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ABSTRACT 
Background: The computational reconstruction of Gene 

Regulatory Networks (GRNs) using different techniques have 

encountered the challenge of constructing large network 

because of many parameters to be fitted and the nature of the 

input data. In fact, contemporary works on GRN inference 

that involve the use of hybridized techniques especially 

Artificial Neural Network (ANN) with meta-heuristic 

optimization techniques have to trade off computational cost 

for accuracy in reconstructing large-scale GRN. This work 

designed an efficient feature selection algorithm with GRN 

model to overcome the dimension problem of input data using 

biological prior knowledge of co-expression and network 

sparseness, so as to capture and represent the actual 

interrelationship among genes. 

Methodology: The GRN model is an ensemble Multi-Layer 

Perceptron (MLP) network incorporating a novel feature 

selection algorithm termed Fuzzified Adjusted Rand Index 

(FARI). FARI is developed to investigate and establish the 

expression trends of genes in an expression profile data. A 

rank matrix of all genes produced by FARI shows their co-

expression relationship, which is used to co-ordinate the 

selection of potential predictors as input features into the 

inference model. Each target gene is modeled separately by 

updating its parameters independently as several sub-

problems of the overall network. The performance of the 

model is subjected to synthetic, ecoli and Mtb data. 

Result: The result indicated an improved accuracy in the 

construction of large-scale GRN including a significant speed-

up. The result on Mtb identified CCL5 as the first expressed 

gene, which is the same with CCL1 identified by the 

experimental method. Some of the expressed genes were 

validated through their biological pathways showing immune 

responses and host susceptibility to TB. 

Conclusion: The included prior biological knowledge in MLP 

model provided the construction of an accurate large-scale 

GRN by reducing the potential large search space of GRN 

modeling. Besides, the model produced two major biological 

networks from the same process using the same dataset for 

appropriate biological validation. 
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1. INTRODUCTION 
A Gene Regulatory Network (GRN) is a collection of DNA 

segments in a cell which interact with each other indirectly 

(through their RNA and protein expression products) and with 

other substances in the cell to govern the gene expression 

levels of mRNA and proteins. The network structure is an 

abstraction of the system's chemical dynamics, describing the 

manifold ways in which one substance affects all the others to 

which it is connected. The interrelationship of cell 

constituents govern the gene expression levels of mRNA and 

eventual production of proteins in the body, and this provides 

fruitful information on functional role of individual genes in a 

cell, and also helps to study dynamics of specific genes under 

particular diseases or experimental conditions. Genetic 

regulatory network consists of set of genes, proteins, small 

molecules, and their mutual regulatory interactions. In a 

cellular system, the functional role of individual genomic-

encoded constituent is provided by the fundamental 

understanding depicted by GRN, which also help to identify 

the interactions between the constituents [1]. The 

development and functioning of organisms’ cell emerge from 

interactions in genetic regulatory networks [2]. The regulation 

of gene expression is achieved through the interactions 

between DNA, RNA, proteins, and small molecules. This 

regulatory system can be described by the structure of 

network called genetic regulatory network [3]. 

Computational reconstruction of gene regulatory network is 

essentially a reversed engineering process [4]. This graphical 

gene-to-gene communication is also known as network 

inference or network identification. Several mathematical and 

computational models have been developed to analyze the 

gene regulatory networks and metabolic networks of different 

cells in different disease traits [1],[2],[3],[6],[8],[11],[23],[24] 

but modeling of GRN is a non-trivial process because so 

many parameters have to be fitted, making it impractical to 

construct large network or it resulted to over-fitting. However, 

contemporary works on GRN inference involve the use of 

hybridized techniques especially Artificial Neural Network 

(ANN) with meta-heuristic optimization techniques to obtain 

near global optimum results [1],[4],[9],[14],[16],[17]. 

The use of Artificial Neural Networks (ANN) in the field of 

machine learning and data mining is becoming the principal 

option for developing models due to its ability in handling 

different categories of data and its tolerance to noisy data. 

