826) (6.485,7.554)
4 7.090 (6.422,8.139) (6.557,7.865) 7.100 (6.429,8.294) (6.548,7.954)
5 7.288 (6.693,8.621) (6.603,8.276) 7.306 (6.680,8.842) (6.587,8.402)
6 7.524 (6.773,9.194) (6.658,8.758) 7.544 (6.754,9.500) (6.633,8.935)
7 7.796 (6.868,9.898) (6.723,9.347) 7.831 (6.840,10.313) (6.688,9.585)
8 8.140 (6.981,10.792) (6.798,10.079) 8.189 (6.944,11.356) (6.750,10.396)
9 8.574 (7.118,11.986) (6.887,11.038) 8.631 (7.067,12.761) (6.827,11.489)

10 9.149 (7.289,13.696) (6.995,12.396) 9.267 (7.223,14.795) (6.911,12.996)
11 10.023 (7.515,16.442) (7.120,14.489) 10.197 (7.427,18.102) (7.019,15.394)
12 11.550 (7.840,21.928) (7.279,18.492) 11.948 (7.722,24.813) (7.145,19.988)
13 16.155 (8.416,41.675) (7.458,31.412) 17.727 (8.245,49.569) (7.290,35.050)

2 1 1 8.147 (6.040,16.227) (6.003,13.234) 8.222 (6.040,16.674) (6.003,13.433)
6 1 6.886 (6.307,8.767) (6.294,8.191) 6.898 (6.307,8.847) (6.294,8.241)

2 7.918 (6.443,12.072) (6.305,10.788) 7.958 (6.443,12.326) (6.304,10.945)
3 10.821 (6.820,23.735) (6.393,19.053) 11.004 (6.818,24.812) (6.387,19.655)

10 1 7.142 (6.541,9.093) (6.528,8.496) 7.155 (6.541,9.176) (6.528,8.547)
2 8.213 (6.682,12.521) (6.539,11.190) 8.254 (6.682,12.785) (6.538,11.352)
3 11.223 (7.074,24.618) (6.630,19.762) 11.413 (7.072,25.735) (6.625,20.387)

15 1 9.963 (9.125,12.685) (9.107,11.852) 9.981 (9.125,12.801) (9.107,11.923)
2 11.457 (9.322,17.467) (9.122,15.610) 11.515 (9.322,17.835) (9.121,15.836)
3 15.656 (9.868,34.343) (8.985,27.479) 15.920 (9.866,35.900) (8.991,28.355)

Table 4. Bayesian point predictor and 95% ET and HPD prediction intervals for Ys:`:N .
IP NIP

Scheme s Ŷs:N ET interval HPD interval Ŷs:N ET interval HPD interval
1 1 6.020 (5.834,6.247) (5.823,6.235) 6.019 (5.826,6.255) (5.814,6.242)

2 6.107 (5.892,6.462) (5.864,6.418) 6.108 (5.889,6.487) (5.857,6.435)
3 6.201 (5.949,6.677) (5.908,6.601) 6.204 (5.947,6.724) (5.901,6.631)
4 6.320 (6.007,6.956) (5.954,6.835) 6.325 (6.005,7.034) (5.946,6.882)
5 6.452 (6.063,7.263) (6.001,7.091) 6.459 (6.059,7.378) (5.991,7.159)
6 6.633 (6.131,7.712) (6.051,7.460) 6.644 (6.122,7.883) (6.038,7.560)
7 6.844 (6.207,8.238) (6.100,7.891) 6.862 (6.192,8.482) (6.082,8.033)
8 7.203 (6.315,9.242) (6.152,8.690) 7.232 (6.292,9.621) (6.127,8.908)
9 7.686 (6.454,10.643) (6.203,9.792) 7.737 (6.419,11.234) (6.170,10.126)

10 10.452 (6.799,22.781) (6.250,17.985) 10.785 (6.738,25.128) (6.208,19.092)

2 1 6.020 (5.827,6.255) (5.816,6.243) 6.020 (5.821,6.261) (5.810,6.248)
2 6.113 (5.886,6.467) (5.860,6.429) 6.114 (5.881,6.480) (5.472,6.440)
3 6.212 (5.944,6.676) (5.907,6.613) 2.215 (5.941,6.699) (5.902,6.630)
4 6.338 (6.007,6.944) (5.958,6.846) 6.343 (4.006,6.980) (5.953,6.872)
5 6.477 (6.071,7.236) (6.012,7.098) 6.485 (6.070,7.287) (6.007,7.135)
6 6.668 (6.149,7.664) (6.070,7.462) 6.680 (6.147,7.739) (6.065,7.515)
7 6.891 (6.238,8.163) (6.130,7.886) 6.908 (6.234,8.266) (6.124,7.958)
8 7.268 (6.366,9.125) (6.197,8.677) 7.295 (6.362,9.284) (6.188,8.786)
9 7.776 (6.530,10.456) (6.267,9.763) 7.816 (6.524,10.701) (6.255,9.927)

10 10.626 (6.935,22.583) (6.331,18.208) 10.799 (6.925,23.630) (6.316,18.807)
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