This has been demonstrated also in the new push of 

developing predictive models for biomedical researches. ANN 

shortens as Neural Network (NN) in its different versions has 

been applied to solve different data mining problems 

including biological problems, and also used to ameliorate the 

deficiencies of other modeling techniques. Multi-layer 

perceptron (MLP) is one of the versions of NN and 

computational re-construction of Gene Regulatory Network 

(GRN) is one of data mining and biological application areas 

of NN. MLP is a type of Feedforward Neural Networks 

(FNN) consisting of layers. The input layer followed by a 

hidden layer, which consists of any number of neurons, or 

hidden units placed in parallel and an output layer of neurons. 

Each neuron performs a weighted summation of the inputs, 

which later on is passes through a nonlinear activation 

function. 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 42, August 2019 

7 

The reversed engineering of GRNs is from Microarray data 

because the pattern of expression profiles reflects the internal 

mechanism of gene interactions. The dataset can be a 

temporal or time-series data, which is in the form matrix of 

order N by M. N represents the number of genes and M 

represents length of experiments/time-points/samples. Apart 

from the fact that the gene expression dataset are complex, 

non-linear, dynamic and noisy; the number of genes (features) 

in a dataset is generally two or three times more than the 

number of experiments/time-points/samples. This imposes a 

well-known computational problem called curse of 

dimensionality especially when reconstructing large networks. 

Mores so, an important property of gene network is 

sparseness, which means that genes are regulated by a small 

constant number of other genes (i.e. 3-5 genes in bacteria). 

Hence, there is justification to prune the search space 

appropriately during network inference. 

Many computational approaches have been developed for 

gene regulatory networks inference. Unfortunately, inference 

can be complicated if the amount of augmentation 

(parameters) is large [7].  Previous researches have shown that 

it is difficult to re-construct large-scale networks of GRN due 

to high dependencies among the parameters in large data, that 

is, there is need to balance between fitness value and the 

actual network structure of large scale networks [4]. This 

suggests that there has been a trade-off between accuracy and 

efficiency among GRN computational models.  So, there is 

need for an effective model that would be able to handle the 

high dependencies among the parameters and the missing data 

which can cause the slow rate of convergence of NN 

inference.  

The study is hinged on two recent reported works of Mandal 

et al. [4], and Raza and Alam [1]. Mandal et al. hybridized 

two meta-heuristic algorithms with RNN to reconstruct gene 

regulatory network but later concluded that they had to totally 

sacrifice computational cost for accuracy. They suggested the 

use of regularization method, inclusion of prior knowledge of 

GRNs and application of parallel computing method to 

improve the accuracy and speed of GRNs inference. Raza and 

Alam used extended Kalman Filter in back-propagation 

through time training algorithm with RNN for GRN inference, 

but later concluded that modeling a large scale GRN is still a 

challenge. They identify three problems with microarray data 

responsible for this challenge such as curse of dimensionality 

problem, inherent noise due to experimental limitations and 

data reliability. Now, this study addresses the challenge of 

reconstructing large-scale GRNs by tackling the problems 

identified by Raza and Alam using one of the approaches 

suggested by Mandal et al. 

This work developed a novel feature selection algorithm using 

an improved Adjusted Rand Index (ARI), and biological prior 

knowledge of co-expression and network sparseness to deals 

with the dimension problem, which is the major hurdle to 

cross during GRN investigations. The result of the feature 

selection algorithm is a rank matrix, which serves two 

purposes; firstly, it is used to extract gene co-expression 

modules for the construction of gene co-expression network. 

Besides, it is used to pick the appropriate features from the 

original dataset as the input into the training model instead of 

bombarding the model with the whole dataset. Section 2 of 

this paper discusses the theoretical background of major 

concepts while the details of the methods used to develop the 

GRN structure is discussed in section 3. The effectiveness of 

the proposed method is verified in section 4 by reporting 

different results and comparisons with other state-of-the-art 

methods. The paper is concluded in section 5 with 

recommendations. 

2. THEORETICAL BACKGROUND 
The theoretical concepts of gene co-expression, Adjusted 

Rand Index (ARI) and MLP are provided here for better 

understanding of the methodology of this study. 

2.1 Gene Co-expression 
Gene expression is a biological process used by all living cells 

to generate the macromolecular machinery for living. It is the 

process by which information from a gene is used in the 

synthesis of a functional gene product (protein), which 

determines both the physical (phenotype) and disease traits of 

an organism. The interrelationship among genes in a cellular 

system is called Gene Co-expression Network (GCN) because 

genes of the same network are known to be either functionally 

related, controlled by the same transcriptional regulatory 

process or generally take part in a common biological process 

[18]. In a gene co-expression network, the genes signify a 

gene module and the edges indicate significant correlations 

[13]. Hence, a module is a set of genes with similar 

expression pattern in different samples of gene expression 
profiling. A module represents a highly connected sub-graph 

extracted from a co-expression network, which is a cluster of 

genes that have similar expression trends in different samples, 

but does not attempt to infer the causality relationship among 

the genes [18],[19]. 

Measuring expression trend is a process of computing 

association between a pair of genes that gives insight into 

whether they are co-expressed or not, which is central to the 

construction of both co-expression network and regulatory 

network. The expression trend of two genes exposes their 

pattern similarity, where co-expressed genes show their 

expression levels increasing or decreasing together under the 

same experimental conditions or time-points across the 

samples. Most of the existing methods are based on 

correlation measures and Mutual Information (MI), which 

uses global similarity to draw the relationship between genes 

but expression profiles share local similarity rather than global 

similarity [18]. MI leads to information loss due to the 

discretization of expression values and bi-clustering tends to 

be computationally expensive though suitable [18]. 

Figure 1 shows the expression patterns of two genes recA and 

uvrA in ecoli dataset having the same trend, while figure 2 

shows the expression patterns of uvrA and uvrY having 

different trend. Figure 3 shows a mixed regulation patterns.  
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Figure 1:  Expression patterns of two genes recA and uvrA in ecoli dataset having the same expression trend 

 

Figure 2:  Expression patterns of two genes recA and uvrA in ecoli dataset having the different expression trend 

 

Figure 3: Expression patterns of two genes recA and uvrA in ecoli dataset having the mixed expression trend 
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2.2 Adjusted Rand Index 
Adjusted Rand Index is an adjustment to the ordinary Rand 

Index to account for agreement by chance. Rand Index is a 

metric proposed by [25] for measuring the agreement between 

two clustering solutions. It gives a value between 0 and 1, 

with 0 representing little agreement and 1 representing strong 

agreement. A good measure of agreement is needed to 

compare clustering results especially against external criteria. 

Adjusted Rand Index is a measure of correspondence between 

two partitions of the same data and is based on how pairs of 

objects are classified in a contingency table. It returns a single 

value indicating the level of agreement between two 

partitions. An ARI score of 1 indicates that the two clustering 

results are the same while 0 indicates that the two clustering 

results are not the same. However, the value of Adjusted Rand 

Index can be negative, corresponding to very low agreement, 

but cannot be greater than 1.  Adjusted Rand Index was used 

by Santos and Embrechts [20] as a feature selection method 

because the measure of agreement between partitions and the 

target data is partitioned by means of the labeling. This is 

done by splitting each feature in non-overlapping equal 

intervals and compares the partition derived from the split 

with the one given by the targets. By doing this each feature's 

discriminant power is being evaluated and the features ranked 

according to the computed ARI value. The most discriminant 

features is then selected and applied in the classification 

algorithm. 

Computing ARI starts by building the Contingency Table 

(similar to confusion matrix) for the two clusters. The 

contingency table is filled in by calculating the size of 

intersection of each group in the clusters against each other, 

which is formed by the number of items that are either in 

agreement or disagreement in the groups of the two clusters. 

According to [20] and [22], contingency table is described as 

follow; consider a set of n objects S = {O1,O2 ……On} and 

suppose that U ={u1; u2 …. uR} and V = {v1, v2, ….. vC} 

represent two different partitions of the objects in S such that 

UR
i=1 ui = S = UC

j=1vj and ui ∩ ui, ɸ =  vj ∩ vj, for 1≤ i ≠ i’ ≤ R 

and 1 ≤ j ≠j’ ≤ C. Given two partitions, U and V, with R and C 

subsets, respectively, the contingency Table 1 can be formed 

to indicate group overlap between U and V. The Table below 

can be formed to indicate group overlap between U and V. 

Table 1: Contingency Table for Comparing Partitions U 

and V 

Partition 
 V 

Group v1 v2 …. vC Total 

U 

u1 t11 t12 …. t1C t1. 

u2 t21 t22 ….  t2. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

uR tR1 tR2 …. tRC tR. 

Total  t.1 t.2 …. t.c t.. = n 

 

In the table above, trc, represents the number of objects that 

were classified in the rth subset of partition R and in the cth 

subset of partition C. From the total number of possible 

combinations of pairs of objects from a given set we can 

represent the results in four different types of pairs: 

a - objects in a pair are placed in the same group in U and in 

the same group in V; 

b - objects in a pair are placed in the same group in U and in 

different groups in V ; 

c - objects in a pair are placed in the same group in V and in 

different groups in U and; 

d - objects in a pair are placed in different groups in U and in 

different groups in V . 

This leads to an alternative representation of Table 1 as a 2 X 

2 contingency table (Table 2) based on a, b, c, and d. 

Table 2: Simplified 2 X 2 Contingency Table for 

Comparing Partitions U and V. 

Partition V 

U 
Pair in same 

group 

Pairs in different 

groups 

Pair in same group a b 

Pairs in different 

groups 
c d 

 

ARI is given as: 

adjustedRandIndex(x,y)=                                                         

                   

 (1) 

where 

Index, MaxIndex and ExpectedIndex are calculated from the 

contingency table built from the two clusters.                 

2.3 Multilayer Perceptron (MLP) 
MLP is a Feedforward Neural Networks (FNN), which is the 

most popular and most widely used models in many practical 

applications [9],[12],[15]. An FNN is an NN where 

connections between the units do not form a directed cycle. 

The FNNs were the first and arguably simplest type of NN 

devised. In this network, the information moves in 

unidirectional connection between the neurons whereas 

different connectivities yield different network behaviours. 

Generally, FNN are static, which produce only one set of 

output values rather than a sequence of values from a given 

input. FNN are memory-less whereas their response to an 

input is independent of the previous network state. There are 

no cycles or loops in the network like Recurrent Neural 

Networks. A typical FNN consists of layers. The input layer 

followed by a hidden layer, which consists of any number of 

neurons, or hidden units placed in parallel and an output layer 

of neurons. Each neuron performs a weighted summation of 

the inputs, which later on is passes through a nonlinear 

activation function. 

It is a finite, directed acyclic graph, which extends the 

perceptron with hidden layers of processing elements. It 

directly incorporates the capabilities of higher order networks 

but using a larger number of weights and processing units. 

The resulting map is very flexible and powerful, but it is hard 

to analyze, exhibits slower learning, and is vulnerable to 

incremental addition of units. However, this model is 

Index – ExpectedIndex 

MaxIndex - ExpectedIndex 
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systematically designed with a powerful feature selection 

algorithm to eliminate these limitations in building biological 

large networks. The MLP constructs input-output maps that 

are nested composition of non-linear functions. 

3. METHOD 

3.1 Fuzzified Adjusted Rand Index (FARI) 
Building contingency table is central to the use of ARI, which 

is formed by the number of items that are either in agreement 

in the groups of the two clusters. However, it is impractical to 

get the measure of agreement of gene expression values 

because they are usually real values. Fuzzy concept of rule 

sets is incorporated in the process of building the contingency 

table, and this is the point of improvement of the research 

work.  

ARI is given as: 

adjustedRandIndex(x, y) =  

      

where 

Index, MaxIndex and ExpectedIndex are calculated from the 

contingency table built from the two clusters 

                                                 
 
 

  
 - [    

 
 

 
    

 
 

 
]/  
 
  

                            ½[    
 
 

 
     

 
 

 
] - [    

 
 

 
    

 
 

 
]   
 
  

         (2)  

Where nij, ai, bj and n are values from the contingency table 

FARI gives an insight into the relationship between genes, 

which eventually gives the opportunity to pick the most 

plausible genes as the best combination of 

affecting/regulatory genes unlike creating hypothetical 

connections by using conditional combinations of gene as 

input in [4] or using constraint to prune the network in [10] 

and [1]. By using FARI, each gene sample discriminant power 
is being evaluated and the genes are ranked according to the 

computed ARI values while making connection between the 

curse of dimensionality and sparseness property of biological 

network.               

3.2 Contingency Table Algorithm 
The building of contingency table is very central to the use of 

adjusted rank index because all the values used in the 

calculation of the adjusted rand index are taken from the 

contingency table. A contingency table is a tabular form of 

relationship between variables filled in with integer numbers, 

which shows the level of agreement or disagreement among 

the categorical variables of the two clusters. 

Given a set S of n elements, and two groupings or partitions 

(clusters) of these points, i.e 

 X = {x1, x2, ………., xr}  

    

 Y = {y1, y2, ………., ys}  

    

The overlap/intersection between X and Y can be summarized 

in a contingency table nij, each entry nij denotes the number of 

objects in common between Xi and Yj. 

i.e  nij = |Xi∩Yj|   

   

The overlap is a measure of proximity between a pair of genes 

across samples, showing the transcript levels of two co-

expressed genes rising and falling together. Since gene 

expression data are real values; hence, it is difficult to 

calculate number of common objects in two gene sample 

profiles. Fuzzy rules concept is applied to eliminate this 

challenge, where levels of agreement of samples of a gene 

against other samples of the other gene are distributed into 

different bins and clusters. Different values (measures) 

representing class labels are attached to bins and clusters 

accordingly. Each value is then used to fill contingency table 

of two gene objects of different samples. 

3.3 Building of Fuzzy Rules 
The process of separating data into groups according to their 

respective class labels, which is the first step in fuzzy rule 

generation is perform by applying two conditions. The 

conditions are whether the two samples between a pair of 

genes are the same time-point or not. The first condition 

separates data into discrete interval (bins), while the second 

condition separates the data into clusters.  

Given a pair of genes X and Y and the expression values 

rescaled to interval [0, 1] by use of a linear transformation; 

i. The first condition checks similar expression pattern 

of two samples Xi and Yi. This is at the same 

experimental condition or time point (i.e local 

similarity) 

Let Xp and Yp be expression patterns of genes X and Y 

at point i, we have two discrete values as class labels 

nij = 10 and nij = 0. 

The membership function, which is the first step in 

fuzzy rule generation of these groups is constructed 

as follow: 

Xp = exp(Xi – Xi-1)    

  (3) 

Yp = exp(Yi – Yi-1)    

   (4) 

If (Xp>0 and Yp>0) OR (Xp<0 and Yp<0) Then 

 nij = 10  -------> bin 1  

Else,   

nij = 0  -------> bin 2 

 where Xi-1 = 0.0 if i = 1 

The intuition behind this partitioning follows the 

principle used in filling the contingency table of 

ARI, where the values of the table determined the 

level of similarity of two clustering results across 

groups. Bin1 represents the situation where the 

expression trends of two genes are the same at the 

same time-point or experimental condition, while 

Bin2 represents situation where two genes have 

different expression trends.  

ii. The second conditions checks similar expression 

pattern of two samples Xi and Yj when i≠j. other 

similarity across samples (i.e global similarity). 

Let AD be the absolute difference (AD) of 

expression values of genes X and Y at Xi and Yj 

when i≠j being the size of their intersection, the 

values of the intersection are partitioned into six (6) 

different clusters as the class label using integer 

values, scale = [5, 4, 3, 2, 1, 0]. 

The membership function is constructed as follow; 

Index – ExpectedIndex 

MaxIndex - ExpectedIndex 

ARI =  
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  AD = exp(|Xi – Yj|)  

 (5) 

The data point clusters are defined by AD as follow; 

Data-points nij Clusters 

0.00 – 0.049 5 Cluster 1 

0.05 – 0.09 4 Cluster 2 

0.10 – 0.19 3 Cluster 3 

0.20 – 0.349 2 Cluster 4 

0.35 – 0.49 1 Cluster 5 

0.50 – 1.00 0 Cluster 6 

 

The AD partitioning into data points also follows the principle 

of filling of contingency table of ARI. The values assigned to 

each partition shows the measure of agreement or 

disagreement between gene expression values, where the 

highest value indicates relatedness and lower value indicates 

disagreement. The ranges of partitions are assumed between 0 

and 1 because the original gene expression data has been 

normalized between 0 and 1. 

Existing techniques generally depend on proximity measures 

based on global similarity to draw the relationship between 

genes, but it is observed that expression profiles share local 

rather that global similarity [18].  

3.4 MLP Based GRN Model 
The use of MLP for GRN model inference is based on the 

assumption that the regulatory interactions between genes can 

be represented in the form of a neural network where nodes 

are the genes and the edges define the nature of regulatory 

interaction. With time-series expression dataset, the output of 

a gene node of time ‘t+Δt’ may be calculated from expression 

values and connection weights of plausible genes selected by 

the ranking given by the feature selection algorithm at time 

‘t’. 

An ensemble of feed forward multilayer perceptron of total 

genes n is adopted for the whole network inference where the 

architecture of each member of the ensemble is a MLP 

(decouple network) for each gene modeling with different 

four layers; 

 One (1) input layer with l units of neurons, l is the 

number of highly ranked genes against the target gene. 

 Two (2) hidden layers with k units of neurons in the 

first layer h and q units of neuron in the second layer 

g. 

 One (1) output layer with one neuron of the calculated 

expression value of the target gene at ‘t+∆t’  

The model equation at any neuron is given as: 

ei(‘t+Δt’) = f(∑ej(t)wij + bi),  j =1-n (7) 

where  

ei  is the expression level of gene i (1≤i≤n),  

n is the total number of genes,  

wij is the synaptic weights representing the 

regulatory effect of gene j on gene i (1≤i, j≤n). A 

positive value of synaptic weight wij indicate 

activation of gene j on gene i, a negative value 

indicate inhibition and wij = 0 means that gene j has 

no regulatory effect on gene i. 

 f(.) is a non-linear transfer function, which  is 

sigmoid function 

f(u) = 1/(1+exp(u))   (8) 

The MLP formalism and modeling involves 

updating set of parameters wij and bi, which were initialized 

as; 

 wij = 0 

 bi = 0.001 

The nature of the value of wij has biological 

significance whether wij<0, 0 or >0. Hence, regulatory effect 

of a gene is taken to be the updated weights of all genes 

connected to the gene. 

The parameters of the MLP layout of each ensemble 

are given as: 

 Wkl = weights associated with the links 

between the input layer and h 

 Vqk = weights associated with the links 

between h  and g 

 Uiq =  weights associated with the links 

between the output layer and g 

Eventually, the MLP constructs input-output maps that are a 

nested composition of non-linarites. Based on the two hidden 

layers; 

 ei = f(∑uiq.f(∑vqk.f(∑wkl.ej +bl) +bq) +bi)

    (9) 

Each member of the ensemble is a multivariable regressor 

(many-to-one) trained with gene expression matrix data to 

learn correlations of descriptor genes with the target gene. 

Once the ensemble network is built, the connection weights 

determine the topology of the regulatory network. 

3.5 Learning Rule – Gradient Descent 

Optimization with Back-propagation  
Gradient descent is an important local optimization algorithm 

and back-propagation trains a feed-forward multilayer neural 

network for a given set of input patterns. Gradient Descent is 

an iterative minimization method, which shows the direction 

of the steepest ascent of the error function. The network 

examines its output response to the sample input pattern and 

compares the output with the desired output to calculate the 

error value. 

yji = f(∑k=1y(j-1)wjik)   (10) 

yji  = output from the j-th neuron in layer i 

wjik = connection weight from the k-th neuron from 

layer (j-1) to the i-th neuron in layer j 

f(x) = 1/(1+exp(-x))  (11) 

ep = ∑p ∑i(dji - yji)
2   (12) 

ep = MSE of output errors for every training sample 

pattern 

dji = desired output from the i-th neuron in layer j 

With GD, the weight change can be performed as: 

wt+1 = wt + ∆wt   (13) 
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∆wt = -η(δep(w)T/ δw)  (14) 

 η = scaling factor/learning rate 

 δep(w)T = first derivative of the logistic function  

3.6 Network Performance Metrics 
The validation of the proposed method is measured in terms 

of correct prediction of regulations in the GRN, which is used 

to evaluate the performance of the network inference method. 

The metrics for the evaluation are sensitivity (Sn), specificity 

(Sp), accuracy and Matthew’s correlation coefficient (MCC). 

They are defined as follows: 

Sn = TP/(TP+FN)   (15) 

Sp  = TN/(TN+FP)   (16) 

Accuracy = (TP+TN)/(TP+TN+FP+FN)

 (17) 

MCC=((TP*TN)-

(FP*FN))/√((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)(18)

  

TP (True Positive) = number of correctly predicted 

regulations (both activations and inhibitions). 

TN (True Negative) = number of correctly predicted 

non-regulations (zero weights). 

FP (False Positive) = number of incorrectly 

predicted regulations. 

FN (False Negative) = number of incorrectly 

predicted non-regulations 

4. IMPLEMENTATION 
All the implementations were performed using Python 

programming language on Ubuntu Linux 14.0.4 platform, 

executed on AMD 1.30Ghz processor and 2GB of RAM. 

5. RESULTS AND DISCUSSION 

5.1 Results of Artificial Dataset 
The ultimate of this study is to reconstruct a large-scale GRN 

that will balance between the fitness value and actual network 

structure. Modeling a GRN that will maintain prediction 

performance as the network complexity grows has been a 

challenge, which [1] submitted that curse of dimensionality 

problem and inherent noise of the experimental data are major 

issues of the challenge. Incidentally, [4] suggested inclusion 

of prior knowledge of GRNs as one of the major ways to 

improve accuracy and speed of a large-scale GRN. FARI is 

developed to tackle the curse of dimensionality problem and 

noisy data using prior knowledge of co-expression and 

sparseness of biological networks to improve the prediction 

performance of large-scale networks with good speed. 

The data gotten from [4] contains 30 genes with 50 data-

points in 5 datasets making it to be 250 data-points altogether. 

A discretized weight matrix of 30x30 dimension is then 

generated, with zeros representing non-regulations and non-

zeros representing regulations (-1 as inhibition and 1 as 

activation).  

There are 72 non-zero values of weights defining the number 

of regulations and 828 zero values, from which the 

performance of the model is analyzed. The zero values 

include the non-existence edges that were not selected for the 

training by the feature selection algorithm. False regulations 

and non-regulations come from training set that could not 

meet the minimum fitness value at 1000th iteration and the 

ones that meet the minimum fitness value beyond 600th 

iteration because majority of the decoupled network achieved 

the optimum fitness value between 108th and 380th iteration. 

The correctly predicted regulations are eventually used to 

construct the GRN. 

 Correctly predicted regulations (TP) = 64 

 Incorrectly predicted regulations (FP) = 8 

 Correctly predicted non-regulations (TN) = 808  

 Incorrectly predicted non-regulations (FN) = 20 

The overall execution time of the ensemble network is at the 

average of 40mins against 1.5hours recorded by Mandal et al. 

using the same dataset. Table 4.10 shows the performance and 

comparison of this model with the reported result from [4] on 

the artificial dataset in terms of Sensitivity (Sn), Specificity 

(Sp), Accuracy and Matthews Correlation Coefficient (MCC). 

 

Table 3: Performance Analysis and Comparison of the Constructed GRN 

Method Sn Sp Accuracy MCC 

FARI-MLP 0.762 0.990 0.969 0.807 

CS-FPA RNN(Mandal et al., 2016) 0.889 0.995 0.991 0.884 

Decoupled RNN(Norman et al., 2013) 0.611 0.996 0.981 0.725 
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Figure 5: Performance Analysis of the GRN Model 

5.2 Evaluation Results of Real Data of SOS 

DNA Repair Networks 
The reconstruction of GRN from a real dataset of SOS DNA 

repair network of e.coli is on experimental dataset described 

by [4] and [1] contains expression of 8 major genes due to 

their significant involvement in the process of DNA repair. 

The genes under consideration are UvrD, lexA, umuD, recA, 

uvA, uvrY, ruvA and PolB with 50 time-points, and the values 

are normalized in the range of [0,1]. 

Table 4: Weight Matrix of e.coli showing Regulations and 

Non-regulations 

  uvrD lexA umuDC recA uvrA uvrY ruvA polB 

uvrD 0 0 0 0 0 0 0 -2 

lexA 0 0 0 0 0 0 0 -2 

umuDC 0 0 0 1 0 0 0 -1 

recA 0 1 0 0 1 0 0 -2 

uvrA 0 1 0 0 0 0 0 -2 

uvrY -1 0 0 0 0 0 0 -2 

ruvA 0 0 0 0 0 0 0 0 

polB 0 0 0 0 1 0 0 0 

 

Model parameters chosen for e.coli GRN include Sigmoid 

transfer function, initial weights equal zeros, and the input 

value n = 4 is used as the hypothetical regulators because 

e.coli is a small cell. We generated a discretized weight matrix 

of 8x8 (Table 4) showing the regulations (activations and 

inhibitions) and non-regulations, from which the GRN is 

constructed and transcription factors identified. Performance 

analysis of the model on e.coli SOS DNA repair data is shown 

in Table 5, including the comparison with the result reported 

by [1] on the same dataset. It can be observed that the 

performance metrics are good representations of a better 

model even when compared with the work of [1]. There are 

12 interactions that are correctly predicted shown in Table 4 

and a clear cut discovery is made where polB gene happens to 

inhibit almost all other genes, whereas lexA gene has been 

reported to inhibit all other genes in e.coli SOS DNA repair 

network. This discovery is queried by searching the e.coli 

SOS DNA repair network genes on KEGG database 

(https://www.genome.jp/kegg/pathway.html ) and we 

discovered that polB gene engages in more pathway networks 

than all other genes. This discovery is subject to further 

experimental verifications and analysis. 

 

Table 5: Performance Analysis and Comparison of the Model on e.coli 

Method Sensitivity 

TP/(TP+FN) 

Specificity 

TN/(TN+FP) 

Precision 

TP/(TP+FP) 

Recall 

TP/(TP+FN) 

F-Score 

2*P*R/(P+R) 

FARI-MLP 0.92 0.94 0.80 0.92 0.86 

RNN(Raza and Alam, 2016) 1.00 0.67 0.48 1.00 0.65 
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Figure.6: Performance Analysis on e.coli Data 

5.3 Results of Mtb-Stimulated Human 

Macrophages Data 
The model was also applied to Mtb data at latent stage to 

unfold the genes that are expressed and their transcription 

factors (TFs) in human during the latent stage of tuberculosis 

infection by reconstructing GRN. The first 1,000 genes of 

Mtb-Stimulated human macrophages data (GSE11199) 

generated by [21] are investigated, and the number of input 

genes of the MLP is set to eight (8) being a eukaryotic system. 

Out of the 1,000 gene set, 203 interactions were discovered 

from the gene regulatory network, where 177 genes were 

repressed and 26 genes were expressed (activated). The 

expressed genes are selected and further analyzed using 

KEGG database. Some of the expressed genes were found to 

be involved in one or two pathways while were not found in 

the KEGG database. The genes that involved in special 

pathways characteristics of immune responses especially in 

human macrophage, epithelial and dendritic cells, and 

susceptibility to tuberculosis. All these pathways play 

important roles in the latency stage of Mtb infection in 

human. Thuong et al. [21] identified CCL1 as a gene involved 

in host susceptibility to TB, whereas the computational model 

identified CCL5 among others. Both CCL1 and CCL5 have 

been observed to perform the same function, which is 

described to be C-C motif chemokine ligand by g:profiler  

(https://biit.cs.ut.ee/gprofiler/gconvert.cgi) 

6. CONCLUSION 
In this work, a novel feature selection algorithm has been 

developed for the extraction of co-expressed genes using 

Adjusted Rand Index with Fuzzy rules.  The new feature 

extraction model, Fuzzified Adjusted Rand Index (FARI) is 

used in conjunction with Multi-layer perceptron to reconstruct 

large Gene Regulatory Network (GRN). FARI has given an 

insight into the relationship between genes, which eventually 

gives us the opportunity to pick the most plausible genes as 

the best combination of affecting/regulatory genes in 

constructing gene regulatory network unlike creating 

hypothetical connections by using conditional combinations 

of gene as input or using constraint to prune the network in 

the previous works. This computational model eliminates 

difficulties encountered in re-constructing large-scale 

networks due to high dependencies among the parameters in 

large data. The balance between fitness value and the actual 

network structure of large scale networks is enhanced and 

overcomes the limitation of trade-off between accuracy and 

efficiency among GRN computational models. FARI 

therefore uses the biological prior information to reduce the 

large search space created from the complex units of Multi-

layer perceptron due to the complex nature of the input data. 

It was noted that ranking of genes to analyze their expression 

trends by FARI could be parallelized because it is done in 

pairs. Incorporating parallelism into the feature selection 

algorithm would further reduce the computational cost of the 

whole model. Besides, using neural network as the inference 

technique of GRN reconstruction involve the use of the 

weight matrix to describe the nature of the regulation, that can 

never be stable with the use of random numbers as the initial 

weights. It would be interesting to study the effect of random 

numbers as initial weights on the outcome of the inference 

using different ANN models. 
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